Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Physiol Rep ; 11(5): e15619, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36863774

RESUMO

T-wave alternans (TWA) has been used for predicting the risk of malignant cardiac arrhythmias and sudden cardiac death (SCD) in multiple clinical settings; however, possible mechanism(s) underlying the spontaneous transition from cellular alternans reflected by TWA to arrhythmias in impaired repolarization remains unclear. The healthy guinea pig ventricular myocytes under E-4031 blocking IKr (0.1 µM, N = 12; 0.3 µM, N = 10; 1 µM, N = 10) were evaluated using whole-cell patch-clamp. The electrophysiological properties of isolated perfused guinea pig hearts under E-4031 (0.1 µM, N = 5; 0.3 µM, N = 5; 1 µM, N = 5) were evaluated using dual- optical mapping. The amplitude/threshold/restitution curves of action potential duration (APD) alternans and potential mechanism(s) underlying the spontaneous transition of cellular alternans to ventricular fibrillation (VF) were examined. There were longer APD80 and increased amplitude and threshold of APD alternans in E-4031 group compared with baseline group, which was reflected by more pronounced arrhythmogenesis at the tissue level, and were associated with steep restitution curves of the APD and the conduction velocity (CV). Conduction of AP alternans augmented tissue's functional spatiotemporal heterogeneity of regional AP/Ca alternans, as well as the AP/Ca dispersion, leading to localized uni-directional conduction block that spontaneous facilitated the formation of reentrant excitation waves without the need for additional premature stimulus. Our results provide a possible mechanism for the spontaneous transition from cardiac electrical alternans in cellular action potentials and intercellular conduction without the involvement of premature excitations, and explain the increased susceptibility to ventricular arrhythmias in impaired repolarization. In this study, we implemented voltage-clamp and dual-optical mapping approaches to investigate the underlying mechanism(s) for the arrhythmogenesis of cardiac alternans in the guinea pig heart at cellular and tissue levels. Our results demonstrated a spontaneous development of reentry from cellular alternans, arising from a combined actions of restitution properties of action potential duration, conduction velocity of excitation wave and interplay between alternants of action potential and the intracellular Ca handling. We believe this study provides new insights into underlying the mechanism, by which cellular cardiac alternans spontaneously evolves into cardiac arrhythmias.


Assuntos
Nascimento Prematuro , Fibrilação Ventricular , Animais , Cobaias , Feminino , Humanos , Arritmias Cardíacas , Miócitos Cardíacos , Morte Súbita Cardíaca , Potenciais de Ação
2.
Sci Rep ; 12(1): 12717, 2022 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-35882913

RESUMO

The left ventricular ejection fraction does not accurately predict exercise capacity or symptom severity and has a limited role in predicting prognosis in heart failure. A better method of assessing ventricular performance is needed to aid understanding of the pathophysiological mechanisms and guide management in conditions such as heart failure. In this study, we propose two novel measures to quantify myocardial performance, the global longitudinal active strain energy (GLASE) and its density (GLASED) and compare them to existing measures in normal and diseased left ventricles. GLASED calculates the work done per unit volume of muscle (energy density) by combining information from myocardial strain and wall stress (contractile force per unit cross sectional area). Magnetic resonance images were obtained from 183 individuals forming four cohorts (normal, hypertension, dilated cardiomyopathy, and cardiac amyloidosis). GLASE and GLASED were compared with the standard ejection fraction, the corrected ejection fraction, myocardial strains, stroke work and myocardial forces. Myocardial shortening was decreased in all disease cohorts. Longitudinal stress was normal in hypertension, increased in dilated cardiomyopathy and severely decreased in amyloid heart disease. GLASE was increased in hypertension. GLASED was mildly reduced in hypertension (1.39 ± 0.65 kJ/m3), moderately reduced in dilated cardiomyopathy (0.86 ± 0.45 kJ/m3) and severely reduced in amyloid heart disease (0.42 ± 0.28 kJ/m3) compared to the control cohort (1.94 ± 0.49 kJ/m3). GLASED progressively decreased in the hypertension, dilated cardiomyopathy and cardiac amyloid cohorts indicating that mechanical work done and systolic performance is severely reduced in cardiac amyloid despite the relatively preserved ejection fraction. GLASED provides a new technique for assessing left ventricular myocardial health and contractile function.


Assuntos
Amiloidose , Cardiomiopatia Dilatada , Insuficiência Cardíaca , Hipertensão , Cardiomiopatia Dilatada/diagnóstico por imagem , Ventrículos do Coração/diagnóstico por imagem , Humanos , Volume Sistólico/fisiologia , Função Ventricular Esquerda/fisiologia
3.
Front Physiol ; 13: 1004605, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36589437

RESUMO

It has been found that arsenic trioxide (ATO) is effective in treating acute promyelocytic leukemia (APL). However, long QT syndrome was reported in patients receiving therapy using ATO, which even led to sudden cardiac death. The underlying mechanisms of ATO-induced cardiotoxicity have been investigated in some biological experiments, showing that ATO affects human ether-à-go-go-related gene (hERG) channels, coding rapid delayed rectifier potassium current (I Kr ), as well as L-type calcium (I CaL ) channels. Nevertheless, the mechanism by which these channel reconstitutions induced the arrhythmia in ventricular tissue remains unsolved. In this study, a mathematical model was developed to simulate the effect of ATO on ventricular electrical excitation at cellular and tissue levels by considering ATO's effects on I Kr and I CaL . The ATO-dose-dependent pore block model was incorporated into the I Kr model, and the enhanced degree of ATO to I CaL was based on experimental data. Simulation results indicated that ATO extended the action potential duration of three types of ventricular myocytes (VMs), including endocardial cells (ENDO), midmyocardial cells (MCELL), and epicardial cells (EPI), and exacerbated the heterogeneity among them. ATO could also induce alternans in all three kinds of VMs. In a cable model of the intramural ventricular strand, the effects of ATO are reflected in a prolonged QT interval of simulated pseudo-ECG and a wide vulnerable window, thus increasing the possibility of spiral wave formation in ventricular tissue. In addition to showing that ATO prolonged QT, we revealed that the heterogeneity caused by ATO is also an essential hazard factor. Based on this, a pharmacological intervention of ATO toxicity by resveratrol was undertaken. This study provides a further understanding of ATO-induced cardiotoxicity, which may help to improve the treatment for APL patients.

4.
Front Physiol ; 12: 614946, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33746768

RESUMO

T-wave alternans (TWA) reflects every-other-beat alterations in the morphology of the electrocardiogram ST segment or T wave in the setting of a constant heart rate, hence, in the absence of heart rate variability. It is believed to be associated with the dispersion of repolarization and has been used as a non-invasive marker for predicting the risk of malignant cardiac arrhythmias and sudden cardiac death as numerous studies have shown. This review aims to provide up-to-date review on both experimental and simulation studies in elucidating possible mechanisms underlying the genesis of TWA at the cellular level, as well as the genesis of spatially concordant/discordant alternans at the tissue level, and their transition to cardiac arrhythmia. Recent progress and future perspectives in antiarrhythmic therapies associated with TWA are also discussed.

5.
PLoS Comput Biol ; 17(3): e1008177, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33690622

RESUMO

Pacemaking dysfunction (PD) may result in heart rhythm disorders, syncope or even death. Current treatment of PD using implanted electronic pacemakers has some limitations, such as finite battery life and the risk of repeated surgery. As such, the biological pacemaker has been proposed as a potential alternative to the electronic pacemaker for PD treatment. Experimentally and computationally, it has been shown that bio-engineered pacemaker cells can be generated from non-rhythmic ventricular myocytes (VMs) by knocking out genes related to the inward rectifier potassium channel current (IK1) or by overexpressing hyperpolarization-activated cyclic nucleotide gated channel genes responsible for the "funny" current (If). However, it is unclear if a bio-engineered pacemaker based on the modification of IK1- and If-related channels simultaneously would enhance the ability and stability of bio-engineered pacemaking action potentials. In this study, the possible mechanism(s) responsible for VMs to generate spontaneous pacemaking activity by regulating IK1 and If density were investigated by a computational approach. Our results showed that there was a reciprocal interaction between IK1 and If in ventricular pacemaker model. The effect of IK1 depression on generating ventricular pacemaker was mono-phasic while that of If augmentation was bi-phasic. A moderate increase of If promoted pacemaking activity but excessive increase of If resulted in a slowdown in the pacemaking rate and even an unstable pacemaking state. The dedicated interplay between IK1 and If in generating stable pacemaking and dysrhythmias was evaluated. Finally, a theoretical analysis in the IK1/If parameter space for generating pacemaking action potentials in different states was provided. In conclusion, to the best of our knowledge, this study provides a wide theoretical insight into understandings for generating stable and robust pacemaker cells from non-pacemaking VMs by the interplay of IK1 and If, which may be helpful in designing engineered biological pacemakers for application purposes.


Assuntos
Relógios Biológicos , Simulação por Computador , Potenciais de Ação/fisiologia , Animais , Expressão Gênica , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização/genética , Modelos Biológicos , Engenharia Tecidual
6.
Int J Cardiovasc Imaging ; 37(6): 1987-1997, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33616783

RESUMO

Left ventricular ejection fraction (LVEF) has a limited role in predicting outlook in heart diseases including heart failure. We quantified the independent geometric factors that determine LVEF using cardiac MRI and sought to provide an improved measure of ventricular function by adjusting for such independent variables. A mathematical model was used to analyse the independent effects of structural variables and myocardial shortening on LVEF. These results informed analysis of cardiac MRI data from 183 patients (53 idiopathic dilated cardiomyopathy (DCM), 36 amyloidosis, 55 hypertensives and 39 healthy controls). Left ventricular volumes, LVEF, wall thickness, internal dimensions and longitudinal and midwall fractional shortening were measured. The modelling demonstrated LVEF increased in a curvilinear manner with increasing mFS and longitudinal shortening and wall thickness but decreased with increasing internal diameter. Controls in the clinical cohort had a mean LVEF 64  ±  7%, hypertensives 66  ±  8%, amyloid 49 ±  16% and DCM 30  ±  11%. The mean end-diastolic wall thickness in controls was 8  ±  1 mm, DCM 8  ±  1 mm, hypertensives 11  ±  3 mm and amyloid 14  ±  3 mm, P < 0.0001). LVEF correlated with absolute wall thickening relative to ventricular size (R2 = 0.766). A regression equation was derived from raw MRI data (R2 = 0.856) and used to 'correct' LVEF (EFc) by adjusting the wall thickness and ventricular size to the mean of the control group. Improved quantification of the effects of geometric changes and strain significantly enhances understanding the myocardial mechanics. The EFc resulted in reclassification of a 'ventricular function' in some individuals and may provide an improved measure of myocardial performance especially in thick-walled, low-volume ventricles.


Assuntos
Cardiomiopatia Dilatada , Função Ventricular Esquerda , Cardiomiopatia Dilatada/diagnóstico por imagem , Ventrículos do Coração/diagnóstico por imagem , Humanos , Valor Preditivo dos Testes , Volume Sistólico
7.
Front Med (Lausanne) ; 8: 794969, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35071275

RESUMO

Medical imaging provides a powerful tool for medical diagnosis. In the process of computer-aided diagnosis and treatment of liver cancer based on medical imaging, accurate segmentation of liver region from abdominal CT images is an important step. However, due to defects of liver tissue and limitations of CT imaging procession, the gray level of liver region in CT image is heterogeneous, and the boundary between the liver and those of adjacent tissues and organs is blurred, which makes the liver segmentation an extremely difficult task. In this study, aiming at solving the problem of low segmentation accuracy of the original 3D U-Net network, an improved network based on the three-dimensional (3D) U-Net, is proposed. Moreover, in order to solve the problem of insufficient training data caused by the difficulty of acquiring labeled 3D data, an improved 3D U-Net network is embedded into the framework of generative adversarial networks (GAN), which establishes a semi-supervised 3D liver segmentation optimization algorithm. Finally, considering the problem of poor quality of 3D abdominal fake images generated by utilizing random noise as input, deep convolutional neural networks (DCNN) based on feature restoration method is designed to generate more realistic fake images. By testing the proposed algorithm on the LiTS-2017 and KiTS19 dataset, experimental results show that the proposed semi-supervised 3D liver segmentation method can greatly improve the segmentation performance of liver, with a Dice score of 0.9424 outperforming other methods.

8.
Nat Commun ; 11(1): 5555, 2020 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-33144559

RESUMO

It is highly debated how cyclic adenosine monophosphate-dependent regulation (CDR) of the major pacemaker channel HCN4 in the sinoatrial node (SAN) is involved in heart rate regulation by the autonomic nervous system. We addressed this question using a knockin mouse line expressing cyclic adenosine monophosphate-insensitive HCN4 channels. This mouse line displayed a complex cardiac phenotype characterized by sinus dysrhythmia, severe sinus bradycardia, sinus pauses and chronotropic incompetence. Furthermore, the absence of CDR leads to inappropriately enhanced heart rate responses of the SAN to vagal nerve activity in vivo. The mechanism underlying these symptoms can be explained by the presence of nonfiring pacemaker cells. We provide evidence that a tonic and mutual interaction process (tonic entrainment) between firing and nonfiring cells slows down the overall rhythm of the SAN. Most importantly, we show that the proportion of firing cells can be increased by CDR of HCN4 to efficiently oppose enhanced responses to vagal activity. In conclusion, we provide evidence for a novel role of CDR of HCN4 for the central pacemaker process in the sinoatrial node.


Assuntos
Relógios Biológicos , AMP Cíclico/metabolismo , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização/metabolismo , Nó Sinoatrial/patologia , Potenciais de Ação/efeitos dos fármacos , Animais , Arritmias Cardíacas/complicações , Arritmias Cardíacas/patologia , Relógios Biológicos/efeitos dos fármacos , Pressão Sanguínea/efeitos dos fármacos , Bradicardia/complicações , Bradicardia/patologia , Carbacol/farmacologia , Eletrocardiografia , Feminino , Células HEK293 , Coração/efeitos dos fármacos , Coração/fisiopatologia , Frequência Cardíaca/efeitos dos fármacos , Humanos , Camundongos Endogâmicos C57BL , Subunidades Proteicas/metabolismo , Reprodutibilidade dos Testes , Nó Sinoatrial/fisiopatologia , Nervo Vago/efeitos dos fármacos , Nervo Vago/fisiopatologia
9.
Nat Commun ; 10(1): 2889, 2019 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-31253831

RESUMO

The sinus node is a collection of highly specialised cells constituting the heart's pacemaker. The molecular underpinnings of its pacemaking abilities are debated. Using high-resolution mass spectrometry, we here quantify >7,000 proteins from sinus node and neighbouring atrial muscle. Abundances of 575 proteins differ between the two tissues. By performing single-nucleus RNA sequencing of sinus node biopsies, we attribute measured protein abundances to specific cell types. The data reveal significant differences in ion channels responsible for the membrane clock, but not in Ca2+ clock proteins, suggesting that the membrane clock underpins pacemaking. Consistently, incorporation of ion channel expression differences into a biophysically-detailed atrial action potential model result in pacemaking and a sinus node-like action potential. Combining our quantitative proteomics data with computational modeling, we estimate ion channel copy numbers for sinus node myocytes. Our findings provide detailed insights into the unique molecular make-up of the cardiac pacemaker.


Assuntos
Relógios Biológicos/fisiologia , Peptídeos/química , Peptídeos/metabolismo , Proteômica , Nó Sinoatrial/metabolismo , Transcriptoma , Potenciais de Ação , Animais , Cromatografia Líquida , Regulação da Expressão Gênica/fisiologia , Concentração de Íons de Hidrogênio , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Peptídeos/genética , Espectrometria de Massas em Tandem
10.
Europace ; 21(6): 981-989, 2019 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-30753421

RESUMO

AIMS: Action potential duration (APD) alternans is an established precursor or arrhythmia and sudden cardiac death. Important differences in fundamental electrophysiological properties relevant to arrhythmia exist between experimental models and the diseased in vivo human heart. To investigate mechanisms of APD alternans using a novel approach combining intact heart and cellular cardiac electrophysiology in human in vivo. METHODS AND RESULTS: We developed a novel approach combining intact heart electrophysiological mapping during cardiac surgery with rapid on-site data analysis to guide myocardial biopsies for laboratory analysis, thereby linking repolarization dynamics observed at the organ level with underlying ion channel expression. Alternans-susceptible and alternans-resistant regions were identified by an incremental pacing protocol. Biopsies from these sites (n = 13) demonstrated greater RNA expression in Calsequestrin (CSQN) and Ryanodine (RyR) and ion channels underlying IK1 and Ito at alternans-susceptible sites. Electrical restitution properties (n = 7) showed no difference between alternans-susceptible and resistant sites, whereas spatial gradients of repolarization were greater in alternans-susceptible than in alternans-resistant sites (P = 0.001). The degree of histological fibrosis between alternans-susceptible and resistant sites was equivalent. Mathematical modelling of these changes indicated that both CSQN and RyR up-regulation are key determinants of APD alternans. CONCLUSION: Combined intact heart and cellular electrophysiology show that regions of myocardium in the in vivo human heart exhibiting APD alternans are associated with greater expression of CSQN and RyR and show no difference in restitution properties compared to non-alternans regions. In silico modelling identifies up-regulation and interaction of CSQN with RyR as a major mechanism underlying APD alternans.


Assuntos
Arritmias Cardíacas/fisiopatologia , Técnicas Eletrofisiológicas Cardíacas , Sistema de Condução Cardíaco/fisiopatologia , Potenciais de Ação , Biópsia , Calsequestrina/metabolismo , Feminino , Humanos , Canais Iônicos/metabolismo , Masculino , Pessoa de Meia-Idade , Rianodina/metabolismo
11.
Annu Int Conf IEEE Eng Med Biol Soc ; 2018: 5462-5465, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30441573

RESUMO

AIMS: The short QT syndrome (SQTS) is a rare genetic disorder associated with arrhythmias and sudden cardiac death (SCD). The SQTI and SQT3, SQTS variants, result from gain-of-function mutations (N588K and D172N, respectively) in the KCNH2-encoded and KCNJ2-encoded potassium channels, in which treatment with potassium channel blocking agents has demonstrated some efficacy. This study used in silico modelling to gain mechanistic insights into the actions of anti-malarial drug chloroquine (CQ) in the setting of SQTI and SQT3. METHODS AND RESULTS: The ten Tusscher et al. human ventricle model was modified to a Markov chain formulation of $I_{J}$

Assuntos
Arritmias Cardíacas , Potenciais de Ação , Cloroquina , Eletrocardiografia , Sistema de Condução Cardíaco , Humanos
12.
Front Physiol ; 9: 1071, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30190677

RESUMO

Due to advances in corrective surgery, congenital heart disease has an ever growing patient population. Atrial arrhythmias are frequently observed pre- and post-surgical correction. Pharmaceutical antiarrhythmic therapy is not always effective, therefore many symptomatic patients undergo catheter ablation therapy. In patients with atrioventricular septal defects (AVSD), ablation therapy itself has mixed success; arrhythmogenic recurrences are common, and because of the anatomical displacement of the atrioventricular node, 3-degree heart block post-ablation is a real concern. In order to develop optimal and safe ablation strategies, the field of congenital cardiac electrophysiology must combine knowledge from clinical electrophysiology with a thorough understanding of the anatomical substrates for arrhythmias. Using image-based analysis and multi-cellular mathematical modeling of electrical activation, we show how the anatomical alterations characteristic of an AVSD serve as arrhythmogenic substrates. Using ex-vivo contrast enhanced micro-computed tomography we imaged post-mortem the heart of a 5 month old male with AVSD at an isometric spatial resolution of 38 µm. Morphological analysis revealed the 3D disposition of the cardiac conduction system for the first time in an intact heart with this human congenital malformation. We observed displacement of the compact atrioventricular node inferiorly to the ostium of the coronary sinus. Myocyte orientation analysis revealed that the normal arrangement of the major atrial muscle bundles was preserved but was modified in the septal region. Models of electrical activation suggest the disposition of the myocytes within the atrial muscle bundles associated with the "fast pathway," together with the displaced atrioventricular node, serve as potential substrates for re-entry and possibly atrial fibrillation. This study used archived human hearts, showing them to be a valuable resource for the mathematical modeling community, and opening new possibilities for the investigations of arrhythmogenesis and ablation strategies in the congenitally malformed heart.

13.
Eur J Cardiothorac Surg ; 53(1): 120-128, 2018 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-29029119

RESUMO

Two of the leading concepts of mural ventricular architecture are the unique myocardial band and the myocardial mesh model. We have described, in an accompanying article published in this journal, how the anatomical, histological and high-resolution computed tomographic studies strongly favour the latter concept. We now extend the argument to describe the linkage between mural architecture and ventricular function in both health and disease. We show that clinical imaging by echocardiography and magnetic resonance imaging, and electrophysiological studies, all support the myocardial mesh model. We also provide evidence that the unique myocardial band model is not compatible with much of scientific research.


Assuntos
Ventrículos do Coração/anatomia & histologia , Miocárdio , Função Ventricular , Ecocardiografia , Técnicas Eletrofisiológicas Cardíacas , Ventrículos do Coração/diagnóstico por imagem , Humanos , Imageamento por Ressonância Magnética
14.
Sci Rep ; 7(1): 7188, 2017 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-28775383

RESUMO

Cardiac arrhythmias and conduction disturbances are accompanied by structural remodelling of the specialised cardiomyocytes known collectively as the cardiac conduction system. Here, using contrast enhanced micro-computed tomography, we present, in attitudinally appropriate fashion, the first 3-dimensional representations of the cardiac conduction system within the intact human heart. We show that cardiomyocyte orientation can be extracted from these datasets at spatial resolutions approaching the single cell. These data show that commonly accepted anatomical representations are oversimplified. We have incorporated the high-resolution anatomical data into mathematical simulations of cardiac electrical depolarisation. The data presented should have multidisciplinary impact. Since the rate of depolarisation is dictated by cardiac microstructure, and the precise orientation of the cardiomyocytes, our data should improve the fidelity of mathematical models. By showing the precise 3-dimensional relationships between the cardiac conduction system and surrounding structures, we provide new insights relevant to valvar replacement surgery and ablation therapies. We also offer a practical method for investigation of remodelling in disease, and thus, virtual pathology and archiving. Such data presented as 3D images or 3D printed models, will inform discussions between medical teams and their patients, and aid the education of medical and surgical trainees.


Assuntos
Sistema de Condução Cardíaco/anatomia & histologia , Sistema de Condução Cardíaco/diagnóstico por imagem , Imageamento Tridimensional , Modelos Anatômicos , Modelos Teóricos , Fascículo Atrioventricular , Meios de Contraste , Sistema de Condução Cardíaco/citologia , Humanos , Aumento da Imagem , Ramos Subendocárdicos , Nó Sinoatrial/anatomia & histologia , Nó Sinoatrial/citologia , Nó Sinoatrial/diagnóstico por imagem , Microtomografia por Raio-X/métodos
15.
Cell Biochem Funct ; 34(3): 163-72, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26990081

RESUMO

Human umbilical cord mesenchymal stem cells (hUCMSCs) and human adipose tissue mesenchymal stem cells (hATMSCs) have the potential to differentiate into cardiomyocytes, making them promising therapeutic candidates for treating damaged cardiac tissues. Currently, however, the differentiated cells induced from hUCMSCs or hATMSCs can hardly display functional characteristics similar to cardiomyocytes. In this study, we have investigated the effects of bioactive lipid sphingosine-1-phosphate (S1P) on cardiac differentiations of hUCMSCs and hATMSCs in condition medium composed of cardiac myocytes culture medium or 5-azacytidine. Cardiac differentiations were identified through immunofluorescence staining, and the results were observed with fluorescence microscopy and confocal microscopy. Synergistic effects of S1P and condition medium on cell viability were evaluated by MTT assays. Functional characteristics similar to cardiomyocytes were evaluated through detecting calcium transient. The differentiated hUCMSCs or hATMSCs in each group into cardiomyocytes showed positive expressions of cardiac specific proteins, including α-actin, connexin-43 and myosin heavy chain-6 (MYH-6). MTT assays showed that suitable differentiation time was 14 days and that the optimal concentration of S1P was 0.5 µM. Moreover, incorporation of S1P and cardiac myocytes culture medium gave rise to calcium transients, an important marker for displaying in vivo electrophysiological properties. This feature was not observed in the S1P-5-azacytidine group, indicating the possible lack of cellular stimuli such as transforming growth factor-beta, TGF-ß.


Assuntos
Tecido Adiposo/citologia , Diferenciação Celular/efeitos dos fármacos , Meios de Cultivo Condicionados/farmacologia , Lipídeos/farmacologia , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/efeitos dos fármacos , Miócitos Cardíacos/citologia , Tecido Adiposo/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Humanos , Miócitos Cardíacos/efeitos dos fármacos , Relação Estrutura-Atividade
16.
Comput Math Methods Med ; 2014: 761907, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25104970

RESUMO

Hodgkin-Huxley (HH) equation is the first cell computing model in the world and pioneered the use of model to study electrophysiological problems. The model consists of four differential equations which are based on the experimental data of ion channels. Maximal conductance is an important characteristic of different channels. In this study, mathematical method is used to investigate the importance of maximal sodium conductance gNA and maximal potassium conductance gK. Applying stability theory, and taking gNA and gK as variables, we analyze the stability and bifurcations of the model. Bifurcations are found when the variables change, and bifurcation points and boundary are also calculated. There is only one bifurcation point when gNA is the variable, while there are two points when gK is variable. The (gNA, gK) plane is partitioned into two regions and the upper bifurcation boundary is similar to a line when both gNA and gK are variables. Numerical simulations illustrate the validity of the analysis. The results obtained could be helpful in studying relevant diseases caused by maximal conductance anomaly.


Assuntos
Eletrofisiologia/métodos , Algoritmos , Animais , Simulação por Computador , Humanos , Transporte de Íons , Potenciais da Membrana/fisiologia , Modelos Neurológicos , Modelos Teóricos , Neurônios/fisiologia , Canais de Potássio/química , Canais de Sódio/química , Software
17.
J Cardiovasc Electrophysiol ; 25(2): 197-207, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24118558

RESUMO

INTRODUCTION: Since the discovery of the link that exists between drug-induced hERG inhibition and Torsade de Pointes (TdP), extreme attention has been given to avoid new drugs inhibiting this channel. hERG inhibition is routinely screened for in new drugs and, typically, IC50 values are compared to projected plasma concentrations to define a safety margin. METHODS AND RESULTS: We aimed to show that drugs with similar hERG potency are not uniformly pro-arrhythmic-this depends on the drug binding kinetics and mode of action (trapped or not) rather than the IC50 value only. We used a mathematical model of hERG and its related encoded current IKr to simulate drug binding in different configurations. Expression systems mimicking the screening process were first investigated. hERG model was then incorporated into a canine action potential (AP) and tissue model to study the impact of drug binding configurations on AP and pseudo-ECG (QT interval prolongation). Our data show that: (1) trapped and not trapped configurations and different binding kinetics could be identified during hERG screening; (2) slow binding, not trapped drugs, induced less AP prolongation and minimal QT interval prolongation (4.7%) at a concentration equal to the IC50 whereas maximal pro-arrhythmic risk was observed for trapped drugs at the same concentration (QT interval prolongation, 23.1%). CONCLUSION: Our study demonstrates the need for screening for hERG binding configurations rather than potency alone. It also demonstrates the potential link between hERG, drug mode of action and TdP, and the need to question the current regulatory guidance.


Assuntos
Arritmias Cardíacas/induzido quimicamente , Arritmias Cardíacas/metabolismo , Bloqueadores dos Canais de Cálcio/administração & dosagem , Bloqueadores dos Canais de Cálcio/efeitos adversos , Canais de Potássio Éter-A-Go-Go/antagonistas & inibidores , Modelos Cardiovasculares , Animais , Sítios de Ligação , Simulação por Computador , Cães , Relação Dose-Resposta a Droga , Avaliação Pré-Clínica de Medicamentos/métodos , Canal de Potássio ERG1 , Canais de Potássio Éter-A-Go-Go/metabolismo , Humanos , Cinética , Modelos Químicos , Ligação Proteica , Equivalência Terapêutica
18.
Am J Physiol Heart Circ Physiol ; 304(1): H104-17, 2013 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-23103500

RESUMO

The use of computational models to predict drug-induced changes in the action potential (AP) is a promising approach to reduce drug safety attrition but requires a better representation of more complex drug-target interactions to improve the quantitative prediction. The blockade of the human ether-a-go-go-related gene (HERG) channel is a major concern for QT prolongation and Torsade de Pointes risk. We aim to develop quantitative in-silico AP predictions based on a new electrophysiological protocol (suitable for high-throughput HERG screening) and mathematical modeling of ionic currents. Electrophysiological recordings using the IonWorks device were made from HERG channels stably expressed in Chinese hamster ovary cells. A new protocol that delineates inhibition over time was applied to assess dofetilide, cisapride, and almokalant effects. Dynamic effects displayed distinct profiles for these drugs compared with concentration-effects curves. Binding kinetics to specific states were identified using a new HERG Markov model. The model was then modified to represent the canine rapid delayed rectifier K(+) current at 37°C and carry out AP predictions. Predictions were compared with a simpler model based on conductance reduction and were found to be much closer to experimental data. Improved sensitivity to concentration and pacing frequency variables was obtained when including binding kinetics. Our new electrophysiological protocol is suitable for high-throughput screening and is able to distinguish drug-binding kinetics. The association of this protocol with our modeling approach indicates that quantitative predictions of AP modulation can be obtained, which is a significant improvement compared with traditional conductance reduction methods.


Assuntos
Simulação por Computador , Canais de Potássio Éter-A-Go-Go/antagonistas & inibidores , Ensaios de Triagem em Larga Escala/métodos , Modelos Cardiovasculares , Bloqueadores dos Canais de Potássio/toxicidade , Testes de Toxicidade , Potenciais de Ação , Animais , Células CHO , Cisaprida/toxicidade , Cricetinae , Cricetulus , Cães , Relação Dose-Resposta a Droga , Canal de Potássio ERG1 , Canais de Potássio Éter-A-Go-Go/genética , Canais de Potássio Éter-A-Go-Go/metabolismo , Humanos , Cinética , Síndrome do QT Longo/induzido quimicamente , Síndrome do QT Longo/metabolismo , Cadeias de Markov , Técnicas de Patch-Clamp , Fenetilaminas/toxicidade , Bloqueadores dos Canais de Potássio/metabolismo , Propanolaminas/toxicidade , Ligação Proteica , Medição de Risco , Sulfonamidas/toxicidade , Torsades de Pointes/induzido quimicamente , Torsades de Pointes/metabolismo , Transfecção
19.
J Mol Cell Cardiol ; 53(2): 145-55, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22537893

RESUMO

Transmural gradients in myocyte action potential duration (APD) and Ca(2+)-handling proteins are argued to be important for both the normal functioning of the ventricle and arrhythmogenesis. In rabbit, the transmural gradient in APD (left ventricular wedge preparation) is minimal in the neonate. During postnatal development, APD increases both in the epicardium and the endocardium, but the prolongation is more substantial in the endocardium leading to a significant transmural gradient. We have investigated changes in the expression of ion channels and also Ca(2+)-handling proteins in the subepicardial and subendocardial layers of the left ventricular free wall in neonatal (2-7 days of age) and adult male (~6 months of age) New Zealand White rabbits using quantitative PCR and also, when possible, in situ hybridisation and immunohistochemistry. In the adult, there were significant and substantial transmural gradients in Ca(v)1.2, KChIP2, ERG, K(v)LQT1, K(ir)2.1, NCX1, SERCA2a and RyR2 at the mRNA and, in some cases, protein level-in every case the mRNA or protein was more abundant in the epicardium than the endocardium. Of the eight transmural gradients seen in the adult, only three were observed in the neonate and, in two of these cases, the gradients were smaller than those in the adult. However, in the neonate there were also transmural gradients not observed in the adult: in HCN4, Na(v)1.5, minK, K(ir)3.1 and Cx40 mRNAs - in every case the mRNA was more abundant in the endocardium than the epicardium. If the postnatal changes in ion channel mRNAs are used to predict changes in ionic conductances, mathematical modelling predicts the changes in APD observed experimentally. It is concluded that many of the well known transmural gradients in the ventricle develop postnatally.


Assuntos
Ventrículos do Coração/metabolismo , Animais , Animais Recém-Nascidos , Canais de Cálcio Tipo L/genética , Canais de Cálcio Tipo L/metabolismo , Canais de Cátion Regulados por Nucleotídeos Cíclicos/genética , Canais de Cátion Regulados por Nucleotídeos Cíclicos/metabolismo , Endocárdio/metabolismo , Canais de Potássio Éter-A-Go-Go/genética , Canais de Potássio Éter-A-Go-Go/metabolismo , Canais de Potássio Corretores do Fluxo de Internalização Acoplados a Proteínas G/genética , Canais de Potássio Corretores do Fluxo de Internalização Acoplados a Proteínas G/metabolismo , Imuno-Histoquímica , Hibridização In Situ , Canal de Potássio KCNQ1/genética , Canal de Potássio KCNQ1/metabolismo , Proteínas Interatuantes com Canais de Kv/genética , Proteínas Interatuantes com Canais de Kv/metabolismo , Masculino , Canal de Sódio Disparado por Voltagem NAV1.5 , Pericárdio/metabolismo , Reação em Cadeia da Polimerase , Ratos , Canal de Liberação de Cálcio do Receptor de Rianodina/genética , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/genética , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/metabolismo , Canais de Sódio/genética , Canais de Sódio/metabolismo , Trocador de Sódio e Cálcio/genética , Trocador de Sódio e Cálcio/metabolismo
20.
PLoS One ; 7(12): e52451, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23300672

RESUMO

BACKGROUND: The familial Short QT Syndrome (SQTS) is associated with an increased risk of cardiac arrhythmia and sudden death. Gain-of-function mutations in the hERG K(+) channel protein have been linked to variant 1 of the SQTS. A hERG channel pore (T618I) mutation has recently been identified in families with heritable SQTS. This study aimed to determine effects of the T618I-hERG mutation on (i) hERG current (I(hERG)) elicited by ventricular action potentials; (ii) the sensitivity of I(hERG) to inhibition by four clinically used antiarrhythmic drugs. METHODS: Electrophysiological recordings of I(hERG) were made at 37°C from HEK 293 cells expressing wild-type (WT) or T618I hERG. Whole-cell patch clamp recording was performed using both conventional voltage clamp and ventricular action potential (AP) clamp methods. RESULTS: Under conventional voltage-clamp, WT I(hERG) peaked at 0-+10 mV, whilst for T618I I(hERG) maximal current was right-ward shifted to ∼ +40 mV. Voltage-dependent activation and inactivation of T618I I(hERG) were positively shifted (respectively by +15 and ∼ +25 mV) compared to WT I(hERG). The I(hERG) 'window' was increased for T618I compared to WT hERG. Under ventricular AP clamp, maximal repolarising WT I(hERG) occurred at ∼ -30 mV, whilst for T618I hERG peak I(hERG) occurred earlier during AP repolarisation, at ∼ +5 mV. Under conventional voltage clamp, half-maximal inhibitory concentrations (IC(50)) for inhibition of I(hERG) tails by quinidine, disopyramide, D-sotalol and flecainide for T618I hERG ranged between 1.4 and 3.2 fold that for WT hERG. Under action potential voltage clamp, T618I IC(50)s ranged from 1.2 to 2.0 fold the corresponding IC(50) values for WT hERG. CONCLUSIONS: The T618I mutation produces a more modest effect on repolarising I(hERG) than reported previously for the N588K-hERG variant 1 SQTS mutation. All drugs studied here appear substantially to retain their ability to inhibit I(hERG) in the setting of the SQTS-linked T618I mutation.


Assuntos
Potenciais de Ação/efeitos dos fármacos , Potenciais de Ação/genética , Antiarrítmicos/farmacologia , Arritmias Cardíacas/genética , Canais de Potássio Éter-A-Go-Go/genética , Cardiopatias Congênitas/genética , Mutação , Quinidina/farmacologia , Canal de Potássio ERG1 , Condutividade Elétrica , Células HEK293 , Sistema de Condução Cardíaco/anormalidades , Ventrículos do Coração/citologia , Humanos , Mutagênese , Técnicas de Patch-Clamp , Temperatura , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA