Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Am J Cancer Res ; 11(4): 1069-1086, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33948346

RESUMO

Glioblastoma is one of the most common malignant tumors in the central nervous system. Due to the high plasticity, heterogeneity and complexity of the tumor microenvironment, these tumors are resistant to almost all therapeutic strategies when they reach an advanced stage. Along with being a unique and effective way to kill cancer cells, tumor-treating fields (TTFields) has emerged as a breakthrough among glioblastoma therapies since the advent of temozolomide (TMZ), and the combination of these treatments has gradually been promoted and applied in the clinic. The combination of TTFields with other therapies is particularly suitable for this type of "cold" tumors and has attracted a large amount of attention from clinicians and researchers in the era of cancer cocktail therapy. Here, we introduced the current treatment regimen for glioblastoma, highlighting the unique advantages of TTFields in the treatment of glioblastoma. Then, we summarized current glioblastoma clinical trials that combine TTFields and other therapies. In addition, the main and potential mechanisms of TTFields were introduced to further understand the rationale for each combination therapy. Finally, we focused on the most advanced technologies applied in glioblastoma research and treatment and the prospect of their combination with TTFields. This review provides a unique overview of glioblastoma treatment.

2.
Int J Mol Sci ; 17(8)2016 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-27548154

RESUMO

Ovarian cancer is the most lethal gynecological malignancy due to its high metastatic ability. Epithelial-mesenchymal transition (EMT) is essential during both follicular rupture and epithelium regeneration. However, it may also accelerate the progression of ovarian carcinomas. Experimental studies have found that 1α,25-dihydroxyvitamin-D3 [1α,25(OH)2D3] can inhibit the proliferation of ovarian cancer cells. In this study, we investigated whether 1α,25(OH)2D3 could inhibit the migration of ovarian cancer cells via regulating EMT. We established a model of transient transforming growth factor-ß1(TGF-ß1)-induced EMT in human ovarian adenocarcinoma cell line SKOV-3 cells. Results showed that, compared with control, 1α,25(OH)2D3 not only inhibited the migration and the invasion of SKOV-3 cells, but also promoted the acquisition of an epithelial phenotype of SKOV-3 cells treated with TGF-ß1. We discovered that 1α,25(OH)2D3 increased the expression of epithelial marker E-cadherin and decreased the level of mesenchymal marker, Vimentin, which was associated with the elevated expression of VDR. Moreover, 1α,25(OH)2D3 reduced the expression level of transcription factors of EMT, such as slug, snail, and ß-catenin. These results indicate that 1α,25(OH)2D3 suppresses the migration and invasion of ovarian cancer cells by inhibiting EMT, implying that 1α,25(OH)2D3 might be a potential therapeutic agent for the treatment of ovarian cancer.


Assuntos
Colecalciferol/farmacologia , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Neoplasias Ovarianas/metabolismo , Cicatrização/efeitos dos fármacos , Animais , Caderinas/metabolismo , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Feminino , Humanos , Fator de Crescimento Transformador beta1/farmacologia , Vimentina/farmacologia , beta Catenina/metabolismo
3.
Onco Targets Ther ; 9: 2365-75, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27143932

RESUMO

PURPOSE: Ovarian cancer is the most lethal malignancy of the female reproductive system, and the prevention and treatment of ovarian carcinoma are still far from optimal. Epidemiological studies reported that ovarian cancer risk was inversely associated with low level of 25-hydroxy vitamin D [25(OH)]. Therefore, this study focuses on exploring the chemoprevention of vitamin D on epithelial ovarian cancer induced by 7, 12-dimethylbenz [a] anthracene (DMBA). METHODS: The mouse ovarian surface epithelial cells were isolated from estrus mice by mild trypsinization and maintained in completed culture medium by repeated passaging. The malignant transformation of mouse ovarian surface epithelial cells was induced by DMBA in vitro. DMBA was directly injected into the bursa of mouse ovary to produce optimized in vivo ovarian cancer model. RESULTS: The results indicate that 1α,25 dihydroxyvitamin D3 may delay malignant transformation of mouse ovarian surface epithelial cells induced by DMBA and significantly decreased the colony formation rate from 18.4% to 3.2% (P<0.05). There was a negative correlation between incidence of DMBA-induced tumor and 25-hydroxy vitamin D level (R (2)=0.978, P<0.05). Vitamin D3 can delay the progression of ovarian cancer induced by DMBA, and the administration of vitamin D3 during the whole process worked more effectively than the administration only during tumor initiation or promotion. Moreover, we found the vitamin D3 increased the expression of E-cadherin and vitamin D receptor while it decreased the expression of ß-catenin. CONCLUSION: We succeeded in establishment of epithelial ovarian cancer models both in vitro and in vivo. The DMBA-implanted model in mice yields high incidence and specificity of epithelial derived tumors. We also found that vitamin D delays the progression of ovarian cancer. However, spontaneous epithelial ovarian carcinoma models are still to be explored for testing the preventive effects of vitamin D on epithelial ovarian cancer.

4.
Onco Targets Ther ; 8: 1175-83, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26045671

RESUMO

BACKGROUND: The evidence for vitamin D reducing cancer risk is inconsistent, and it is not clear whether this reduction is related to variation in cytochrome P450 (CYP)24A1, the only enzyme known to degrade active vitamin D. We focused on evaluating the association of CYP24A1-rs2296241 polymorphism with hormone-related cancer risk by conducting a meta-analysis. METHODS: A systematic literature search was conducted in April 2014 (updated in December 2014) to identify eligible studies. A random-effects model was used to pool the odds ratio (OR). RESULTS: Eleven studies including 5,145 cases and 5,136 controls were considered for the allelic model, and eight studies of 3,959 cases and 3,560 controls were utilized for the additive, recessive, and dominant models. There was no significant association between CYP24A1-rs2296241 and hormone-related cancer risk in any of the models, yet substantial heterogeneity was observed. Subgroup analyses indicated that CYP24A1-rs2296241 variation reduced the prostate cancer risk in the additive (OR 0.91, 95% confidence interval 0.85-0.97) and recessive (OR 0.80, 95% confidence interval 0.67-0.95) models, with no evidence of heterogeneity. CONCLUSION: This meta-analysis indicated that CYP24A1-rs2296241 polymorphism reduced the androgen-related prostate cancer risk in additive and recessive models. More genetic loci are needed to confirm the effect of CYP24A1 variation on the risk of prostate cancer.

5.
Oncol Lett ; 8(3): 1348-1354, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25120722

RESUMO

1α,25-Dihydroxyvitamin D3 [1,25(OH)2D3] has been demonstrated to inhibit the growth of cancer cells. However, carboplatin is the most widely used chemotherapeutic agent to treat cancer. We hypothesized that vitamin D may enhance the antiproliferative effects of carboplatin, and tested this hypothesis in ovarian cancer SKOV-3 cells treated with carboplatin and 1,25(OH)2D3. Cell viability was determined by Cell Counting Kit-8, while cell cycle distribution, apoptosis, reactive oxygen species (ROS) and mitochondrial membrane potential (MMP) were analyzed by flow cytometry. In these experiments, 1,25(OH)2D3 and carboplatin each provided dose-dependent suppression of SKOV-3 growth, and synergy was demonstrated between 10 nM 1,25(OH)2D3 and carboplatin. The proportion of cells in G0/G1 phase was markedly reduced by the drug combination, while the proportion of cells in G2/M phase was increased. Apoptosis did not increase in ovarian cancer cells treated with 10 nM 1,25(OH)2D3 alone; however, 1,25(OH)2D3 evidently enhanced carboplatin-induced apoptosis. Similarly, ROS production was evidently higher and MMP was lower in cells treated with the two drugs than in those treated with each drug alone. The results suggested that 1,25(OH)2D3 suppresses SKOV-3 growth and enhances the antiproliferative effect of carboplatin. The drugs function synergistically by inducing cell cycle arrest, increasing apoptosis and ROS production, and reducing MMP.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA