Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
1.
Biomed Pharmacother ; 165: 115246, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37523983

RESUMO

Peritoneal dialysis is an efficient renal replacement therapy for patients with end-stage kidney disease. However, continuous exposure of the peritoneal membrane to dialysate frequently leads to peritoneal fibrosis, which alters the function of the peritoneal membrane and results in withdrawal from peritoneal dialysis in patients. Among others, high glucose dialysate is considered as a predisposing factor for peritoneal fibrosis in patients on peritoneal dialysis. Glucose-induced inflammation, metabolism disturbance, activation of the renin-angiotensin-aldosterone system, angiogenesis and noninflammation-induced reactive oxygen species are implicated in the pathogenesis of high glucose dialysate-induced peritoneal fibrosis. Specifically, high glucose causes chronic inflammation and recurrent peritonitis, which could cause migration and polarization of inflammatory cells, as well as release of cytokines and fibrosis. High glucose also interferes with lipid metabolism and glycolysis by activating the sterol-regulatory element-binding protein-2/cleavage-activating protein pathway and increasing hypoxia inducible factor-1α expression, leading to angiogenesis and peritoneal fibrosis. Activation of the renin-angiotensin-aldosterone system and Ras-mitogen activated protein kinase signaling pathway is another contributing factor in high glucose dialysate-induced fibrosis. Ultimately, activation of the transforming growth factor-ß1/Smad pathway is involved in mesothelial-mesenchymal transition or epithelial-mesenchymal transition, which leads to the development of fibrosis. Although possible intervention strategies for peritoneal dialysate-induced fibrosis by targeting the transforming growth factor-ß1/Smad pathway have occasionally been proposed, lack of laboratory evidence renders clinical decision-making difficult. We therefore aim to revisit the upstream pathways of transforming growth factor-beta1/Smad and propose potential therapeutic targets for high glucose-induced peritoneal fibrosis.


Assuntos
Fibrose Peritoneal , Humanos , Fibrose Peritoneal/induzido quimicamente , Fibrose Peritoneal/terapia , Soluções para Diálise/efeitos adversos , Soluções para Diálise/metabolismo , Fator de Crescimento Transformador beta1/metabolismo , Peritônio/metabolismo , Fibrose , Inflamação/metabolismo , Glucose/metabolismo
2.
Front Med (Lausanne) ; 9: 976244, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36314017

RESUMO

Objective: Cognitive impairment is a common complication of chronic kidney disease (CKD). Caffeine intake has been reported to improve cognitive performance in several studies. However, whether the benefits of caffeine intake on cognitive function apply to patients with CKD remains unknown. Methods: We performed a retrospective cross-sectional study based on the National Health and Nutrition Examination Survey (NHANES). The data of CKD subjects and non-CKD subjects from NHANES 2011-2014 were analyzed. Propensity score matching (PSM) was performed based on age, sex, diabetes, cancer, educational level, energy intake and protein intake to select subjects. The Consortium to Establish a Registry for Alzheimer's Disease Word Learning Test (CERAD-WL), the CERAD Word List Recall Test (CERAD-DR), the Animal Fluency Test (AF) and the Digit Symbol Substitution Test (DSST) were used, whereby the occurrence of cognitive impairment was identified. Logistic regression models were performed to evaluate the association between caffeine intake and cognitive performance in CKD and non-CKD participants. Stratified analyses according to the stage of CKD and the urinary albumin/creatinine ratio levels were performed. Plot curves were then generalized to present a non-linear relationship, and the inflection point for each non-linear model was obtained by using a recursive algorithm. Results: Cognitive impairment was more prevalent in CKD patients than in non-CKD subjects. For CKD patients, caffeine intake was associated with higher CERAD-WL, CERAD-DR, AF and DSST scores. For non-CKD subjects, caffeine intake was associated with higher DSST scores only. Subgroup analysis revealed that caffeine only benefited the cognitive function of patients with CKD stages 2 and 3. The analysis showed non-linear relationships of caffeine intake and cognitive function for both CKD and non-CKD subjects. The inflection point of caffeine intake for CKD patients was 279 mg/day. Conclusion: The recommended dose of caffeine intake to improve the cognitive function of CKD patients is ≤279 mg/day.

3.
Biochem Biophys Res Commun ; 627: 5-11, 2022 10 30.
Artigo em Inglês | MEDLINE | ID: mdl-36007335

RESUMO

CDK2 forms a complex with cyclin A and cyclin E to promote the progress of cell cycle, but when cyclin A and cyclin E are dissociated from the complex and degraded by the ubiquitin proteasome pathway, the fate of the inactive CDK2 is unclear. In this study, we found that the inactive CDK2 protein was degraded by autophagy-lysosome pathway. In the classic model of G0/G1 phase arrest induced by serum starvation, we found that the mRNA level in CDK2 did not change but the protein level decreased. Subsequently, using PI3K and AKT inhibitors and gene knockout methods, it was found that CDK2 degradation was mediated by the inhibition of PI3Kα/AKTT308. In addition, P62/SQSTM1 was found to bind to the inactivated CDK2 protein to help it enter autophagy-lysosome degradation in a CTSB-dependent manner. Taken together, these results confirm that the PI3Kα/AKTT308 inhibition leads to degradation of CDK2 protein in the autophagy-lysosome pathway. These data reveal a new molecular mechanism of CDK2 protein degradation and provide a new strategy and method for regulating CDK2 protein.


Assuntos
Ciclina E , Proteínas Proto-Oncogênicas c-akt , Autofagia/genética , Ciclina A/metabolismo , Ciclina E/metabolismo , Quinase 2 Dependente de Ciclina/genética , Quinase 2 Dependente de Ciclina/metabolismo , Lisossomos/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteína Sequestossoma-1/metabolismo
4.
Tob Induc Dis ; 19: 08, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33542680

RESUMO

INTRODUCTION: Endothelial dysfunction appears in many smoking-related diseases, it is also an important pathophysiological feature. Endothelial progenitor cells (EPCs) are precursors of endothelial cells and have a crucial effect on the repair and maintenance of endothelial integrity. Sca-1 is not only common in bone marrow-derived hematopoietic stem cells (HSCs), but it is also expressed in nonhematopoietic organs by tissue-resident stem and progenitor cells. The aim of this study is to investigate the impact of cigarette smoke extract (CSE) on the function of bone marrow-derived EPCs and the expression level of Sca-1 in EPCs, and also whether the methylation of Sca-1 is involved in EPC dysfunction. METHODS: We measured EPC capacities including adhesion, secretion and proliferation, the concentration of endothelial nitric oxide synthase (eNOS) and apoptosis-inducing factor (AIF) in cell culture supernatant, and also Sca-1 expression and promoter methylation in EPCs induced by CSE. Decitabine (Dec) was applied to test whether it could alter the impact caused by CSE. RESULTS: The adhesion, proliferation and secretion ability of EPCs can be induced to be decreased by CSE in vitro, accompanied by decreased concentrations of AIF and eNOS in cell culture supernatant and decreased Sca-1 expression in EPCs. In addition, Dec could partly attenuate the impact described above. There were no significant differences in the quantitative analysis of Sca-1 promoter methylation among different groups. CONCLUSIONS: The decreased Sca-1 expression was related to EPC dysfunction induced by CSE. EPC dysfunction resulting from CSE may be related to methylation mechanism, but not the methylation of Sca-1 promoter.

5.
Virol J ; 18(1): 22, 2021 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-33461581

RESUMO

BACKGROUND: Oxidative stress is an important pathogenic factor in influenza A virus infection. It has been found that reactive oxygen species induced by the H9N2 influenza virus is associated with viral replication. However, the mechanisms involved remain to be elucidated. METHODS: In this study, the role of autophagy was investigated in H9N2 influenza virus-induced oxidative stress and viral replication in A549 cells. Autophagy induced by H9N2 was inhibited by an autophagy inhibitor or RNA interference, the autophagy level, viral replication and the presence of oxidative stress were detected by western blot, TCID50 assay, and Real-time PCR. Then autophagy and oxidative stress were regulated, and viral replication was determined. At last, the Akt/TSC2/mTOR signaling pathways was detected by western blot. RESULTS: Autophagy was induced by the H9N2 influenza virus and the inhibition of autophagy reduced the viral titer and the expression of nucleoprotein and matrix protein. The blockage of autophagy suppressed the H9N2 virus-induced increase in the presence of oxidative stress, as evidenced by decreased reactive oxygen species production and malonaldehyde generation, and increased superoxide dismutase 1 levels. The changes in the viral titer and NP mRNA level caused by the antioxidant, N-acetyl-cysteine (NAC), and the oxidizing agent, H2O2, confirmed the involvement of oxidative stress in the control of viral replication. NAC plus transfection with Atg5 siRNA significantly reduced the viral titer and oxidative stress compared with NAC treatment alone, which confirmed that autophagy was involved in the replication of H9N2 influenza virus by regulating oxidative stress. Our data also revealed that autophagy was induced by the H9N2 influenza virus through the Akt/TSC2/mTOR pathway. The activation of Akt or the inhibition of TSC2 suppressed the H9N2 virus-induced increase in the level of LC3-II, restored the decrease in the expression of phospho-pAkt, phospho-mTOR and phospho-pS6 caused by H9N2 infection, suppressed the H9N2-induced increase in the presence of oxidative stress, and resulted in a decrease in the viral titer. CONCLUSION: Autophagy is involved in H9N2 virus replication by regulating oxidative stress via the Akt/TSC2/mTOR signaling pathway. Thus, autophagy maybe a target which may be used to improve antiviral therapeutics.


Assuntos
Células Epiteliais Alveolares/virologia , Autofagia/genética , Regulação da Expressão Gênica , Vírus da Influenza A Subtipo H9N2/fisiologia , Infecções por Orthomyxoviridae/veterinária , Estresse Oxidativo/genética , Replicação Viral , Células A549 , Animais , Humanos , Vírus da Influenza A Subtipo H9N2/patogenicidade , Transdução de Sinais , Suínos
6.
J Neurol ; 268(7): 2402-2419, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32140865

RESUMO

Axonal variants of Guillain-Barré syndrome (GBS) mainly include acute motor axonal neuropathy, acute motor and sensory axonal neuropathy, and pharyngeal-cervical-brachial weakness. Molecular mimicry of human gangliosides by a pathogen's lipooligosaccharides is a well-established mechanism for Campylobacter jejuni-associated GBS. New triggers of the axonal variants of GBS (axonal GBS), such as Zika virus, hepatitis viruses, intravenous administration of ganglioside, vaccination, and surgery, are being identified. However, the pathogenetic mechanisms of axonal GBS related to antecedent bacterial or viral infections other than Campylobacter jejuni remain unknown. Currently, autoantibody classification and serial electrophysiology are cardinal approaches to differentiate axonal GBS from the prototype of GBS, acute inflammatory demyelinating polyneuropathy. Newly developed technologies, including metabolite analysis, peripheral nerve ultrasound, and feature selection via artificial intelligence are facilitating more accurate diagnosis of axonal GBS. Nevertheless, some key issues, such as genetic susceptibilities, remain unanswered and moreover, current therapies bear limitations. Although several therapies have shown considerable benefits to experimental animals, randomized controlled trials are still needed to validate their efficacy.


Assuntos
Infecções por Campylobacter , Campylobacter jejuni , Síndrome de Guillain-Barré , Infecção por Zika virus , Zika virus , Animais , Inteligência Artificial , Autoanticorpos , Infecções por Campylobacter/complicações , Gangliosídeos , Síndrome de Guillain-Barré/terapia , Humanos
7.
J Chem Neuroanat ; 106: 101791, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32339652

RESUMO

Cerebral edema after brain surgery remains a life-threatening complication in the clinic. For a better operating field view, superior petrosal vein (SPV) can be easily damaged during neurosurgery. SPV sacrifice may sometimes be inevitable in clinic. However, the safety of SPV sacrifice is still a controversial question. Whether petrosal vein injury has an effect on cerebral edema after brain surgery is still unknown. In this study, rabbits were divided into two groups. The rabbits in the surgery group underwent petrosal vein sacrifice. The control group was subjected to sham surgery. Cerebellum and brain stem tissues were collected at 4 h, 8 h, 12 h, 24 h, 48 h and 72 h post-surgery. The superoxidase dismutase (SOD) activity and expression of malondialdehyde (MDA) were tested in the collected samples. Quantitiative real time polymerase chain reaction and immunohistochemistry were used to detect the mRNA and protein levels, respectively, of aquaporin 4 (AQP4) in the tissue samples. Compared to the control sham group, the activity of SOD and MDA expression in cerebellum was decreased and increased, respectively, at 4 h, 8 h, 12 h and 24 h post-, surgery The SOD activity and expression of MDA in brain stem was decreased and increased, respectively, only in 4 h after surgery, compared with control group. The mRNA and protein levels of AQP4 were increased in cerebellum at 4 h, 8 h, 12 h and 24 h after surgery, but in the brain stem, the levels were increased only at 4 h after surgery compared with sham group. Our results thus show that SPV sacrifice influences oxidative stress and the expression of AQP4 in cerebellum and brain stem of rabbits; highlighting the importance of protecting the petrosal vein during neurosurgery.


Assuntos
Aquaporina 4/metabolismo , Tronco Encefálico/metabolismo , Cerebelo/metabolismo , Veias Cerebrais/metabolismo , Malondialdeído/metabolismo , Superóxido Dismutase/metabolismo , Animais , Veias Cerebrais/lesões , Coelhos
8.
Emerg Microbes Infect ; 8(1): 1501-1510, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31631782

RESUMO

As one of many nonstructural proteins of porcine reproductive and respiratory syndrome virus (PRRSV), nonstructural protein 12 (Nsp12) has received relatively little attention, and its role in virus replication, if any, is essentially unknown. By the application of reverse genetic manipulation of an infectious PRRSV clone, the current study is the first to demonstrate that Nsp12 is a key component of PRRSV replication. In addition, the biochemical properties of Nsp12 were evaluated, revealing that Nsp12 forms dimers when exposed to oxidative conditions. Furthermore, we systemically analyzed the function of Nsp12 in PRRSV RNA synthesis using a strand-specific PCR method. To our surprise, Nsp12 was not found to be involved in minus-strand genomic RNA (-gRNA) synthesis; importantly, our results indicate that Nsp12 is involved in the synthesis of both plus- and minus-strand subgenomic mRNAs (+sgmRNA and -sgmRNA). Finally, we found that the combination of cysteine 35 and cysteine 79 in Nsp12 is required for sgmRNA synthesis. To our knowledge, we are the first to report the biological role of Nsp12 in the PRRSV lifecycle, and we conclude that Nsp12 is involved in the synthesis of both + sgRNA and -sgRNA.


Assuntos
Regulação Viral da Expressão Gênica , Vírus da Síndrome Respiratória e Reprodutiva Suína/metabolismo , RNA Mensageiro/genética , RNA Viral/genética , Proteínas não Estruturais Virais/metabolismo , Animais , Fases de Leitura Aberta , Síndrome Respiratória e Reprodutiva Suína/virologia , Vírus da Síndrome Respiratória e Reprodutiva Suína/genética , RNA Mensageiro/metabolismo , RNA Viral/metabolismo , Suínos , Transcrição Gênica , Proteínas não Estruturais Virais/genética , Replicação Viral
9.
Chin J Integr Med ; 25(11): 812-819, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31471834

RESUMO

OBJECTIVE: To evaluate the association between Chinese medicine (CM) therapy and disease-free survival (DFS) outcomes in postoperative patients with non-small cell lung cancer (NSCLC). METHODS: This multiple-center prospective cohort study was conducted in 13 medical centers in China. Patients with stage I, II, or IIIA NSCLC who had undergone radical resection and received conventional postoperative treatment according to the National Comprehensive Cancer Network (NCCN) guidelines were recruited. The recruited patients were divided into a CM treatment group and a control group according to their wishes. Patients in the CM treatment group received continuous CM therapy for more than 6 months or until disease progression. Patients in the control group received CM therapy for less than 1 month. Follow-up was conducted over 3 years. The primary outcome was DFS, with recurrence/metastasis rates as a secondary outcome. RESULTS: Between May 2013 and August 2016, 503 patients were enrolled into the cohort; 266 were classified in the CM treatment group and 237 in the control group. Adjusting for covariates, high exposure to CM was associated with better DFS [hazard ratio (HR) = 0.417, 95% confidential interval (CI): 0.307-0.567)]. A longer duration of CM therapy (6-12 months, 12-18 months, >24 months) was associated with lower recurrence and metastasis rates (HR = 0.225, 0.119 and 0.083, respectively). In a subgroup exploratory analysis, CM therapy was also a protective factor of cancer recurrence and metastasis in both stage I-IIIA (HR=0.50, 95% CI: 0.37-0.67) and stage IIIA NSCLC postoperative patients (HR = 0.48, 95% CI: 0.33-0.71), DFS was even longer among CM treatment group patients. CONCLUSIONS: Longer duration of CM therapy could be considered a protective factor of cancer recurrence and metastasis. CM treatment is associated with improving survival outcomes of postoperative NSCLC patients in China. (Registration No. ChiCTR-OOC-14005398).


Assuntos
Carcinoma Pulmonar de Células não Pequenas/terapia , Neoplasias Pulmonares/terapia , Medicina Tradicional Chinesa , Cuidados Pós-Operatórios/métodos , Adulto , Idoso , Carcinoma Pulmonar de Células não Pequenas/epidemiologia , Carcinoma Pulmonar de Células não Pequenas/cirurgia , China/epidemiologia , Estudos de Coortes , Terapia Combinada/estatística & dados numéricos , Intervalo Livre de Doença , Feminino , Seguimentos , Humanos , Neoplasias Pulmonares/epidemiologia , Neoplasias Pulmonares/cirurgia , Masculino , Medicina Tradicional Chinesa/métodos , Medicina Tradicional Chinesa/estatística & dados numéricos , Pessoa de Meia-Idade , Cuidados Pós-Operatórios/estatística & dados numéricos , Período Pós-Operatório , Resultado do Tratamento
10.
Zhongguo Zhong Yao Za Zhi ; 44(1): 119-124, 2019 Jan.
Artigo em Chinês | MEDLINE | ID: mdl-30868822

RESUMO

To explore the mechanism of ß-carboline alkaloids inhibiting the migration and invasion of SGC-7901 cells and its correlation with FAK gene expression,CCK-8 method was used to determine the inhibitory rate of ß-carboline alkaloids on the proliferation of gastric cancer SGC-7901 cells under different concentrations.The effect of ß-carboline alkaloids on the migration and invasion of SGC-7901 cells was used by Transwell compartment.Detection of mRNA and protein expression of FAK genes were used by qRT-PCR and Western blot.Then si-FAK-1051 recombinant plasmid was transfected into SGC-7901 cells.FAK gene silencing effect was identified by qRT-PCR and Western blot technique again.Finally,the effects of FAK gene silencing on proliferation and migration of gastric cancer SGC-7901 cells were detected by CCK-8 kit and Transwell chamber assay respectively.With the increase of the concentration ofß-carboline alkaloids,the inhibitory rate of SGC-7901 cells in human gastric cancer cells increased gradually,with IC5013.364 mg·L-1.The number of SGC-7901 cells of Transwell compartment in the positive experimental group(5-FU,5 mg·L-1) and the ß-carboline alkaloids group decreased significantly(P<0.01) and the number of SGC-7901 cells in the ß-carboline alkaloids group was significantly lower than that in the positive experimental group(P<0.01).Compared with the blank control group,the mRNA and protein expression level of FAK genes in the positive experimental group was significantly lower than that in the experimental group of ß-carboline alkaloids(P<0.05).After transfection of si-FAK-1051 into gastric cancer SGC-7901 cells,the expression of mRNA and protein of FAK gene was significantly down regulated(P<0.05).SGC-7901 cell proliferation and cell migration ability also decreased significantly(P<0.05).ß-carboline alkaloids are more effective than 5-FU in inhibiting migration and invasion of gastric cancer SGC-7901 cells,and the mechanism may be related to the inhibition of mRNA and protein expression of FAK gene by ß-carboline alkaloids.


Assuntos
Alcaloides/farmacologia , Carbolinas/farmacologia , Movimento Celular/efeitos dos fármacos , Invasividade Neoplásica , Neoplasias Gástricas/patologia , Linhagem Celular Tumoral , Proliferação de Células , Quinase 1 de Adesão Focal/genética , Regulação Neoplásica da Expressão Gênica , Inativação Gênica , Humanos , Neoplasias Gástricas/tratamento farmacológico
11.
Chin J Integr Med ; 25(6): 416-424, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30484020

RESUMO

OBJECTIVE: To investigate the potential mechanisms that curcumin reverses 5-fluorouracil (5-FU) multidrug resistance (MDR). METHODS: Cell growth and the inhibitory rate of curcumin (2-25 µg/mL) and/or 5-FU (0.05-1000 µg/mL) on human colon cancer HCT-8 and HCT-8/5-FU (5-FU-resistant cell line) were determined using cell counting kit-8 (CCK-8) assay. Apoptosis and cell cycle after 5-FU and/or curcumin treatment were detected by flow cytometry (FCM) and transmission electron microscopy (TEM). The expression of the multidrug resistance related factors p-glycoprotein (P-gp) and heat shock protein 27 (HSP-27) genes and proteins were analyzed by reverse transcription polymerase chain reaction (RT-PCR) and Western blotting (WB), respectively. RESULTS: The inhibitory rate of curcumin or 5-FU on HCT-8 and HCT-8/5-FU cells proliferation at exponential phase were in a dosedependent manner, HCT-8 cell line was more sensitive to curcumin or 5-FU when compared the inhibitory rate of HCT-8/5-FU. The 50% inhibitory concentration (IC50) of combination 5-FU and curcumin (4.0 µg/mL) in HCT-8/5-FU was calculated as 179.26 µg/mL, with reversal fold of 1.85. Another IC50 of combination 5-FU and curcumin (5.5 µg/mL) in HCT-8/5-FU was calculated as 89.25 µg/mL, with reversal fold of 3.71. Synergistic effect of 5-FU and curcumin on HCT-8 and HCT-8/5-FU cells were found. The cell cycle analysis performed by FCM showed that HCT-8 and HCT-8/5-FU cells mostly accumulated at G0/G1 phase, which suggested a synergistic effect of curcumin and 5-FU to induce apoptosis. FCM analysis found that the percentage of apoptosis of cells treated with curcumin, 5-FU and their combination were significantly increased compared to the control group (P<0.05), and the percentage of apoptosis of the combination groups were slightly higher than other groups (P<0.05). The mRNA levels of P-gp (0.28±0.02) and HSP-27 (0.28±0.09) in HCT-8/5-FU cells treated with combination drugs were lower than cells treated with 5-FU alone (P-gp, 0.48±0.07, P=0.009; HSP-27, 0.57±0.10, P=0.007). The protein levels of P-gp (0.25±0.06) and HSP-27 (0.09±0.02) in HCT-8/5-FU cells treated with combination drugs were decreased when compared to 5-FU alone (P-gp, 0.46±0.02, P=0.005; HSP-27, 0.43±0.01, P=0.000). CONCLUSIONS: Curcumin can inhibit the proliferation of human colon cancer cells. Curcumin has the ability of reversal effects on the multidrug resistance of human colon cancer cells lines HCT-8/5-FU. Down-regulation of P-gp and HSP-27 may be the mechanism of curcumin reversing the drug resistance of HCT-8/5-FU to 5-FU.


Assuntos
Membro 1 da Subfamília B de Cassetes de Ligação de ATP/genética , Apoptose/efeitos dos fármacos , Neoplasias do Colo/patologia , Curcumina/farmacologia , Regulação para Baixo/genética , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Fluoruracila/farmacologia , Proteínas de Choque Térmico HSP27/genética , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Neoplasias do Colo/genética , Neoplasias do Colo/ultraestrutura , Regulação para Baixo/efeitos dos fármacos , Sinergismo Farmacológico , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Proteínas de Choque Térmico HSP27/metabolismo , Humanos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
12.
Vet Microbiol ; 222: 105-108, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-30080663

RESUMO

Porcine reproductive and respiratory syndrome viruses (PRRSVs) pose a serious threat to the porcine industry of China, and the importation of novel strain(s) makes it challenging to control these viruses. Several NADC30-like PRRSV outbreaks have occurred in mainland China since 2013. In the current study, we report two novel PRRSVs, designated LNWK96 and LNWK130, which belong to lineage 1 and are closely related to US strains with ORF5 restriction fragment length polymorphism (RFLP) 1-7-4. The two viruses had a 100-aa deletion in the nsp2 gene corresponding to positions 328-427 in the VR-2332 strain, which was consistent with most of the ORF5 RFLP 1-7-4 viruses. Recombination analyses indicated that both viruses derived from the recombination of 1-7-4 isolates and ISU30 or NADC30, which were isolated in the United States. Taken together, these results demonstrate the emergence of ORF5 RFLP 1-7-4-like (NADC34-like) PRRSVs in China for the first time.


Assuntos
Doenças Transmissíveis Importadas/veterinária , Surtos de Doenças/veterinária , Síndrome Respiratória e Reprodutiva Suína/epidemiologia , Vírus da Síndrome Respiratória e Reprodutiva Suína/genética , Vírus da Síndrome Respiratória e Reprodutiva Suína/isolamento & purificação , Proteínas do Envelope Viral , Animais , China/epidemiologia , Mapeamento Cromossômico , Doenças Transmissíveis Importadas/epidemiologia , Doenças Transmissíveis Importadas/transmissão , Doenças Transmissíveis Importadas/virologia , Fazendas , Variação Genética , Genoma Viral , Filogenia , Polimorfismo de Fragmento de Restrição/genética , Síndrome Respiratória e Reprodutiva Suína/virologia , Análise de Sequência de DNA , Deleção de Sequência , Suínos/virologia , Doenças dos Suínos/epidemiologia , Doenças dos Suínos/transmissão , Doenças dos Suínos/virologia , Estados Unidos/epidemiologia , Proteínas do Envelope Viral/genética
13.
Vet Microbiol ; 222: 46-54, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-30080672

RESUMO

The recent rapid evolution of PRRSVs has resulted in certain biological characteristic changes, such as the fact that an increasing number of field PRRSVs can be isolated from PAMs but not from Marc-145 cells. In this study, we first isolated Marc-145-unadaptive field PRRSV strains from PAMs; sequence analysis showed that these PRRSVs belong to the HP-PRRSV (lineage 8) branch or NADC30-Like (lineage 1) branch. We further found major variations in ORF2-4 regions. To explore the viral adaptation mechanisms in detail, we constructed a full-length cDNA clone of MY-376, a Marc-145-unadaptive PRRSV. Construction of serially chimeric viruses of HuN4-F112 (a Marc-145-adaptive strain) and MY-376 demonstrated that variation in the minor envelope protein (GP2a and GP3) complex is a main determinant of PRRSV tropism for Marc-145 cells.


Assuntos
Células Epiteliais/virologia , Variação Genética , Vírus da Síndrome Respiratória e Reprodutiva Suína/genética , Vírus da Síndrome Respiratória e Reprodutiva Suína/isolamento & purificação , Proteínas do Envelope Viral , Animais , Técnicas de Cultura de Células , Linhagem Celular , DNA Complementar , Fases de Leitura Aberta/genética , Síndrome Respiratória e Reprodutiva Suína/virologia , Vírus da Síndrome Respiratória e Reprodutiva Suína/química , Suínos , Proteínas do Envelope Viral/genética , Tropismo Viral
14.
Oncotarget ; 9(35): 23848-23859, 2018 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-29844857

RESUMO

To evaluate and compare left and right testicular tissue histopathology and Johnsen score, and to investigate the necessity for bilateral testicular biopsy. We recruited180 patients with non-obstructiveazoospermia (NOA) on testicular biopsy who had undergonetesticular sperm aspiration (TESA). Pathological sections of testicular tissue were diagnosed by specially-assigned doctors, who evaluated pathological findings, determined the Johnsen score and confirmed for the presence or absence of sperm. Sperm positive rates for left and right testicular histopathology were 55.0% and 51.7% respectively, and the proportion of Johnsen scores≥8 for left and right testes were 53.3% and 50.0%, respectively. Cohen kappa values revealed that the identification of sperm in bilateral testicular samples was not consistent and was related to random effects; Optimized cut-off value for bilateral testicular volume was 11ml (Johnsen score ≥8), and optimized cut-off values of E2 on left and right testes were 144.5pmol/L and 133.5 pmol/L (Johnsen score≤7). However, age, serum prolactin (PRL), follicle stimulating hormone (FSH), luteinizing hormone (LH) and total testosterone (TT) levels were not accurate predictors for the existence of testicular sperm. There was nostatistical significance between left and right testicular histopathology in terms of sperm positive rates or Johnsen score; the Johnsen score were caused entirely by random effects and a score from one side could not represent the other side. Therefore, we recommend that both testes need to undergo surgery when NOA patients undergo testicular biopsy or sperm retrieval.

15.
Oncotarget ; 9(15): 12174-12185, 2018 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-29552301

RESUMO

Porcine reproductive and respiratory syndrome virus (PRRSV) is a problematic virus that is difficult to control. The principal target cells for PRRSV infection are porcine alveolar macrophages (PAMs). Increasing evidence has demonstrated that CD163 is the determinant receptor for PRRSV infection. However, the relationship between CD163 abundance and PRRSV infection is unclear. In this study, we first generated primary immortalized PAMs (iPAMs) using SV40 large T antigen and demonstrated that CD163 expression is suppressed by the alternative splicing of mRNA in iPAMs. Two forms of CD163 transcripts were discovered, and most iPAMs expressed a short-form CD163 transcript that lacked from scavenger receptor cysteine-rich tandem repeat 1 (SRCR1) to SRCR5 of the functional domain. More importantly, using flow cytometric cell sorting technology, we isolated CD163-positive single-cell-derived clones with varying CD163 abundances to investigate the relationship between CD163 abundance and PRRSV infection. For the first time, we showed that cells with low CD163 abundance (approximately 20%) do not initiate PRRSV infection, while cells with moderate CD163 abundance display limited infection. PRRSV initiated efficient infection only in cells with high CD163 abundances. Our results demonstrate that CD163 abundance is a pivotal switch for PRRSV replication.

16.
J Cell Physiol ; 233(2): 1129-1145, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-28436029

RESUMO

Although ATRA is involved in regulating the proliferation and differentiation of chondrocytes, its underlying mechanism remains unknown. Here we showed that ATRA could stimulate the proliferation of antler chondrocytes and expression of COL X and MMP13 which were two well-known markers for hypertrophic chondrocytes. Silencing of CRABP2 prevented the induction of ATRA on chondrocyte terminal differentiation, while overexpression of CRABP2 exhibited the opposite effects. CYP26A1 and CYP26B1 weakened the sensitivity of antler chondrocytes to ATRA. Further analysis evidenced that ATRA might induce chondrocyte terminal differentiation and modulate the expression of BMP2, WNT4, and RUNX1 through RARα/RXRα. Knockdown of BMP2 enhanced the induction of ATRA on the expression of COL X and MMP13, whereas overexpression of BMP2 abrogated this effectiveness. WNT4 might mediate the effects of ATRA and BMP2 on chondrocyte terminal differentiation. Dysregulation of BMP2 impaired the regulation of ATRA on WNT4 expression. Administration of ATRA to antler chondrocytes transfected with RUNX1 siRNA failed to induce the differentiation. Conversely, rRUNX1 strengthened the stimulation of ATRA on the expression of COL X and MMP13. Simultaneously, RUNX1 was a downstream effector of BMP2 and WNT4 in chondrocyte terminal differentiation. Moreover, WNT4 might play an important role in the crosstalk between BMP2 and RUNX1. Attenuation of BMP2 or WNT4 enhanced the interaction between ATRA and RUNX1, while constitutive expression of BMP2 or WNT4 reversed the regulation of ATRA on RUNX1. Collectively, WNT4 may act downstream of BMP2 to mediate the effects of ATRA on the terminal differentiation of antler chondrocytes through targeting RUNX1.


Assuntos
Chifres de Veado/efeitos dos fármacos , Proteína Morfogenética Óssea 2/metabolismo , Diferenciação Celular/efeitos dos fármacos , Condrócitos/efeitos dos fármacos , Condrogênese/efeitos dos fármacos , Subunidade alfa 2 de Fator de Ligação ao Core/metabolismo , Tretinoína/farmacologia , Via de Sinalização Wnt/efeitos dos fármacos , Proteína Wnt4/metabolismo , Animais , Chifres de Veado/citologia , Chifres de Veado/metabolismo , Proteína Morfogenética Óssea 2/genética , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Condrócitos/metabolismo , Colágeno Tipo X/genética , Colágeno Tipo X/metabolismo , Subunidade alfa 2 de Fator de Ligação ao Core/genética , Cervos , Regulação da Expressão Gênica , Metaloproteinase 13 da Matriz/genética , Metaloproteinase 13 da Matriz/metabolismo , Interferência de RNA , Receptores do Ácido Retinoico/agonistas , Receptores do Ácido Retinoico/genética , Receptores do Ácido Retinoico/metabolismo , Ácido Retinoico 4 Hidroxilase/genética , Ácido Retinoico 4 Hidroxilase/metabolismo , Fatores de Tempo , Transfecção , Proteína Wnt4/genética
17.
J Exp Zool B Mol Dev Evol ; 328(6): 575-586, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28643469

RESUMO

Although all-trans retinoic acid (ATRA) is involved in the regulation of cartilage growth and development, its regulatory mechanisms remain unknown. Here, we showed that ATRA could induce the expression of COL9A1 in antler chondrocytes. Silencing of cellular retinoic acid binding protein 2 (CRABP2) could impede the ATRA-induced upregulation of COL9A1, whereas overexpression of CRABP2 presented the opposite effect. RARα agonist Am80 induced the expression of COL9A1, whereas treatment with RARα antagonist Ro 41-5253 or RXRα small-interfering RNA (siRNA) caused an obvious blockage of ATRA on COL9A1. In antler chondrocytes, CYP26A1 and CYP26B1 weakened the sensitivity of ATRA to COL9A1. Simultaneously, Bone morphogenetic protein 2 (BMP2) and WNT4 mediated the regulation of ATRA on COL9A1 expression. Knockdown of WNT4 could abrogate the inhibitory effect of BMP2 overexpression on COL9A1. Conversely, constitutive expression of WNT4 reversed the upregulation of COL9A1 elicited by BMP2 siRNA. Together these data indicated that WNT4 might act downstream of BMP2 to mediate the effect of ATRA on COL9A1 expression. Further analysis evidenced that attenuation of runt-related transcription factor 1 (RUNX1) could prevent the stimulation of ATRA on COL9A1 expression, while exogenous rRUNX1 further enhanced this effectiveness. Moreover, RUNX1 might serve as an intermediate to mediate the regulation of BMP2 and WNT4 on COL9A1 expression. Collectively, ATRA signaling might regulate the expression of COL9A1 through BMP2-WNT4-RUNX1 pathway.


Assuntos
Chifres de Veado/citologia , Proteína Morfogenética Óssea 2/metabolismo , Colágeno Tipo IX/metabolismo , Regulação da Expressão Gênica/fisiologia , Transdução de Sinais/fisiologia , Tretinoína/metabolismo , Animais , Proteína Morfogenética Óssea 2/genética , Condrócitos/efeitos dos fármacos , Condrócitos/metabolismo , Colágeno Tipo IX/genética , Subunidade alfa 2 de Fator de Ligação ao Core/genética , Subunidade alfa 2 de Fator de Ligação ao Core/metabolismo , Proteína Wnt4/genética , Proteína Wnt4/metabolismo
18.
J Endocrinol ; 233(2): 145-157, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28219934

RESUMO

Although Gja1 has been proved to play an important role in uterine decidualization, its regulatory mechanism remains largely unknown. Here, we showed that Gja1 was highly expressed in the decidual cells and promoted the proliferation of uterine stromal cells and expression of Prl8a2 and Prl3c1, which were two well-known differentiation markers for decidualization. Further analysis revealed that Gja1 might act downstream of Acvr1 and cAMP to regulate the differentiation of uterine stromal cells. Administration of cAMP analog 8-Br-cAMP to Acvr1 siRNA-transfected stromal cells resulted in an obvious increase of Gja1 expression, whereas PKA inhibitor H89 impeded the induction of Gja1 elicited by Acvr1 overexpression, indicating that cAMP-PKA signal mediates the regulation of Acvr1 on Gja1 expression. In uterine stromal cells, knockdown of Gja1 blocked the cAMP induction of Hand2 Moreover, siRNA-mediated downregulation of Hand2 impaired the stimulatory effects of Gja1 overexpression on the expression of Prl8a2 and Prl3c1, whereas constitutive expression of Hand2 reversed the inhibitory effects of Gja1 siRNA on stromal differentiation. Meanwhile, Gja1 might play a vital role in the crosstalk between Acvr1 and Hand2 Collectively, Gja1 may act downstream of cAMP-PKA signal to mediate the effects of Acvr1 on the differentiation of uterine stromal cells through targeting Hand2.


Assuntos
Receptores de Ativinas Tipo I/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Conexina 43/metabolismo , Regulação da Expressão Gênica/fisiologia , Útero/fisiologia , Receptores de Ativinas Tipo I/genética , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Diferenciação Celular , Proliferação de Células , Conexina 43/genética , AMP Cíclico/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Feminino , Camundongos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Células Estromais/fisiologia
19.
Cell Cycle ; 16(6): 522-532, 2017 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-28055425

RESUMO

Although IGF1 is important for the proliferation and differentiation of chondrocytes, its underlying molecular mechanism is still unknown. Here we addressed the physiologic function of IGF1 in antler cartilage and explored the interplay of IGF1, IRS1/2 and RUNX1 in chondrocyte differentiation. The results showed that IGF1 was highly expressed in antler chondrocytes. Exogenous rIGF1 could increase the proliferation of chondrocytes and cell proportion in the S phase, whereas IGF1R inhibitor PQ401 abrogated the induction by rIGF1. Simultaneously, IGF1 could stimulate the expression of IHH which was a well-known marker for prehypertrophic chondrocytes. Further analysis evidenced that IGF1 regulated the expression of IRS1/2 whose silencing resulted in a rise of IHH mRNA levels, but the regulation was impeded by PQ401. Knockdown of IRS1 or IRS2 with specific siRNA could greatly enhance rIGF1-induced chondrocyte differentiation and reduce the expression of RUNX1. Extraneous rRUNX1 might rescue the effects of IRS1 or IRS2 siRNA on the differentiation. In antler chondrocytes, IGF1 played a role in modulating the expression of RUNX1 through IGF1R. Moreover, attenuation of RUNX1 expression advanced the differentiation elicited by rIGF1, while administration of rRUNX1 to chondrocytes treated with IGF1 siRNA or PQ401 reduced their differentiation. Additionally, siRNA-mediated downregulation of IRS1 or IRS2 in the chondrocytes impaired the interaction between IGF1 and RUNX1. Collectively, IGF1 could promote the proliferation and differentiation of antler chondrocytes. Furthermore, IRS1/2 might act downstream of IGF1 to regulate chondrocyte differentiation through targeting RUNX1.


Assuntos
Chifres de Veado/citologia , Diferenciação Celular , Condrócitos/citologia , Condrócitos/metabolismo , Subunidade alfa 2 de Fator de Ligação ao Core/genética , Regulação da Expressão Gênica , Proteínas Substratos do Receptor de Insulina/metabolismo , Fator de Crescimento Insulin-Like I/metabolismo , Animais , Cartilagem/metabolismo , Ciclo Celular/genética , Diferenciação Celular/genética , Proliferação de Células/genética , Subunidade alfa 2 de Fator de Ligação ao Core/metabolismo , Cervos , Fator de Crescimento Insulin-Like I/genética , Modelos Biológicos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
20.
Cell Biol Int ; 41(3): 296-308, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28067449

RESUMO

Although 13cRA is involved in the regulation of cellular proliferation and differentiation, its physiological roles in chondrocyte proliferation and differentiation still remain unknown. Here, we showed that 13cRA could induce the proliferation of sika deer antler chondrocytes and expression of Ccnd3 and Cdk6. Administration of 13cRA to antler chondrocytes resulted in an obvious increase in the expression of chondrocyte marker Col II and hypertrophic chondrocyte marker Col X. Silencing of Crabp2 expression by specific siRNA could prevent the 13cRA-induced up-regulation of Col X, whereas overexpression of Crabp2 showed the opposite effects. Further study found that Crabp2 mediated the regulation of 13cRA on the expression of Runx3 which was highly expressed in the antler cartilage and inhibited the differentiation of antler chondrocytes. Moreover, attenuation of Runx3 expression greatly raised 13cRA-induced chondrocyte differentiation. Simultaneously, 13cRA could stimulate the expression of Cyp26a1 and Cyp26b1 in the antler chondrocytes. Inhibition of Cyp26a1 and/or Cyp26b1 reinforced the effects of 13cRA on the expression of Col X and Runx3, while overexpression of Cyp26b1 rendered the antler chondrocytes hyposensitive to 13cRA. Collectively, 13cRA may play an important role in the differentiation of antler chondrocytes through targeting Runx3. Crabp2 enhances the effects of 13cRA on chondrocyte differentiation, while Cyp26a1 and Cyp26b1 weaken the sensitivity of antler chondrocytes to 13cRA.


Assuntos
Diferenciação Celular/fisiologia , Condrócitos/fisiologia , Condrogênese/fisiologia , Subunidade alfa 3 de Fator de Ligação ao Core/biossíntese , Isotretinoína/farmacologia , Animais , Chifres de Veado , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/fisiologia , Células Cultivadas , Condrócitos/efeitos dos fármacos , Condrogênese/efeitos dos fármacos , Subunidade alfa 3 de Fator de Ligação ao Core/antagonistas & inibidores , Cervos , Sistemas de Liberação de Medicamentos/métodos , Isotretinoína/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA