Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 95
Filtrar
1.
Neurosurgery ; 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38836612

RESUMO

BACKGROUND AND OBJECTIVES: The Scoliosis Research Society (SRS)-Schwab system does not include a pelvic compensation (PC) subtype, potentially contributing to gaps in clinical characteristics and treatment strategy for deformity correction. It also remains uncertain as to whether PC has differing roles in sagittal balance (SB) or imbalance (SI) status. To compare radiological parameters and SRS-22r domains between patients with failed pelvic compensation (FPC) and successful pelvic compensation (SPC) based on preoperative SB and SI. METHODS: A total of 145 adult spinal deformity patients who received deformity correction were analyzed. Radiographic and clinical outcomes were collected for statistical analysis. Patients were classified into 4 groups based on the median value of PT/PI ratio (PTr) and the cutoff value of SB. Patients with low PTr and high PTr were defined as FPC and SPC, respectively. Radiographic and clinical characteristics of different groups were compared. RESULTS: Patients with SPC exhibited significantly greater improvements in lumbar lordosis, pelvic tilt, PTr, and T1 pelvic angle as compared to patients with FPC, irrespective of SB or SI. No apparent differences in any of SRS-22r domains were observed at follow-up when comparing the SB-FPC and SB-SPC patients. However, patients with SI-SPC exhibited significantly better function, self-image, satisfaction, and subtotal domains at follow-up relative to those with SI-FPC. When SI-FPC and SI-SPC patients were subdivided further based on the degree of PI-LL by adjusting for age, the postoperative function and self-image domains were significantly better in the group with overcorrection of PI-LL than undercorrection of PI-LL in SI-FPC patients. However, no differences in these SRS-22r scores were observed when comparing the subgroups in SI-SPC patients. CONCLUSION: Flexible pelvic rotation is associated with benefits to the correction of sagittal parameters, irrespective of preoperative SB or SI status. However, PC is only significantly associated with clinical outcomes under SI. Patients with SI-FPC exhibit poorer postoperative clinical outcomes, which should be recommended to minimize PI-LL.

2.
J Appl Microbiol ; 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38830792

RESUMO

AIMS: Cytidine, as an important commercial precursor in the chemical synthesis of antiviral and antitumor drugs, is in great demand in the market. Therefore, the purpose of this study is to build a microbial cell factory with high cytidine production. METHODS AND RESULTS: A mutant E. coli NXBG-11-F34 with high tolerance to UMP structural analogues and good genetic stability was obtained by atmospheric room temperature plasma (ARTP) mutagenesis combined with high throughput screening. Then, the udk and rihA genes involved in cytidine catabolism were knocked out by CRISPR/Cas9 gene editing technology, and the recombinant strain E. coli NXBG-13 was constructed. The titer, yield and productivity of cytidine fermented in 5 L bioreactor were 15.7 g l-1, 0.164 g g-1 and 0.327 g l-1 h-1, respectively. Transcriptome analysis of the original strain and the recombinant strain E. coli NXBG-13 showed that the gene expression profiles of the two strains changed significantly, and the cytidine de novo pathway gene of the recombinant strain was up-regulated significantly. CONCLUSIONS: ARTP mutagenesis combined with metabolic engineering is an effective method to construct cytidine-producing strains.

3.
Bioorg Chem ; 148: 107467, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38772290

RESUMO

KRAS-G12C inhibitors has been made significant progress in the treatment of KRAS-G12C mutant cancers, but their clinical application is limited due to the adaptive resistance, motivating development of novel structural inhibitors. Herein, series of coumarin derivatives as KRAS-G12C inhibitors were found through virtual screening and rational structural optimization. Especially, K45 exhibited strong antiproliferative potency on NCI-H23 and NCI-H358 cancer cells harboring KRAS-G12C with the IC50 values of 0.77 µM and 1.50 µM, which was 15 and 11 times as potent as positive drug ARS1620, respectively. Furthermore, K45 reduced the phosphorylation of KRAS downstream effectors ERK and AKT by reducing the active form of KRAS (KRAS GTP) in NCI-H23 cells. In addition, K45 induced cell apoptosis by increasing the expression of anti-apoptotic protein BAD and BAX in NCI-H23 cells. Docking studies displayed that the 3-naphthylmethoxy moiety of K45 extended into the cryptic pocket formed by the residues Gln99 and Val9, which enhanced the interaction with the KRAS-G12C protein. These results indicated that K45 was a potent KRAS-G12C inhibitor worthy of further study.


Assuntos
Antineoplásicos , Proliferação de Células , Cumarínicos , Ensaios de Seleção de Medicamentos Antitumorais , Proteínas Proto-Oncogênicas p21(ras) , Humanos , Proteínas Proto-Oncogênicas p21(ras)/antagonistas & inibidores , Proteínas Proto-Oncogênicas p21(ras)/genética , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Cumarínicos/química , Cumarínicos/farmacologia , Cumarínicos/síntese química , Relação Estrutura-Atividade , Antineoplásicos/farmacologia , Antineoplásicos/química , Antineoplásicos/síntese química , Proliferação de Células/efeitos dos fármacos , Estrutura Molecular , Linhagem Celular Tumoral , Relação Dose-Resposta a Droga , Descoberta de Drogas , Apoptose/efeitos dos fármacos , Simulação de Acoplamento Molecular , Avaliação Pré-Clínica de Medicamentos
4.
Artigo em Inglês | MEDLINE | ID: mdl-38638044

RESUMO

BACKGROUND: The tumor microenvironment (TME) exerts a significant influence on the development, invasion, metastasis, and drug resistance of breast cancer. Therefore, this study sought to investigate potential prognostic factors and markers indicative of TME remodeling in breast cancer, utilizing data from the TCGA database. METHODS: In this study, transcriptome RNA-seq data from 1222 breast cancer samples were processed using CIBERSORT and ESTIMATE algorithms. We conducted a differential gene expression analysis utilizing COX regression analysis and constructed protein-protein interaction (PPI) networks for enhanced visualization. Through univariate COX analysis and cross-analysis within PPI networks, the Interleukin-7 receptor (IL-7R) emerged as a potential predictor. Subsequently, we performed a comprehensive investigation encompassing single-gene survival analysis, clinical correlation assessment, and GSEA enrichment analysis targeting IL-7R as a core gene associated with prognosis. We examined the expression of IL-7R in human breast cancer and normal breast tissue through clinical studies and cytology experiments, followed by an indepth analysis of the relationship between IL-7R and breast cancer. RESULTS: The survival analysis revealed that breast cancer patients with elevated IL-7R expression experienced prolonged survival compared to those with lower IL-7R levels. Results obtained from the Wilcoxon rank-sum test, along with clinical and cellular experiments, indicated higher IL-7R expression in tumor samples compared to normal samples. Correlation tests conducted between IL-7R expression and clinicopathological stage characteristics highlighted statistically significant associations between IL-7R expression and the T and M stages. Additionally, cell classification analysis of tumor-infiltrating immune cells (TIC) proportion showed that activated CD4+ T cells and CD8 T cells of memory B cells were positively correlated with IL-7R expression. These findings further underscored the impact of IL-7R levels on the tumor microenvironment (TME). CONCLUSION: IL-7R emerges as a potential prognostic indicator for breast cancer patients, particularly in sustaining the immunoactive status of the tumor microenvironment (TME) and contributing to immune reconstitution. These findings offer novel insights into breast cancer treatment strategies.

5.
Adv Sci (Weinh) ; : e2307238, 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38639443

RESUMO

Preventing and treating avascular necrosis at the distal end of the flaps are critical to surgery success, but current treatments are not ideal. A recent study shows that apoptotic bodies (ABs) generated near the site of apoptosis can be taken up and promote cell proliferation. The study reveals that ABs derived from fibroblast-like cells in the subcutaneous connective tissue (FSCT cells) of skin flaps promoted ischaemic flap survival. It is also found that ABs inhibited cell death and oxidative stress and promoted M1-to-M2 polarization in macrophages. Transcriptome sequencing and protein level testing demonstrated that ABs promoted ischaemic flap survival in endothelial cells and macrophages by inhibiting ferroptosis via the KEAP1-Nrf2 axis. Furthermore, microRNA (miR) sequencing data and in vitro and in vivo experiments demonstrated that ABs inhibited KEAP1 by delivering miR-339-5p to exert therapeutic effects. In conclusion, FSCT cell-derived ABs inhibited ferroptosis, promoted the macrophage M1-to-M2 transition via the miR-339-5p/KEAP1/Nrf2 axis and promoted ischaemic flap survival. These results provide a potential therapeutic strategy to promote ischaemic flap survival by administering ABs.

6.
Biomacromolecules ; 25(5): 2852-2862, 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38574372

RESUMO

Albumin nanoparticles are widely used in biomedicine due to their safety, low immunogenicity, and prolonged circulation. However, incorporating therapeutic molecules into these carriers faces challenges due to limited binding sites, restricting drug conjugation efficiency. We introduce a universal nanocarrier platform (X-UNP) using polyphenol-based engineering to incorporate phenolic moieties into albumin nanoparticles. Integration of catechol or galloyl groups significantly enhances drug binding and broadens the drug conjugation possibilities. Our study presents a library of X-UNP nanoparticles with improved drug-loading efficiency, achieving up to 96% across 10 clinically used drugs, surpassing conventional methods. Notably, ibuprofen-UNP nanoparticles exhibit a 5-fold increase in half-life compared with free ibuprofen, enhancing in vivo analgesic and anti-inflammatory effectiveness. This research establishes a versatile platform for protein-based nanosized materials accommodating various therapeutic agents in biotechnological applications.


Assuntos
Nanopartículas , Polifenóis , Polifenóis/química , Nanopartículas/química , Animais , Camundongos , Ibuprofeno/química , Portadores de Fármacos/química , Humanos , Albuminas/química , Soroalbumina Bovina/química
7.
Phys Med Biol ; 69(10)2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38588676

RESUMO

Background. Pancreatic cancer is one of the most malignant tumours, demonstrating a poor prognosis and nearly identically high mortality and morbidity, mainly because of the difficulty of early diagnosis and timely treatment for localized stages.Objective. To develop a noncontrast CT (NCCT)-based pancreatic lesion detection model that could serve as an intelligent tool for diagnosing pancreatic cancer early, overcoming the challenges associated with low contrast intensities and complex anatomical structures present in NCCT images.Approach.We design a multiscale and multiperception (MSMP) feature learning network with ResNet50 coupled with a feature pyramid network as the backbone for strengthening feature expressions. We added multiscale atrous convolutions to expand different receptive fields, contextual attention to perceive contextual information, and channel and spatial attention to focus on important channels and spatial regions, respectively. The MSMP network then acts as a feature extractor for proposing an NCCT-based pancreatic lesion detection model with image patches covering the pancreas as its input; Faster R-CNN is employed as the detection method for accurately detecting pancreatic lesions.Main results. By using the new MSMP network as a feature extractor, our model outperforms the conventional object detection algorithms in terms of the recall (75.40% and 90.95%), precision (40.84% and 68.21%), F1 score (52.98% and 77.96%), F2 score (64.48% and 85.26%) and Ap50 metrics (53.53% and 70.14%) at the image and patient levels, respectively.Significance.The good performance of our new model implies that MSMP can mine NCCT imaging features for detecting pancreatic lesions from complex backgrounds well. The proposed detection model is expected to be further developed as an intelligent method for the early detection of pancreatic cancer.


Assuntos
Neoplasias Pancreáticas , Tomografia Computadorizada por Raios X , Humanos , Neoplasias Pancreáticas/diagnóstico por imagem , Processamento de Imagem Assistida por Computador/métodos , Aprendizado de Máquina
8.
Biology (Basel) ; 13(3)2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38534423

RESUMO

The prognosis for cancer patients has declined dramatically in recent years due to the challenges in treating malignant tumors. Tumor immunotherapy, which includes immune target inhibition and chimeric antigen receptor cell treatment, is currently evolving quickly. Among them, natural killer (NK) cells are gradually becoming another preferred cell immunotherapy after T cell immunotherapy due to their unique killing effects in innate and adaptive immunity. NK cell therapy has shown encouraging outcomes in clinical studies; however, there are still some problems, including limited efficacy in solid tumors, inadequate NK cell penetration, and expensive treatment expenses. Noteworthy benefits of nanomaterials include their chemical specificity, biocompatibility, and ease of manufacturing; these make them promising instruments for enhancing NK cell anti-tumor immune responses. Nanomaterials can promote NK cell homing and infiltration, participate in NK cell modification and non-invasive cell tracking and imaging modes, and greatly increase the effectiveness of NK cell immunotherapy. The introduction of NK cell-based immunotherapy research and a more detailed discussion of nanomaterial research in NK cell-based immunotherapy and molecular imaging will be the main topics of this review.

9.
Antioxidants (Basel) ; 13(3)2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38539874

RESUMO

The aim of this study was to investigate the effects of aspirin eugenol ester (AEE) on liver oxidative damage and energy metabolism in immune-stressed broilers. In total, 312 broilers were divided into 4 groups (saline, LPS, SAEE, and LAEE). Broilers in the saline and LPS groups were fed a basal diet; the SAEE and LAEE groups had an added 0.01% AEE in their diet. Broilers in the LPS and LAEE groups were injected with lipopolysaccharides, while the saline and SAEE groups were injected with saline. Results showed that AEE increased the body weight, average daily gain, and average daily feed intake, as well as decreasing the feed conversion ratio of immune-stressed broilers. AEE protects against oxidative damage in immune-stressed broiler livers by elevating the total antioxidant capacity, superoxide dismutase activity, and glutathione S-transferase alpha 3 (GSTA3) and glutaredoxin 2 (GLRX2) expression, while decreasing malondialdehyde content. AEE lessened inflammation by reducing prostaglandin-F2α production and prostaglandin-endoperoxide synthase 2 (PTGS2) and interleukin-1beta (IL-1ß) expression. AEE decreased oxidative phosphorylation rates by increasing succinic acid levels and lowering both adenosine diphosphate (ADP) levels and ceroid lipofuscinosis neuronal 5 (CLN5) expression. AEE modulated the metabolism of phenylalanine, tyrosine, lipids, and cholesterol by reducing the phenyllactate and L-arogenate levels, lowering dopachrome tautomerase (DCT) and apolipoprotein A4 (APOA4) expression, and increasing phenylpyruvic acid and dopa decarboxylase (DDC) expression. In summary, AEE can effectively alleviate liver oxidative damage and energy metabolism disorders in immune-stressed broilers.

10.
J Agric Food Chem ; 72(14): 8149-8166, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38551844

RESUMO

Declining estrogen production in postmenopausal females causes osteoporosis in which the resorption of bone exceeds the increase in bone formation. Although clinical drugs are currently available for the treatment of osteoporosis, sustained medication use is accompanied by serious side effects. Corydalis bungeana Herba, a famous traditional Chinese herb listed in the Chinese Pharmacopoeia Commission, constitutes various traditional Chinese Medicine prescriptions, which date back to thousands of years. One of the primary active components of C. bungeana Turcz. is Corynoline (Cor), a plant isoquinoline alkaloid derived from the Corydalis species, which possesses bone metabolism disease therapeutic potential. The study aimed at exploring the effects as well as mechanisms of Cor on osteoclast formation and bone resorption. TRAcP staining, F-actin belt formation, and pit formation were employed for assessing the osteoclast function. Western blot, qPCR, network pharmacology, and docking analyses were used for analyzing the expression of osteoclast-associated genes and related signaling pathways. The study focused on investigating how Cor affected OVX-induced trabecular bone loss by using a mouse model. Cor could weaken osteoclast formation and function by affecting the biological receptor activators of NF-κB and its ligand at various concentrations. Mechanistically, Cor inhibited the NF-κB activation, and the MAPKs pathway stimulated by RANKL. Besides, Cor enhanced the protein stability of the Nrf2, which effectively abolished the RANKL-stimulated ROS generation. According to an OVX mouse model, Cor functions in restoring bone mass, improving microarchitecture, and reducing the ROS levels in the distal femurs, which corroborated with its in vitro antiosteoclastogenic effect. The present study indicates that Cor may restrain osteoclast formation and bone loss by modulating NF-κB/MAPKs and Nrf2 signaling pathways. Cor was shown to be a potential drug candidate that can be utilized for the treatment of osteoporosis.


Assuntos
Alcaloides de Berberina , Reabsorção Óssea , Osteoporose , Feminino , Humanos , Osteogênese , NF-kappa B/genética , NF-kappa B/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Transdução de Sinais , Osteoclastos , Reabsorção Óssea/tratamento farmacológico , Reabsorção Óssea/genética , Reabsorção Óssea/metabolismo , Osteoporose/tratamento farmacológico , Osteoporose/genética , Osteoporose/metabolismo , Ligante RANK/genética , Ligante RANK/metabolismo , Diferenciação Celular
11.
FASEB J ; 38(5): e23550, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38466338

RESUMO

Breast cancer is the most prevalent malignant tumor in women. Adriamycin (ADR) is a primary chemotherapy drug, but resistance limits its effectiveness. Ferroptosis, a newly identified cell death mechanism, involves the transferrin receptor (TFRC), closely linked with tumor cells. This study aimed to explore TFRC and ferroptosis's role in breast cancer drug resistance. Bioinformatics analysis showed that TFRC was significantly downregulated in drug-resistant cell lines, and patients with low TFRC expression might demonstrate a poor chemotherapeutic response to standard treatment. High expression of TFRC was positively correlated with most of the ferroptosis-related driver genes. The research findings indicate that ferroptosis markers were higher in breast cancer tissues than in normal ones. In chemotherapy-sensitive cases, Ferrous ion (Fe2+ ) and malondialdehyde (MDA) levels were higher than in resistant cases (all p < .05). TFRC expression was higher in breast cancer than in normal tissue, especially in the sensitive group (all p < .05). Cytological experiments showed increased hydrogen peroxide (H2 O2 ) after ADR treatment in both sensitive and resistant cells, with varying MDA changes (all p < .05). Elevating TFRC increased Fe2+ and MDA in ADR-resistant cells, enhancing their sensitivity to ADR. However, TFRC upregulation combined with ADR increased proliferation and invasiveness in resistant cell lines (all p < .05). In conclusion, ADR resistance to breast cancer is related to the regulation of iron ion-mediated ferroptosis by TFRC. Upregulation of TFRC in ADR-resistant breast cancer cells activates ferroptosis and reverses ADR chemotherapy resistance of breast cancer.


Assuntos
Neoplasias da Mama , Ferroptose , Feminino , Humanos , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Doxorrubicina/farmacologia , Receptores da Transferrina/genética , Transferrina
12.
Angew Chem Int Ed Engl ; 63(12): e202314501, 2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38302821

RESUMO

Due to the presence of natural neoantigens, autologous tumor cells hold great promise as personalized therapeutic vaccines. Yet autologous tumor cell vaccines require multi-step production that frequently leads to the loss of immunoreactive antigens, causing insufficient immune activation and significantly hampering their clinical applications. Herein, we introduce a novel whole-cell cancer vaccine by cloaking cancer cells with lipopolysaccharide-decorated manganese(II)-phenolic networks (MnTA nanocloaks) to evoke tumor-specific immune response for highly efficacious synergistic cancer immunotherapy. The natural polyphenols coordinate with Mn2+ and immediately adhere to the surface of individual cancer cells, thereby forming a nanocloak and encapsulating tumor neoantigens. Subsequent decoration with lipopolysaccharide induces internalization by dendritic cells, where Mn2+ ions are released in the cytosol, further facilitating the activation of the stimulator of the interferon genes (STING) pathway. Highly effective tumor suppression was observed by combining the nanocloaked cancer cell treatment with anti-programmed cell death ligand 1 (anti-PD-L1) antibodies-mediated immune checkpoint blockade therapy. Our work demonstrates a universal yet simple strategy to engineer a cell-based nanobiohybrid system for enhanced cancer immunotherapy.


Assuntos
Neoplasias , Vacinas , Humanos , Imunoterapia , Lipopolissacarídeos , Neoplasias/terapia , Microambiente Tumoral , Vacinas Anticâncer
13.
Medicine (Baltimore) ; 103(1): e36631, 2024 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-38181281

RESUMO

Invasive micropapillary carcinoma (IMPC) of the breast represents a rare subtype of breast cancer, accounting for 1% to 2% of all breast cancers worldwide. Although clinically asymptomatic, they are usually detected during routine breast screenings. The common symptoms include breast lumps, skin or nipple changes, and nipple discharge. Histopathologically, IMPCs are characterized by tumor cells forming small papillary-like structures inside the glandular spaces, and arranged in an inverted pattern, with their apex pointing toward the center of the gland. This unique morphological feature is critical for diagnosing these cases. Another notable characteristic is its high propensity for lymph node metastasis (LNM). While the precise mechanism of metastasis is not clear, unique cellular arrangement and cellular interactions with the surrounding environment might promote tumorigenesis and higher node positivity. Hence, proper lymph node dissection and assessment are particularly crucial for this type of breast cancer. This review aims to discuss the recent progress in managing IMPC cases.


Assuntos
Neoplasias da Mama , Carcinoma Papilar , Carcinoma , Humanos , Feminino , Mamilos , Carcinogênese
14.
Mol Neurobiol ; 61(1): 55-73, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37581847

RESUMO

Spinal cord injury (SCI) is a severe medical condition with lasting effects. The efficacy of numerous clinical treatments is hampered by the intricate pathophysiological mechanism of SCI. Fibroblast growth factor 18 (FGF-18) has been found to exert neuroprotective effects after brain ischaemia, but its effect after SCI has not been well explored. The aim of the present study was to explore the therapeutic effect of FGF-18 on SCI and the related mechanism. In the present study, a mouse model of SCI was used, and the results showed that FGF-18 may significantly affect functional recovery. The present findings demonstrated that FGF-18 directly promoted functional recovery by increasing autophagy and decreasing pyroptosis. In addition, FGF-18 increased autophagy, and the well-known autophagy inhibitor 3-methyladenine (3MA) reversed the therapeutic benefits of FGF-18 after SCI, suggesting that autophagy mediates the therapeutic effects of FGF-18 on SCI. A mechanistic study revealed that after stimulation of the protein kinase B (AKT)-transient receptor potential mucolipin 1 (TRPML1)-calcineurin signalling pathway, the FGF-18-induced increase in autophagy was mediated by the dephosphorylation and nuclear translocation of transcription factor E3 (TFE3). Together, these findings indicated that FGF-18 is a robust autophagy modulator capable of accelerating functional recovery after SCI, suggesting that it may be a promising treatment for SCI in the clinic.


Assuntos
Fatores de Crescimento de Fibroblastos , Proteínas Proto-Oncogênicas c-akt , Traumatismos da Medula Espinal , Ratos , Camundongos , Animais , Proteínas Proto-Oncogênicas c-akt/metabolismo , Piroptose , Ratos Sprague-Dawley , Serina-Treonina Quinases TOR/metabolismo , Medula Espinal/metabolismo , Traumatismos da Medula Espinal/metabolismo , Autofagia
15.
J Gastroenterol Hepatol ; 39(2): 399-409, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37957952

RESUMO

BACKGROUND AND AIM: The study aims to develop a hybrid machine learning model for predicting resectability of the pancreatic cancer, which is based on computed tomography (CT) and National Comprehensive Cancer Network (NCCN) guidelines. METHOD: We retrospectively studied 349 patients. One hundred seventy-one cases from Center 1 and 92 cases from Center 2 were used as the primary training cohort, and 66 cases from Center 3 and 20 cases from Center 4 were used as the independent test dataset. Semi-automatic module of ITK-SNAP software was used to assist CT image segmentation to obtain three-dimensional (3D) imaging region of interest (ROI). There were 788 handcrafted features extracted for 3D ROI using PyRadiomics. The optimal feature subset consists of three features screened by three feature selection methods as the input of the SVM to construct the conventional radiomics-based predictive model (cRad). 3D ROI was used to unify the resolution by 3D spline interpolation method for constructing the 3D tumor imaging tensor. Using 3D tumor image tensor as input, 3D kernelled support tensor machine-based predictive model (KSTM), and 3D ResNet-based deep learning predictive model (ResNet) were constructed. Multi-classifier fusion ML model is constructed by fusing cRad, KSTM, and ResNet using multi-classifier fusion strategy. Two experts with more than 10 years of clinical experience were invited to reevaluate each patient based on their CECT following the NCCN guidelines to obtain resectable, unresectable, and borderline resectable diagnoses. The three results were converted into probability values of 0.25, 0.75, and 0.50, respectively, according to the traditional empirical method. Then it is used as an independent classifier and integrated with multi-classifier fusion machine learning (ML) model to obtain the human-machine fusion ML model (HMfML). RESULTS: Multi-classifier fusion ML model's area under receiver operating characteristic curve (AUC; 0.8610), predictive accuracy (ACC: 80.23%), sensitivity (SEN: 78.95%), and specificity (SPE: 80.60%) is better than cRad, KSTM, and ResNet-based single-classifier models and their two-classifier fusion models. This means that three different models have mined complementary CECT feature expression from different perspectives and can be integrated through CFS-ER, so that the fusion model has better performance. HMfML's AUC (0.8845), ACC (82.56%), SEN (84.21%), SPE (82.09%). This means that ML models might learn extra information from CECT that experts cannot distinguish, thus complementing expert experience and improving the performance of hybrid ML models. CONCLUSION: HMfML can predict PC resectability with high accuracy.


Assuntos
Neoplasias Pancreáticas , Humanos , Estudos Retrospectivos , Neoplasias Pancreáticas/diagnóstico por imagem , Neoplasias Pancreáticas/cirurgia , Imageamento Tridimensional , Aprendizado de Máquina , Tomografia Computadorizada por Raios X
16.
Small ; 20(9): e2306944, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37852939

RESUMO

Transdermal drug delivery systems based on physical principles have provided a stable, efficient, and safe strategy for disease therapy. However, the intelligent device with real-time control and precise drug release is required to enhance treatment efficacy and improve patient compliance. This review summarizes the recent developments, application scenarios, and drug release characteristics of smart transdermal drug delivery systems fabricated with physical principle. Special attention is paid to the progress of intelligent design and concepts in of physical-based transdermal drug delivery technologies for real-time monitoring and precise drug release. In addition, facing with the needs of clinical treatment and personalized medicine, the recent progress and trend of physical enhancement are further highlighted for transdermal drug delivery systems in combination with pharmaceutical dosage forms to achieve better transdermal effects and facilitate the development of smart medical devices. Finally, the next generation and future application scenarios of smart physical-based transdermal drug delivery systems are discussed, a particular focus in vaccine delivery and tumor treatment.


Assuntos
Inteligência , Medicina de Precisão , Humanos , Preparações de Ação Retardada , Liberação Controlada de Fármacos
17.
Front Pharmacol ; 14: 1291896, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38026938

RESUMO

Background: Adverse effects of intravenous digoxin vary from patients and disease status, which should be closely monitored. Aims: To explore the safety profile of intravenous digoxin in acute heart failure with reduced ejection fraction (HFrEF) among Chinese patients. Methods: A clinical prospective, single-center, single-arm, open-label exploratory clinical trial was performed in patients with acute HFrEF at Wuhan Asia Heart Hospital. A fixed dose of 0.5 mg digoxin was used intravenously once per day for 3 days. The normalized dosage of digoxin (NDD), toxic serum digoxin concentration (SDC), and adverse reactions of intravenous digoxin were recorded. Results: A total of 40 patients were recruited in the study. The SDC increased from 1.03 ± 0.34 ng/mL to 1.95 ± 0.52 ng/mL during treatment. 50% (20/40) patients reached a toxic SDC of 2.0 ng/mL, and toxic effects were seen in 30% (12/40) patients. Estimated glomerular filtration rate (eGFR) < 60 mL/min [HR: 5.269; 95% CI: 1.905-14.575, p = 0.001], NDD ≥7 µg/kg [HR: 3.028; 95% CI: 1.119-8.194, p = 0.029], and ischemic cardiomyopathy [HR: 2.658; 95% CI: 1.025-6.894, p = 0.044] were independent risk factors for toxic SDC. Toxic SDC was effectively identified [area under the receiver operating characteristic (ROC) curve = 0.85, p < 0.001] using this model, and patients would have a higher risk of toxicity with more risk factors. Conclusion: Intravenous digoxin of 0.5 mg was safe and effective for initial dose but not suitable for maintenance treatment in Chinese patients with acute HFrEF. Patients who had lower eGFR, received higher NDD, and had ischemic cardiomyopathy should be closely monitored to avoid digoxin toxicity.

18.
Biosensors (Basel) ; 13(10)2023 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-37887112

RESUMO

Plasticizers are a type of toxic substance that may remain in food, posing significant health risks including carcinogenic, teratogenic, mutagenic, and other adverse effects. In this study, a novel strategy was employed by combining Pt@Au nanozymes with high catalytic properties to created two catalytic signal probes, designated as Pt@Au@Ab1 and Pt@Au@Ab2, specifically designed for the detection of dimethyl phthalate (DMP) and dibutyl phthalate (DBP). These catalytic signal probes served as the foundation for the development of a colorimetric immunoassay, enabling the simultaneous detection of both DMP and DBP. The colorimetric immunoassay is capable of detecting DMP in the range of 0.5-100 µg/L with a limit of detection as low as 0.1 µg/L and DBP in the range of 1-32 µg/L with a low limit of detection of 0.5 µg/L. The developed immunoassay can be used for the determination of the DMP and DBP in baijiu and plastic bottled drinks. The recovery rate is in the range of 96.4% and 100.5% and the coefficient of variation is between 1.0% and 7.2%. This innovative colorimetric immunoassay offers a robust tool for the simultaneous quantification of DMP and DBP in real samples.


Assuntos
Dibutilftalato , Ácidos Ftálicos , Colorimetria , Smartphone
19.
Medicine (Baltimore) ; 102(40): e35246, 2023 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-37800814

RESUMO

Immune classification of ovarian cancer (OV) becomes more and more influential for its immunotherapy. However, current studies had few immune subtypes of OV. It is urgent to explore the immune subtypes and deeper hub immune-related genes (IRGs) of OV for follow-up treatment. A total number of 379 OV samples were obtained from UCSC online website. Single sample gene set enrichment analysis of 29 immune gene sets was used for identifying immune subtypes of OV and gene set variation analysis were used for exploring the hallmarks and Kyoto Encyclopedia of Genes and Genomes pathways of immune types. Two immunity subtypes (Immunity_H and Immunity_L) were identified by single sample gene set enrichment analysis. The OV patients in Immunity_H group had longer overall survival compared with those in Immunity_L group. The Immunity_H had higher stromal score, immune score and estimate score and the tumor purity had the adverse tendency. Besides, the gene set variation analysis enrichment results showed positive relationship between improved immunoreaction and pathways correlated to classical signaling pathway (PI3K/AKT/MTOR, P53, TNFA/NFkB signaling pathways) and immune responses (T/B cell receptor signaling pathways and primary immunodeficiency). Furthermore, 4 hub IRGs (CCR5, IL10RA, ITGAL and PTPRC) were jointly dug by weighted gene co-expression network construction and Cytoscape. Our team also explored the mutations of 4 hub IRGs and PTPRC showed nearly 7% amplification. Besides, 8 immune-checkpoint genes had higher expression in Immuity_H group compared with Immuity_L group, except CD276. The correlation between PD-1/PD-L1 and 4 hub IRGs were explored and gene set enrichment analysis were conducted to explore the underlying mechanisms of PTPRC in OV. Finally, western-blotting showed PTPRC could regulate immune checkpoint PD-L1 expression via JAK-STAT signaling pathway. In a word, 2 immune subtypes and 4 hub IRGs of OV were identified by multiple analysis.


Assuntos
Antígeno B7-H1 , Neoplasias Ovarianas , Humanos , Feminino , Fosfatidilinositol 3-Quinases , Genes Reguladores , Neoplasias Ovarianas/genética , Fatores de Transcrição , Antígenos B7
20.
Heart Surg Forum ; 26(4): E363-E371, 2023 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-37679083

RESUMO

BACKGROUND: To compare the outcomes of two Thoracic Endovascular Aortic Repair (TEVAR) techniques of Left Subclavian Artery (LSA) reconstruction for Stanford Type B Aortic Dissection (TBAD) patients with undesirable proximal anchoring zone. METHODS: We retrospectively reviewed 57 patients with TBAD who underwent either three dimensional (3D)-printing-assisted extracorporeal fenestration (n = 32) or conventional extracorporeal fenestration (n = 25) from December 2021 to January 2023. We compared their demographic characteristics, operative time, technical success rate, complication rate, secondary intervention rate, mortality rate, and aortic remodeling. RESULTS: Compared with the conventional group, the 3D-printing-assisted group had a significantly shorter operative time (147.84 ± 33.94 min vs. 223.40 ± 65.93 min, p < 0.001), a significantly lower rate of immediate endoleak (3.1% vs. 24%, p = 0.048) and a significantly higher rate of true lumen diameter expansion in the stent-graft segment (all p < 0.05), but a significantly longer stent graft modification time (37.63 ± 2.99 min vs. 28.4 ± 2.12 min, p < 0.001). There were no significant differences in other outcomes between the two groups (p > 0.05). The degree of false lumen thrombosis was higher in the stent-graft segment than in the non-stent-graft segment in both groups and the difference was statistically significant (X2 = 5.390, 4.878; p = 0.02, 0.027). CONCLUSIONS: Both techniques are safe and effective for TBAD with an undesirable proximal landing zone. The 3D-printing-assisted extracorporeal fenestration TEVAR technique has advantages in operative time, endoleak risk, and aortic remodeling, while the traditional extracorporeal fenestration TEVAR technique has advantages in stent modification.


Assuntos
Dissecção Aórtica , Endoleak , Humanos , Estudos Retrospectivos , Dissecção Aórtica/diagnóstico , Dissecção Aórtica/cirurgia , Aorta , Impressão Tridimensional
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA