Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Plant Biotechnol J ; 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38864414

RESUMO

With global climate change, it is essential to find strategies to make crops more resistant to different stresses and guarantee food security worldwide. E3 ubiquitin ligases are critical regulatory elements that are gaining importance due to their role in selecting proteins for degradation in the ubiquitin-proteasome proteolysis pathway. The role of E3 Ub ligases has been demonstrated in numerous cellular processes in plants responding to biotic and abiotic stresses. E3 Ub ligases are considered a class of proteins that are difficult to control by conventional inhibitors, as they lack a standard active site with pocket, and their biological activity is mainly due to protein-protein interactions with transient conformational changes. Proteolysis-targeted chimeras (PROTACs) are a new class of heterobifunctional molecules that have emerged in recent years as relevant alternatives for incurable human diseases like cancer because they can target recalcitrant proteins for destruction. PROTACs interact with the ubiquitin-proteasome system, principally the E3 Ub ligase in the cell, and facilitate proteasome turnover of the proteins of interest. PROTAC strategies harness the essential functions of E3 Ub ligases for proteasomal degradation of proteins involved in dysfunction. This review examines critical advances in E3 Ub ligase research in plant responses to biotic and abiotic stresses. It highlights how PROTACs can be applied to target proteins involved in plant stress response to mitigate pathogenic agents and environmental adversities.

2.
Plant Physiol Biochem ; 210: 108627, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38663265

RESUMO

Sporidiobolus pararoseus Y16, a species of significant ecological importance, has distinctive physiological and biological regulatory systems that aid in its survival and environmental adaptation. The goal of this investigation was to understand the complex interactions between physiological and molecular mechanisms in pear fruits as induced by S. pararoseus Y16. The study investigated the use of S. pararoseus Y16 and ascorbic acid (VC) in combination in controlling blue mold decay in pears via physiological and transcriptomic approach. The study results showed that treatment of S. pararoseus Y16 with 150 µg/mL VC reduced pears blue mold disease incidence from 43% to 11%. Furthermore, the combination of S. pararoseus Y16 and VC significantly inhibited mycelia growth and spore germination of Penicillium expansum in the pear's wounds. The pre-treatment did not impair post-harvest qualities of pear fruit but increased antioxidant enzyme activity specifically polyphenol oxidase (PPO), peroxidase (POD), catalase (CAT) activities as well as phenylalanine ammonia-lyase (PAL) enzyme activity. The transcriptome analysis further uncovered 395 differentially expressed genes (DEGs) and pathways involved in defense mechanisms and disease resistance. Notable pathways of the DEGs include plant-pathogen interaction, tyrosine metabolism, and hormone signal transduction pathways. The integrative approach with both physiological and transcriptomic tools to investigate postharvest pathology in pear fruits with clarification on how S. pararoseus Y16 enhanced with VC, improved gene expression for disease defense, and create alternative controls strategies for managing postharvest diseases.


Assuntos
Ácido Ascórbico , Estresse Oxidativo , Penicillium , Doenças das Plantas , Pyrus , Pyrus/microbiologia , Penicillium/fisiologia , Penicillium/efeitos dos fármacos , Ácido Ascórbico/metabolismo , Ácido Ascórbico/farmacologia , Doenças das Plantas/microbiologia , Estresse Oxidativo/efeitos dos fármacos , Perfilação da Expressão Gênica , Basidiomycota/fisiologia , Transcriptoma
3.
Food Funct ; 14(21): 9872-9891, 2023 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-37853837

RESUMO

We investigated the structural properties, foaming capacity and foaming stability, antioxidant activity, and amino acid composition of Kudzu protein (KP) and Kudzu protein hydrolysate (KPH). The peptide sequence of KPH was analyzed using ultra performance liquid chromatography/tandem mass spectrometry (UPLC-MS/MS), and the binding ability of the peptide sequence to Keap1 was predicted through molecular docking simulations. The electrophoresis and molecular weight distribution analysis results showed that the molecular weight of KPH was significantly lower than that of KP, with a mean molecular weight of approximately 2000-5000 Da. The structures and properties were characterized using Fourier transform infrared spectroscopy, relative fluorescence, and circular dichroism. The results showed that KP exposed a large number of hydrophobic groups after enzymatic hydrolysis, and its structure changed from α-helical to random coils. KPH has a higher foaming capacity (200%) and foaming stability (97.5%) than KP, which may be related to the change in structure. These results indicate that moderate hydrolysis can improve the functional properties of KP, providing a new opportunity for its application as a food ingredient. The antioxidant assay results showed that KP and KPH had a good hydroxyl radical, superoxide anion, 1,1-diphenyl-2-picrylhydrazyl (DPPH), and 2,2'-azino-bis-3-ethylbenzothiazoline-6-sulfonic acid (ABTS) scavenging capacity and a high reducing capacity. KPH exerted better antioxidant effects than KP. The scavenging rates for DPPH, ABTS, hydroxyl radicals, and superoxide anions were 89.31%, 93.14%, 85.74%, and 58.29%, respectively, and its reducing capacity was 2.191, which may be related to the increase in amino acids with antioxidant activity after enzymolysis. In vitro, KP and KPH could significantly repair H2O2-induced oxidative damage in HepG2 cells, reduce the apoptosis rate, activate the Nrf2-Keap1 signaling pathway, reduce the accumulation of reactive oxygen species and malondialdehyde after oxidative damage, increase the activities of superoxide dismutase and glutathione (GSH) peroxidase, and increase the content of GSH and the total antioxidant capacity. Twenty-one peptide components were identified in KPH using UPLC-MS/MS, and the binding ability of 21 peptide components to Keap1 was analyzed through molecular docking technology. The results showed that all 21 peptides in KPH had good antioxidant activity, and real-time quantitative PCR (qRT-PCR) analysis was conducted to further explain the high antioxidant activity of KPH at the genetic level. These results show that KP and KPH are suitable for preparing antioxidant foods and related health foods to prevent oxidation-related diseases. KPH has more beneficial effects than KP.


Assuntos
Antioxidantes , Pueraria , Humanos , Antioxidantes/farmacologia , Antioxidantes/química , Hidrolisados de Proteína/química , Peróxido de Hidrogênio/metabolismo , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Cromatografia Líquida , Células Hep G2 , Simulação de Acoplamento Molecular , Espectrometria de Massas em Tandem , Fator 2 Relacionado a NF-E2/metabolismo , Peptídeos/química , Glutationa/metabolismo , Superóxidos/metabolismo , Radical Hidroxila
4.
NPJ Sci Food ; 7(1): 32, 2023 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-37336871

RESUMO

Semen Ziziphi Spinosae protein (SZSP) is a new plant protein resource with good food functional properties and health care function. However, the biological activity of SZSP has not been further studied, which greatly limits the development and utilization of SZSP in the food industry. The aim of this study was to investigate the protective effect of SZSP on immunosuppressed mice and its inhibitory effect on immune-stimulated RAW264.7 cells. The results demonstrated that SZSP remarkably improved the immunomodulatory secretion in serum (interleukin-2, tumor necrosis factor-α [TNF-α], interferon-γ, immunoglobulin-A, immunoglobulin-G, immunoglobulin-M) and primary macrophages (nitric oxide, interleukin-1ß, TNF-α) and promoted the NK-cell killing activity of primary splenocytes in CTX-induced immunosuppression mice. Immunohistochemical analysis results indicated that the secretion of CD4+ and CD8+ in the spleen and thymus can be regulated by SZSP, leading to inhibition of the damage induced by cyclophosphamide in mice. Meanwhile, in order to clarify the immunomodulatory mechanism of SZSP, we showed that SZSP significantly inhibited the secretion of NO, interleukin-6, and TNF-α and reduced the phosphorylation expression of p-ERK, p-JNK, and p-IκBα in lipopolysaccharide-stimulated RAW264.7 cells. Therefore, the immunomodulatory effect of SZSP may be related to the activation of MAPKs and NF-κB signaling pathways. Based on the above studies, the preliminary purification of SZSP was continued, and S1F2G1 with immunomodulatory activity was obtained. Taken together, SZSP has an immunoregulatory effect in vivo and in vitro and may be a favorable candidate of functional food raw material for regulating immune responses.

5.
J Hazard Mater ; 448: 130975, 2023 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-36860082

RESUMO

With the increasing global climate change, ochratoxin A (OTA) pollution in food and environment has become a serious and potential risk element threatening food safety and human health. Biodegradation of mycotoxin is an eco-friendly and efficient control strategy. Still, research works are warranted to develop low-cost, efficient, and sustainable approaches to enhance the mycotoxin degradation efficiency of microorganisms. In this study, the activities of N-acetyl-L-cysteine (NAC) against OTA toxicity were evidenced, and its positive effects on the OTA degradation efficiency of antagonistic yeast, Cryptococcus podzolicus Y3 were verified. Co-culturing C. podzolicus Y3 with 10 mM NAC improved 100% and 92.6% OTA degradation rate into ochratoxin α (OTα) at 1 d and 2 d. The excellent promotion role of NAC on OTA degradation was observed even at low temperatures and alkaline conditions. C. podzolicus Y3 treated with OTA or OTA+NAC promoted reduced glutathione (GSH) accumulation. GSS and GSR genes were highly expressed after OTA and OTA+NAC treatment, contributing to GSH accumulation. In the early stages of NAC treatment, yeast viability and cell membrane were reduced, but the antioxidant property of NAC prevented lipid peroxidation. Our finding provides a sustainable and efficient new strategy to improve mycotoxin degradation by antagonistic yeasts, which could be applied to mycotoxin clearance.


Assuntos
Micotoxinas , Saccharomyces cerevisiae , Humanos , Acetilcisteína , Biodegradação Ambiental
6.
Anal Bioanal Chem ; 415(3): 411-425, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36370204

RESUMO

Lysoglycerophospholipids (Lyso-GPLs) are an essential class of signaling lipids with potential roles in human diseases, such as cancer, central nervous system diseases, and atherosclerosis. Current methods for the quantification of Lyso-GPLs involve complex sample pretreatment, long analysis times, and insufficient validation, which hinder the research of Lyso-GPLs in human studies, especially for Lyso-GPLs with low abundance in human plasma such as lysophosphatidic acid (LPA), lysophosphatidylinositol (LPI), lysophosphatidylglycerol (LPG), lysophosphatidylserine (LysoPS), lyso-platelet-activating factor (LysoPAF), and cyclic phosphatidic acid (cPA). Herein, we report the development and validation of a simple and rapid liquid chromatography-tandem mass spectrometry (LC-MS/MS) method for the quantification of Lyso-GPLs with low abundance in plasma. Protein precipitation using MeOH for Lyso-GPL extraction, quick separation (within 18 min) based on hydrophilic interaction liquid chromatography (HILIC), and sensitive MS detection under dynamic multiple reaction monitoring (dMRM) mode enabled efficient quantification of 22 Lyso-GPLs including 2 cPA, 4 LPG, 11 LPA, 2 LysoPS, and 3 LysoPAF in 50 µL of human plasma. The present method showed good linearity (goodness of fit, 0.99823-0.99995), sensitivity (lower limit of quantification, 0.03-14.06 ng/mL), accuracy (73-117%), precision (coefficient of variation ≤ 28%), carryover (≤ 17%), recovery (80-110%), and stability (83-123%). We applied the method in an epidemiological study and report concentrations of 18 Lyso-GPLs in 567 human plasma samples comparable to those of previous studies. Significant negative associations of LysoPAF C18, LysoPAF C18:1, and LysoPAF C16 with homeostatic model assessment for insulin resistance (HOMA-IR) level were observed; this indicates possible roles of LysoPAF in glucose homeostasis. The application of the present method will improve understanding of the roles of circulating low-abundant Lyso-GPLs in health and diseases.


Assuntos
Plasma , Espectrometria de Massas em Tandem , Humanos , Cromatografia Líquida/métodos , Espectrometria de Massas em Tandem/métodos , Interações Hidrofóbicas e Hidrofílicas , Cromatografia Líquida de Alta Pressão/métodos , Reprodutibilidade dos Testes
7.
Int J Food Microbiol ; 382: 109931, 2022 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-36137461

RESUMO

Blue mold decay is a major postharvest disease of apples, causing considerable losses to the apple industry. In the early stage of this research, an antagonistic yeast, Hannaella sinensis, with a good control effect on the blue mold of apples, was selected. On this basis, the main purpose of this work was to study the biocontrol effect of H. sinensis on the blue mold of apples and the mechanisms involved. The results showed that H. sinensis could effectively control the blue mold decay of apples, reduce the rot rate and diameter, and the antagonistic effect strengthened with the increase of H. sinensis concentration (1 × 108 cells/mL). Further in vitro experiments proved that H. sinensis could significantly inhibit the spore germination and germ tube length of P. expansum. In addition, stable colonization of H. sinensis on apple wounds and surfaces confirmed the environmental adaptability and the ability to compete with other microbiota for nutrition and space. Moreover, H. sinensis induced the activities of resistance-related enzymes such as polyphenol oxidase (PPO), peroxidase (POD), ascorbate peroxidase (APX), superoxide dismutase (SOD), and phenylalanine ammonia-lyase (PAL) in apples and the content of the coding genes corresponding to these enzymes was also higher than that of the control group. Our results indicate that H. sinensis treatment could induce the disease resistance of apples. In summary, H. sinensis served as a promising antagonistic yeast for the prevention and treatment of postharvest blue mold decay of apples.


Assuntos
Malus , Penicillium , Ascorbato Peroxidases , Basidiomycota , Catecol Oxidase , Fungos , Fenilalanina Amônia-Liase/farmacologia , Saccharomyces cerevisiae , Superóxido Dismutase/farmacologia
8.
J Food Sci ; 87(6): 2484-2503, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35502672

RESUMO

Wild jujube seed protein (WJSP) as one kind of functional food material has attracted much attention due to its highly nutritive and medicinal value in anti-inflammatory and improving immunomodulatory ability. However, owing to its large molecular weight and complex structure, biological activities of WJSP were greatly limited and cannot be fully utilized by the human body. Therefore, how to improve the bioavailability of WJSP and develop promising WJSP nutritious materials is a great challenge. In this work, wild jujube seed protein hydrolysates (WJSPHs) were prepared from WJSP via enzymatic hydrolysis method, and their physico-chemical properties, antioxidant activity, and angiotensin converting enzyme (ACE) inhibitory activity in vitro have been investigated for the first time. SDS-PAGE electrophoresis and size-exclusion chromatographic results indicate that WJSPHs have lower molecular weight distribution (< 5,000 Da) than WJSP. Circular dichroism (CD) spectroscopy and Fourier transform infrared spectroscopy (FTIR) results illustrated that random coil is the main secondary structure of WJSPHs. Antioxidant experiments indicate that WJSPHs exhibit high radicals-scavenging ability of 1,1-diphenyl-2-picrylhydrazyl (DPPH) radicals (94.60%), 2,2'-azinobis-(3-ethylbenzthiazoline-6-sulfonate) (ABTS+ ) radicals (90.84%), superoxide radicals (44.77%), and hydroxyl radicals (47.77%). In vitro, WJSPHs can significantly decrease the accumulation of reactive oxygen species (ROS) and malondialdehyde (MDA), and increase the activity of superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) in HepG2 cells. Moreover, ACE activity was found that can be significantly inhibited by WJSPHs (73.02%). Therefore, all previously mentioned results suggest that WJSPHs may be a promising antioxidant food to prevent oxidative-related diseases in future. PRACTICAL APPLICATION: This study shows that WJSPHs exhibit high antioxidant activity and ACE inhibitory activity in vitro, which provide potential application value as antioxidant peptides to prevent oxidative-related diseases.


Assuntos
Antioxidantes , Hidrolisados de Proteína , Ziziphus , Inibidores da Enzima Conversora de Angiotensina/química , Inibidores da Enzima Conversora de Angiotensina/farmacologia , Antioxidantes/química , Antioxidantes/farmacologia , Peptidil Dipeptidase A/química , Hidrolisados de Proteína/química , Hidrolisados de Proteína/farmacologia , Sementes/química , Ziziphus/química
9.
Front Microbiol ; 12: 704519, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34367105

RESUMO

To study the mechanism by which Pichia anomala induced with chitosan (1% w/v) controls blue mold disease in table grapes caused by Penicillium expansum, this study evaluated alterations in three yeast enzymatic activities. The changes in the five primary disease defense-related enzymes and two non-enzyme activities of table grapes were assayed. The results of the study showed that chitosan (1% w/v) significantly increased the yeast ß-1,3-glucanase, catalase (CAT), and malondialdehyde (MDA) activities. Furthermore, P. anomala alone or induced with chitosan (1% w/v) significantly increased the table grapes enzymatic activities of Polyphenol oxidase (PPO), phenylalanine (PAL), peroxidase (POD), and catalase (CAT) compared to the control. The RT-qPCR results also confirmed that the genes of these major disease defense enzymes were up-regulated when the table grapes were treated with P. anomala. The highest results were recorded when the fruit was treated by yeast induced with chitosan (1% w/v). The phenolic compounds, in addition to their nutritional value, can also increase the antimicrobial properties of table grapes. The current experiment determined that the total phenol and flavonoid contents of table grapes showed the highest results for fruits treated by P. anomala induced with chitosan compared with the control. Generally, the increment of these fruit enzymatic and non-enzymatic activities shows improved table grape defense against the pathogenic fungus. The induction of the yeast with chitosan also increases its bio-control efficacy against the pathogen. This study will enable future detailed investigation in the yeast pathogen control mechanisms and the use of yeasts as bio-pesticides.

10.
Artigo em Inglês | MEDLINE | ID: mdl-34043492

RESUMO

Rhodotorula mucilaginosa is an antagonistic yeast for which our research team has recently reported interesting biocontrol activities against blue mould decay of apples and a strong ability to decrease the patulin concentration in vivo. However, the possible mechanisms of patulin degradation by R. mucilaginosa and the toxicity of patulin degradation products remain unclear. In this study, the effect of R. mucilaginosa on patulin degradation and toxicity of degradation products were investigated, the results showed that viable cells of R. mucilaginosa are essential to patulin degradation. Also, R. mucilaginosa eliminated patulin without adsorbing it through its cell wall. The extracellular metabolites of R. mucilaginosa stimulated by patulin showed little degradation activity for patulin. Cycloheximide addition into the medium significantly decreased the patulin degradation capacity of R. mucilaginosa cells. The main patulin degradation product by R. mucilaginosa was ascladiol, which was proved non-toxic to human hepatoma (HepG2) cells at 0.625-10 g/mL. Furthermore, toxicological analysis using a confocal laser scanning microscope revealed that the degradation product induced cellular apoptosis to a lesser extent than patulin itself. This result offers an innovative method to detoxify patulin and limit the risks of patulin in fruits and vegetables using R. mucilaginosa.


Assuntos
Fungos/metabolismo , Furanos/toxicidade , Patulina/metabolismo , Rhodotorula/metabolismo , Cicloeximida/metabolismo , Aditivos Alimentares/metabolismo , Contaminação de Alimentos , Frutas/microbiologia , Fungos/crescimento & desenvolvimento , Células Hep G2 , Humanos , Malus/microbiologia , Metaboloma , Medição de Risco
11.
Artigo em Inglês | MEDLINE | ID: mdl-33643423

RESUMO

Filipendula palmata (Pall.) Maxim. remains unexplored and underutilized resources with a high potential to improve human health. In this study, a new ursane-type triterpenoid, namely, 2α, 3ß-dihydroxyurs-12-en-28-aldehyde (compound 10), and other 23 known compounds were isolated. 5 triterpenoids (compounds 6, 8, and 10-12), 11 flavonoids (compounds 13-15 and 17-24), 6 phenolic compounds (compounds 1, 2, 4, 5, 9, and 16), 2 sterols (compounds 3 and 7) were isolated from the aqueous solution extract of the aerial parts of F. palmata. The structures of all compounds were elucidated by the use of extensive spectroscopic methods such as infrared spectroscopy (IR), high-resolution electrospray ionization mass spectrometry (HR-ESI-MS), 1H-NMR, and 13C-NMR. The solvent extractions of ethyl acetate fraction were evaluated for antioxidant activities using DPPH (2, 2-diphenyl-1-picrylhydrazyl) and ABTS+ (2, 2'-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid)) methods. The anti-inflammatory effects of the compounds were evaluated in lipopolysaccharide- (LPS-) stimulated RAW 264.7 macrophages. The extract cytotoxicity on the cancer cell lines MCF-7, HeLa, 4T1, and A549 was determined by MTT assay. As a result, compounds 10, 11, and 12 exhibited better antioxidant activity compared to the other compounds. Compounds 8-24 had different inhibitory effects on the release of NO, TNF-α, and IL-6 in LPS-stimulated RAW 264.7 cells. The new compound has shown a significant inhibiting effect on cancer cells, and the cell inhibition rate increased in a dose-dependent manner. Further research to elucidate the chemical compositions and pharmacological effects of F. palmata is of major importance towards the development and foundation of clinical application of the species.

12.
Compr Rev Food Sci Food Saf ; 20(3): 2508-2533, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33665962

RESUMO

Fruit-based diets have been adopted by the public worldwide because of their nutritional value. Many advances have also been made in the elucidation of host-pathogen interaction in the postharvest phase of fruits, in the hope of improving the management of diseases caused by pathogenic molds. In this study, we presented the molecular mechanisms by which pathogenic mold infects fruit in the postharvest phase, and focused on the knowledge gained from recent molecular techniques such as differential analysis of gene expression, targeted insertion, and mutagenesis. Current postharvest pathogenic fungal control strategies were then examined on the basis of their mechanisms for altering the infection process in order to explore new perspectives for securing fruit production. We found that biotechnological advances have led to an understanding of the new basic molecular processes involved in fruit fungal infection and to the identification of new genes, proteins and key factors that could serve as ideal targets for innovative antifungal strategies. In addition, the most commonly used steps to evaluate an approach to disrupt the fruit fungal infection process are mainly based on the inhibition of mycelial growth, spore germination, disruption of Adenosine triphosphate (ATP) synthesis, induction of oxidative stress, cell wall membrane damage, and inhibition of key enzymes. Finally, the alteration of the molecular mechanisms of signaling and response pathways to infection stimulation should also guide the development of effective control strategies to ensure fruit production.


Assuntos
Frutas , Micoses , Antifúngicos , Fungos , Interações Hospedeiro-Patógeno
13.
Food Res Int ; 141: 110075, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33641962

RESUMO

Losses of harvested fruits and vegetables can be attributed to decaying fungi. These fungi are pathogenic and also a source of mycotoxins, which pose a health threat to humans and animals. As a result, national and international organizations have set detection levels for toxic secondary metabolites for harvested commodities and derived products. Citrinin (CIT) is a mycotoxin produced by fungi and is found in association with patulin, and ochratoxin A, which is nephrotoxic, hepatotoxic, immunosuppression, and carcinogenic. CIT has been recovered from fruit, grains, feedstuff, and biological fluids. Heart, kidney, liver, and reproductive system disorders can be a result of exposure to these mycotoxins. The review points out that, although CIT has health implications, its maximum levels have not been set and not been enforced by national and international organizations. The aim of this review is to look at its occurrence, risks implications, analytical techniques for its detection and quantification, production, biosynthesis, physiochemical properties, and control.


Assuntos
Citrinina , Patulina , Animais , Citrinina/análise , Frutas/química , Fungos , Humanos
14.
J Agric Food Chem ; 67(42): 11758-11768, 2019 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-31577438

RESUMO

Patulin contamination not only is a menace to human health but also causes serious environmental problems worldwide due to the synthetic fungicides that are used to control it. This study focused on investigating the patulin degradation mechanism in Pichia caribbica at the molecular level. According to the results, P. caribbica (2 × 106 cells/mL) was able to degrade patulin from 20 µg/mL to an undetectable level in 72 h. The RNA-seq data showed patulin-induced oxidative stress and responses in P. caribbica. The deletion of PcCRG1 led to a significant decrease in patulin degradation by P. caribbica, whereas the overexpression of PcCRG1 accelerated the degradation of patulin. The study identified that PcCRG1 protein had the ability to degrade patulin in vitro. Overall, we demonstrated that the patulin degradation process in P. caribbica was more than one way; PcCRG1 was an S-adenosylmethionine-dependent methyltransferase and played an important role in the patulin degradation process in P. caribbica.


Assuntos
Proteínas Fúngicas/metabolismo , Fungicidas Industriais/metabolismo , Metiltransferases/metabolismo , Patulina/metabolismo , Pichia/metabolismo , S-Adenosilmetionina/metabolismo , Sequência de Aminoácidos , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Metiltransferases/química , Metiltransferases/genética , Pichia/enzimologia , Pichia/genética , Alinhamento de Sequência
15.
Molecules ; 24(3)2019 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-30678231

RESUMO

20-Hydroxy-3-oxolupan-28-oic acid (HOA), a lupane-type triterpene, was obtained from the leaves of Mahonia bealei, which is described in the Chinese Pharmacopeia as a remedy for inflammation and related diseases. The anti-inflammatory mechanisms of HOA, however, have not yet been fully elucidated. Therefore, the objective of this study was to characterize the molecular mechanisms of HOA in lipopolysaccharide (LPS)-stimulated RAW264.7 cells. HOA suppressed the release of nitric oxide (NO), pro-inflammatory cytokine tumor necrosis factor α (TNF-α), and interleukin 6 (IL-6) in LPS-stimulated RAW264.7 macrophages without affecting cell viability. Quantitative real-time reverse-transcription polymerase chain reaction (RT-qPCR) analysis indicated that HOA also suppressed the gene expression of inducible NO synthase (iNOS), TNF-α, and IL-6. Further analyses demonstrated that HOA inhibited the phosphorylation of upstream signaling molecules, including p85, PDK1, Akt, IκBα, ERK, and JNK, as well as the nuclear translocation of nuclear factor κB (NF-κB) p65. Interestingly, HOA had no effect on the LPS-induced nuclear translocation of activator protein 1 (AP-1). Taken together, these results suggest that HOA inhibits the production of cytokine by downregulating iNOS, TNF-α, and IL-6 gene expression via the downregulation of phosphatidylinositol 3-kinase (PI3K)/Akt and mitogen-activated protein kinases (MAPKs), and the inhibition of NF-κB activation. Our findings indicate that HOA could potentially be used as an anti-inflammatory agent for medical use.


Assuntos
Inflamação/metabolismo , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Triterpenos/farmacologia , Animais , Anti-Inflamatórios/química , Anti-Inflamatórios/farmacologia , Sobrevivência Celular/efeitos dos fármacos , Citocinas/metabolismo , Inflamação/imunologia , Inflamação/patologia , Mediadores da Inflamação , Lipopolissacarídeos/imunologia , Macrófagos/imunologia , Camundongos , Estrutura Molecular , Óxido Nítrico/metabolismo , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Células RAW 264.7 , Triterpenos/química
16.
Cancer Chemother Pharmacol ; 80(1): 135-149, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28585035

RESUMO

Irinotecan (IRI) chemotherapy toxicities can be severe, and may result in treatment delay, morbidity and in some rare cases death. Neutropenia is a life-threatening side effect of irinotecan, and UDP glucuronosyltransferases (UGTs) gene polymorphisms could predict the side effects in cancer patients and then reduce IRI-induced toxicity by preventative treatment or a decrease in dose. Both UGT1A1*6 and *28 were reliably demonstrated to be risk factors for IRI-induced neutropenia, with tests for both polymorphisms potentially being particularly useful in Asian cancer patients. However, some researchers reported that UGT1A1*6 could predict IRI-induced toxicities in Asian populations, controversial conclusions still remained. Thus, the association between UGT1A1*6 polymorphisms and IRI-induced severe toxicity in cancer patients is still needed to be explored. Therefore, this study aims to investigate the association between UGT1A1*6 polymorphisms and IRI-related severe neutropenia in cancer patients on a large scale. A total of 12 studies that included 746 wild genotype (G/G) cases and 394 variant genotype (G/A and A/A) cases were included on the basis of inclusion criteria. Then we assessed the methodologies quality; odds ratio (OR), risk difference (RD) and 95% confidence intervals (95% CI) were used to assess the strength of association. Overall, an increased risk of severe neutropenia in cancer patients with UGT1A1*6 polymorphisms was found. Patients with recessive models (GA + AA vs. GG) of UGT1A1*6 showed an increased risk (OR 2.03, 95% CI 1.54-2.68; RD = 0.11, P < 0.001). Specifically, the heterozygous variant of UGT1A1*6 showed an increased risk (OR 1.83, 95% CI 1.36-2.46; RD = 0.09, P < 0.001), and homozygous mutation showed also high risk (OR 2.95, 95% CI 1.83-4.75; RD = 0.18, P < 0.001) for severe neutropenia. Subgroup meta-analysis revealed that for patients harboring both heterozygous and homozygous variants, cancer types, low dose of IRI and the duration of treatment also presented comparably increased risk in suffering severe neutropenia. As for country, in China and Japan, there was a statistically increased severe neutropenia with variant genotype of UGT1A1*6 (China: GA + AA vs. GG, OR 1.83, 95% CI 1.28-2.59; RD = 0.08, P = 0.001; Japan: GA + AA vs. GG, OR 2.39, 95% CI 1.45-3.92; RD = 0.15, P = 0.001). In conclusion, in this meta-analysis, the UGT1A1*6 polymorphisms were associated with an increased risk of IRI-induced neutropenia in cancer patients, and increased incidences of severe neutropenia could be correlated with diverse regions, cancer type, low dose of IRI and the duration of treatment.


Assuntos
Antineoplásicos Fitogênicos/efeitos adversos , Camptotecina/análogos & derivados , Glucuronosiltransferase/genética , Neutropenia/induzido quimicamente , Antineoplásicos Fitogênicos/administração & dosagem , Povo Asiático/genética , Camptotecina/administração & dosagem , Camptotecina/efeitos adversos , Relação Dose-Resposta a Droga , Genótipo , Humanos , Irinotecano , Neutropenia/genética , Polimorfismo Genético , Fatores de Risco
17.
Mol Plant Microbe Interact ; 30(4): 301-311, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28398122

RESUMO

A better understanding of the mode of action of postharvest biocontrol agents on fruit surfaces is critical for the advancement of successful implementation of postharvest biocontrol products. This is due to the increasing importance of biological control of postharvest diseases over chemical and other control methods. However, most of the mechanisms involved in biological control remain unknown and need to be explored. Yarrowia lipolytica significantly inhibited blue mold decay of apples caused by Penicillium expansum. The findings also demonstrated that Y. lipolytica stimulated the activities of polyphenoloxidase, peroxidase, chitinase, l-phenylalanine ammonia lyase involved in enhancing defense responses in apple fruit tissue. Proteomic and transcriptomic analysis revealed a total of 35 proteins identified as up- and down-regulated in response to the Y. lipolytica inducement. These proteins were related to defense, biotic stimulus, and stress responses, such as pathogenesis-related proteins and dehydrin. The analysis of the transcriptome results proved that the induced resistance was mediated by a crosstalk between salicylic acid (SA) and ethylene/jasmonate (ET/JA) pathways. Y. lipolytica treatment activated the expression of isochorismate synthase gene in the SA pathway, which up-regulates the expression of PR4 in apple. The expression of 1-aminocyclopropane-1-carboxylate oxidase gene and ET-responsive transcription factors 2 and 4, which are involved in the ET pathway, were also activated. In addition, cytochrome oxidase I, which plays an important role in JA signaling for resistance acquisition, was also activated. However, not all of the genes had a positive effect on the SA and ET/JA signal pathways. As transcriptional repressors in JA signaling, TIFY3B and TIFY11B were triggered by the yeast, but the gene expression levels were relatively low. Taken together, Y. lipolytica induced the SA and ET/JA signal mediating the defense pathways by stimulating defense response genes, such as peroxidase, thaumatin-like protein, and chitinase 4-like, which are involved in defense response in apple. [Formula: see text]


Assuntos
Malus/metabolismo , Malus/microbiologia , Proteoma/metabolismo , Transcriptoma/genética , Yarrowia/fisiologia , Ciclopentanos/metabolismo , Eletroforese em Gel Bidimensional , Etilenos/metabolismo , Regulação da Expressão Gênica de Plantas , Ontologia Genética , Genes de Plantas , Malus/enzimologia , Malus/genética , Modelos Biológicos , Oxilipinas/metabolismo , Penicillium/fisiologia , Proteínas de Plantas/metabolismo , Ácido Salicílico/metabolismo , Transdução de Sinais , Fatores de Transcrição/metabolismo
18.
J Biol Chem ; 292(24): 10131-10141, 2017 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-28446612

RESUMO

CDK4 regulates G1/S phase transition in the mammalian cell cycle by phosphorylating retinoblastoma family proteins. However, the mechanism underlying the regulation of CDK4 activity is not fully understood. Here, we show that CDK4 protein is degraded by anaphase-promoting complex/cyclosome (APC/C) during metaphase-anaphase transition in HeLa cells, whereas its main regulator, cyclin D1, remains intact but is sequestered in cytoplasm. CDK4 protein reaccumulates in the following G1 phase and shuttles between the nucleus and the cytoplasm to facilitate the nuclear import of cyclin D1. Without CDK4, cyclin D1 cannot enter the nucleus. Point mutations that disrupt CDK4 and cyclin D1 interaction impair the nuclear import of cyclin D1 and the activity of CDK4. RNAi knockdown of CDK4 also induces cytoplasmic retention of cyclin D1 and G0/G1 phase arrest of the cells. Collectively, our data demonstrate that CDK4 protein is degraded in late mitosis and reaccumulates in the following G1 phase to facilitate the nuclear import of cyclin D1 for activation of CKD4 to initiate a new cell cycle in HeLa cells.


Assuntos
Ciclossomo-Complexo Promotor de Anáfase/metabolismo , Ciclina D1/metabolismo , Quinase 4 Dependente de Ciclina/metabolismo , Fase G1 , Mitose , Transporte Ativo do Núcleo Celular , Animais , Linhagem Celular , Ciclina D1/química , Ciclina D1/genética , Quinase 4 Dependente de Ciclina/antagonistas & inibidores , Quinase 4 Dependente de Ciclina/química , Quinase 4 Dependente de Ciclina/genética , Indução Enzimática , Estabilidade Enzimática , Proteínas de Fluorescência Verde/química , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Células HeLa , Humanos , Camundongos , Proteínas de Neoplasias/química , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Sinais de Localização Nuclear/química , Sinais de Localização Nuclear/genética , Sinais de Localização Nuclear/metabolismo , Fragmentos de Peptídeos/antagonistas & inibidores , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/metabolismo , Mutação Puntual , Estabilidade Proteica , Transporte Proteico , Proteólise , Interferência de RNA , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/metabolismo
19.
J Cell Sci ; 129(7): 1429-40, 2016 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-26872786

RESUMO

RNA-polymerase-I-dependent ribosomal DNA (rDNA) transcription is fundamental to rRNA processing, ribosome assembly and protein synthesis. However, how this process is initiated during the cell cycle is not fully understood. By performing a proteomic analysis of transcription factors that bind RNA polymerase I during rDNA transcription initiation, we identified that the DNA replication initiator Cdc6 interacts with RNA polymerase I and its co-factors, and promotes rDNA transcription in G1 phase in an ATPase-activity-dependent manner. We further showed that Cdc6 is targeted to the nucleolus during late mitosis and G1 phase in a manner that is dependent on B23 (also known as nucleophosmin, NPM1), and preferentially binds to the rDNA promoter through its ATP-binding domain. Overexpression of Cdc6 increases rDNA transcription, whereas knockdown of Cdc6 results in a decreased association of both RNA polymerase I and the RNA polymerase I transcription factor RRN3 with rDNA, and a reduction of rDNA transcription. Furthermore, depletion of Cdc6 impairs the interaction between RRN3 and RNA polymerase I. Taken together, our data demonstrate that Cdc6 also serves as a regulator of rDNA transcription initiation, and indicate a mechanism by which initiation of rDNA transcription and DNA replication can be coordinated in cells.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Replicação do DNA/genética , DNA Ribossômico/genética , Proteínas Nucleares/metabolismo , RNA Polimerase I/metabolismo , Iniciação da Transcrição Genética/fisiologia , Proteínas de Ciclo Celular/genética , Linhagem Celular Tumoral , Fase G1/genética , Células HEK293 , Células HeLa , Humanos , Proteínas Nucleares/genética , Região Organizadora do Nucléolo/genética , Nucleofosmina , Proteínas Pol1 do Complexo de Iniciação de Transcrição/metabolismo , Regiões Promotoras Genéticas/genética , Ligação Proteica , Estrutura Terciária de Proteína
20.
J Cell Sci ; 128(15): 2830-41, 2015 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-26092935

RESUMO

Some nuclear proteins that are crucial in interphase relocate during the G2/M-phase transition in order to perform their mitotic functions. However, how they perform these functions and the underlying mechanisms remain largely unknown. Here, we report that a fraction of the nuclear periphery proteins lamin-A/C, LAP2α and BAF1 (also known as BANF1) relocate to the spindle and the cell cortex in mitosis. Knockdown of these proteins by using RNA interference (RNAi) induces short and fluffy spindle formation, and disconnection of the spindle from the cell cortex. Disrupting the microtubule assembly leads to accumulation of these proteins in the cell cortex, whereas depolymerizing the actin microfilaments results in the formation of short spindles. We further demonstrate that these proteins are part of a stable complex that links the mitotic spindle to the cell cortex and the spindle matrix by binding to spindle-associated dynein, the actin filaments in the cell cortex and the spindle matrix. Taken together, our findings unveil a unique mechanism where the nuclear periphery proteins lamin-A/C, LAP2α and BAF1 are assembled into a protein complex during mitosis in order to regulate assembly and positioning of the mitotic spindle.


Assuntos
Proteínas de Ligação a DNA/genética , Lamina Tipo A/genética , Proteínas de Membrana/genética , Proteínas Nucleares/genética , Fuso Acromático/genética , Citoesqueleto de Actina/genética , Linhagem Celular Tumoral , Células HeLa , Humanos , Microtúbulos/genética , Mitose/genética , Interferência de RNA , RNA Interferente Pequeno , Fuso Acromático/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA