Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
EMBO Rep ; 23(12): e54911, 2022 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-36305233

RESUMO

Major depressive disorder (MDD) is a severe mental illness. Decreased brain plasticity and dendritic fields have been consistently found in MDD patients and animal models; however, the underlying molecular mechanisms remain to be clarified. Here, we demonstrate that the deletion of cancerous inhibitor of PP2A (CIP2A), an endogenous inhibitor of protein phosphatase 2A (PP2A), leads to depression-like behaviors in mice. Hippocampal RNA sequencing analysis of CIP2A knockout mice shows alterations in the PI3K-AKT pathway and central nervous system development. In primary neurons, CIP2A stimulates AKT activity and promotes dendritic development. Further analysis reveals that the effect of CIP2A in promoting dendritic development is dependent on PP2A-AKT signaling. In vivo, CIP2A deficiency-induced depression-like behaviors and impaired dendritic arborization are rescued by AKT activation. Decreased CIP2A expression and impaired dendrite branching are observed in a mouse model of chronic unpredictable mild stress (CUMS). Indicative of clinical relevance to humans, CIP2A expression is found decreased in transcriptomes from MDD patients. In conclusion, we discover a novel mechanism that CIP2A deficiency promotes depression through the regulation of PP2A-AKT signaling and dendritic arborization.


Assuntos
Transtorno Depressivo Maior , Humanos , Camundongos , Animais , Transtorno Depressivo Maior/genética , Fosfatidilinositol 3-Quinases , Neurônios , Plasticidade Neuronal
2.
Curr Med Sci ; 40(2): 389, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32337701

RESUMO

The article "Protein Phosphatase 2A as a Drug Target in the Treatment of Cancer and Alzheimer's Disease", written by Hui WEI, Hui-liang ZHANG, Jia-zhao XIE, Dong-li MENG, Xiao-chuan WANG, Dan KE, Ji ZENG, Rong LIU, was originally published electronically on the publisher's internet portal on 13 March 2020 without open access. With the author(s)' decision to opt for Open Choice the copyright of the article changed to © The Author(s) 2020 and the article is forthwith distributed under a Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0/), which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.The original article has been corrected.Corresponding authors: Dan KE, E-mail: kedan@hust.edu.cn; Ji ZENG, E-mail: whzjmicro@163.com.

3.
Curr Med Sci ; 40(1): 1-8, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32166659

RESUMO

Protein phosphatase 2A (PP2A) is a major serine/threonine phosphatase which participates in the regulation of multiple cellular processes. As a confirmed tumor suppressor, PP2A activity is downregulated in tumors and its re-activation can induce apoptosis of cancer cells. In the brains of Alzheimer's disease (AD) patients, decreased PP2A activity also plays a key role in promoting tau hyperphosphorylation and Aß generation. In this review, we discussed compounds aiming at modulating PP2A activity in the treatment of cancer or AD. The upstream factors that inactivate PP2A in diseases have not been fully elucidated and further studies are needed. It will help for the refinement and development of novel and clinically tractable PP2A-targeted compounds or therapies for the treatment of tumor and AD.


Assuntos
Doença de Alzheimer/metabolismo , Neoplasias/metabolismo , Proteína Fosfatase 2/metabolismo , Bibliotecas de Moléculas Pequenas/farmacologia , Doença de Alzheimer/tratamento farmacológico , Encéfalo/metabolismo , Regulação para Baixo , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Terapia de Alvo Molecular , Neoplasias/tratamento farmacológico , Transdução de Sinais/efeitos dos fármacos , Bibliotecas de Moléculas Pequenas/uso terapêutico
4.
Pharmacogn Mag ; 13(51): 523-527, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28839383

RESUMO

BACKGROUND: Withaferin-A (WF-A) is a well-known dietary compound isolated from Withania sominifera. It has tremendous pharmacological potential and has been shown to exhibit antiproliferative activity against several types of cancerous cells. Currently, the main focus of anti-cancer therapeutic development is to identify apoptosis inducing drug-like molecules. Osteosarcoma is a rare type of osteocancer, affecting human. The present study therefore focused on the evaluation of antitumor potential of WF-A against several osteosarcoma cell lines. MATERIALS AND METHODS: MTT assay was used to evaluate WF-A against osteosarcoma cell lines and to calculate the IC50. DAPI staining was used to confirm the apoptosis inducing potential of WF-A. Mitochondrial membrane potential, reactive oxygen species (ROS) assay, and Western blotting were used to confirm the basis of apoptosis. RESULTS: The results revealed that that WF-A exhibited strong antiproliferative activity against all the cells lines, with IC50 ranging from 0.32 to 7.6 µM. The lowest IC50 (0.32 µM) was observed against U2OS cell line and therefore it was selected for further analysis. DAPI staining indicated that WF-A exhibited antiproliferative activity via induction of apoptosis. Moreover, WF-A induced ROS-mediated reduction in mitochondrial membrane potential ΔΨm) in a dose-dependent manner and activation of caspase-3 in osteosarcoma cells. CONCLUSION: We propose that WF-A may prove a potent therapeutic agent for inducing apoptosis in osteosarcoma cell lines via generation of ROS and disruption of mitochondrial membrane potential. SUMMARY: WF-A exhibits strong anticancer activity against osteosarcoma cell linesAntiproliferative activity of WF-A is via induction of apoptosisWF-A induced ROS-mediated reduction in mitochondrial membrane potentialWF-A induced expression of caspase-3 in osteosarcoma cells. Abbreviations used: WA: Withaferin A; ROS: Reactive oxygen species; OS: Osteosarcoma; MMP: Mitochondrial membrane potential.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA