Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
1.
Mol Med ; 30(1): 64, 2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38760723

RESUMO

BACKGROUND: Insulin like growth factor II mRNA binding protein 3 (IGF2BP3) has been implicated in numerous inflammatory and cancerous conditions. However, its precise molecular mechanisms in endometriosis (EMs) remains unclear. The aim of this study is to examine the influence of IGF2BP3 on the occurrence and progression of EMs and to elucidate its underlying molecular mechanism. METHODS: Efects of IGF2BP3 on endometriosis were confrmed in vitro and in vivo. Based on bioinformatics analysis, RNA immunoprecipitation (RIP), RNA pull-down assays and Fluorescent in situ hybridization (FISH) were used to show the association between IGF2BP3 and UCA1. Single-cell spatial transcriptomics analysis shows the expression distribution of glutaminase 1 (GLS1) mRNA in EMs. Study the effect on glutamine metabolism after ectopic endometriotic stromal cells (eESCs) were transfected with Sh-IGF2BP3 and Sh-UCA1 lentivirus. RESULTS: Immunohistochemical staining have revealed that IGF2BP3 was upregulated in ectopic endometriotic lesions (EC) compared to normal endometrial tissues (EN). The proliferation and migration ability of eESCs were greatly reduced by downregulating IGF2BP3. Additionally, IGF2BP3 has been observed to interact with urothelial carcinoma associated 1 (UCA1), leading to increased stability of GLS1 mRNA and subsequently enhancing glutamine metabolism. Results also demonstrated that IGF2BP3 directly interacts with the 3' UTR region of GLS1 mRNA, influencing its expression and stability. Furthermore, UCA1 was able to bind with c-MYC protein, stabilizing c-MYC mRNA and consequently enhancing GLS1 expression through transcriptional promotion. CONCLUSION: These discoveries underscored the critical involvement of IGF2BP3 in the elevation and stability of GLS1 mRNA in the context of glutamine metabolism by interacting with UCA1 in EMs. The implications of our study extended to the identification of possible therapeutic targets for individuals with EMs.


Assuntos
Endometriose , Glutaminase , Glutamina , Estabilidade de RNA , RNA Longo não Codificante , Proteínas de Ligação a RNA , Feminino , Humanos , Glutaminase/metabolismo , Glutaminase/genética , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Endometriose/metabolismo , Endometriose/genética , Endometriose/patologia , Glutamina/metabolismo , Proteínas de Ligação a RNA/metabolismo , Proteínas de Ligação a RNA/genética , Proliferação de Células , Adulto , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Regulação da Expressão Gênica , Ligação Proteica
2.
Bioresour Technol ; 400: 130652, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38575096

RESUMO

The primary objective of this study is to explore the application of a deep eutectic solvent, synthesized from lactic acid and choline chloride, in combination with a pre-treatment involving ZSM-5 catalytic fast pyrolysis, aimed at upgrading the quality of bio-oil. Characterization results demonstrate a reduction in lignin content post-treatment, alongside a significant decrease in carboxyls and carbonyls, leading to an increase in the C/O ratio and noticeable enhancement in crystallinity. During catalytic fast pyrolysis experiments, the pre-treatment facilitates the production of oil fractions, achieving yields of 54.53% for total hydrocarbons and 39.99% for aromatics hydrocarbons under optimized conditions. These findings validate the positive influence of the deep eutectic solvent pre-treatment combined with ZSM-5 catalytic fast pyrolysis on the efficient production of bio-oil and high-value chemical derivatives. .


Assuntos
Biocombustíveis , Biomassa , Solventes Eutéticos Profundos , Óleos de Plantas , Polifenóis , Pirólise , Zeolitas , Catálise , Zeolitas/química , Solventes Eutéticos Profundos/química , Lignina/química , Colina/química , Solventes/química
3.
Plants (Basel) ; 13(2)2024 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-38276775

RESUMO

Huanglongbing (HLB) is one of the most devastating diseases of citrus worldwide. The phloem-restricted bacterium Candidatus Liberibacter asiaticus (CLas) is considered to be the main pathogen responsible for HLB. There is currently no effective practical strategy for the control of HLB. Our understanding of how pathogens cause HLB is limited because CLas has not been artificially cultured. In this study, 15 potential virulence factors were predicted from the proteome of CLas through DeepVF and PHI-base searches. One among them, FlgI, was found to inhibit yeast growth when expressed in Saccharomyces cerevisiae. The expression of the signal peptide of FlgI fused with PhoA in Escherichia coli resulted in the discovery that FlgI was a novel Sec-dependent secretory protein. We further found that the carboxyl-terminal HA-tagged FlgI was secreted via outer membrane vesicles in Sinorhizobium meliloti. Fluoresence localization of transient expression FlgI-GFP in Nicotiana benthamiana revealed that FlgI is mainly localized in the cytoplasm, cell periphery, and nuclear periphery of tobacco cells. In addition, our experimental results suggest that FlgI has a strong ability to induce callose deposition and cell necrosis in N. benthamiana. Finally, by screening a large library of compounds in a high-throughput format, we found that cyclosporin A restored the growth of FlgI-expressing yeast. These results confirm that FlgI is a novel Sec-dependent effector, enriching our understanding of CLas pathogenicity and helping to develop new and more effective strategies to manage HLB.

4.
ChemSusChem ; 17(1): e202300996, 2024 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-37677102

RESUMO

Lignin is an aromatic polymer that constitutes over 30 wt% of lignocellulosic biomass and is the most important source of renewable aromatics in nature. The global paper industry generates more than 70 million tons of Kraft lignin annually. Depolymerization of Kraft lignin to value-added monomers can significantly enhance the profitability of biorefinery. However, the method is impeded by the severe condensation of Kraft lignin during the pulping process, which forms robust C-C bonds and results in low monomer yields. In this study, we present a stepwise approach for producing valuable aromatic monomers from Kraft lignin through the cleavage of both C-O and C-C bonds. The approach initiated with complete cleavage of C-O bonds between lignin units within Kraft lignin through alcoholysis in isopropanol, resulting in a monomer yield of 8.9 %. Subsequently, the selective cleavage of methylene linkages present in the residual dimers and oligomers was achieved with commercial MCM-41 zeolite in the same pot, proceeding with an additional monomer yield of 4.0 %, thereby increasing the total monomer yield by 45 %. This work provides an avenue for increasing the depolymerization efficiency of Kraft lignin.

5.
Waste Manag ; 174: 420-428, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38104414

RESUMO

Upcycling waste plastics into valuable carbon nanotubes (CNTs) and hydrogen via catalytic pyrolysis is a sustainable strategy to mitigate white pollution. However, real-world plastics are complex and generally contain organic impurities, such as cellulose, which have a non-negligible impact on the catalytic pyrolysis process and product distribution. In this study, cellulose was chosen as a model compound to distinguish the effects of oxygen-containing components on the CNTs and hydrogen production during the catalytic pyrolysis of waste polypropylene. Different amounts of cellulose were mixed with polypropylene to regulate the O/C mass ratio of the feedstock, and the relationship between the O/C mass ratio and the yield of products has been built quantificationally. The results revealed that the relative content of CNTs increased to over 95%, and the stability and purity of carbon deposition increased accordingly when the O/C mass ratio is 0.05. This could be ascribed to the etching effects caused by small amounts of H2O and CO2 on amorphous carbon. However, further increasing the amount of cellulose caused the deactivation of the Fe-Ni catalyst. This not only decreased the carbon yield but had an adverse impact on its morphology and graphitization, leading to the increase of amorphous carbon. This study can provide fundamental guidance for the efficient utilization of waste plastics that take advantage of organic impurities in waste plastic to promote the formation of high-purity CNTs.


Assuntos
Nanotubos de Carbono , Polipropilenos , Plásticos , Celulose , Hidrogênio , Pirólise , Catálise
6.
Proc Natl Acad Sci U S A ; 120(39): e2305078120, 2023 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-37695879

RESUMO

Current un-sustainable plastic management is exacerbating plastic pollution, an urgent shift is thus needed to create a recycling society. Such recovering carbon (C) and hydrogen (H) from waste plastic has been considered as one practical route to achieve a circular economy. Here, we performed a simple pyrolysis-catalysis deconstruction of waste plastic via a monolithic multilayer stainless-steel mesh catalyst to produce multiwalled carbon nanotubes (MWCNTs) and H2, which are important carbon material and energy carrier to achieve sustainable development. Results revealed that the C and H recovery efficiencies were as high as 86% and 70%, respectively. The unique oxidation-reduction process and improvement of surface roughness led to efficient exposure of active sites, which increased MWCNTs by suppressing macromolecule hydrocarbons. The C recovery efficiency declined by only 5% after 10 cycles, proving the long-term employment of the catalyst. This catalyst can efficiently convert aromatics to MWCNTs by the vapor-solid-solid mechanism and demonstrate good universality in processing different kinds of waste plastics. The produced MWCNTs showed potential in applications of lithium-ion batteries and telecommunication. Owing to the economic profits and environmental benefits of the developed route, we highlighted its potential as a promising alternative to conventional incineration, simultaneously achieving the waste-to-resource strategy and circular economy.

7.
Foods ; 12(16)2023 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-37627998

RESUMO

Bioactive substances exhibit various physiological activities-such as antimicrobial, antioxidant, and anticancer activities-and have great potential for application in food, pharmaceuticals, and nutraceuticals. However, the low solubility, chemical instability, and low bioavailability of bioactive substances limit their application in the food industry. Using nanotechnology to prepare protein nanoparticles to encapsulate and deliver active substances is a promising approach due to the abundance, biocompatibility, and biodegradability of proteins. Common protein-based nanocarriers include nano-emulsions, nano-gels, nanoparticles, and nano complexes. In this review, we give an overview of protein-based nanoparticle fabrication methods, highlighting their pros and cons. Additionally, we discuss the applications and current issues regarding the utilization of protein-based nanoparticles in the food industry. Finally, we provide perspectives on future development directions, with a focus on classifying bioactive substances and their functional properties.

8.
Sensors (Basel) ; 23(12)2023 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-37420690

RESUMO

In this paper, we investigate the problem of a dynamic event-triggered robust controller design for flexible robotic arm systems with continuous-time phase-type semi-Markov jump process. In particular, the change in moment of inertia is first considered in the flexible robotic arm system, which is necessary for ensuring the security and stability control of special robots employed under special circumstances, such as surgical robots and assisted-living robots which have strict lightweight requirements. To handle this problem, a semi-Markov chain is conducted to model this process. Furthermore, the dynamic event-triggered scheme is used to solve the problem of limited bandwidth in the network transmission environment, while considering the impact of DoS attacks. With regard to the challenging circumstances and negative elements previously mentioned, the adequate criteria for the existence of the resilient H∞ controller are obtained using the Lyapunov function approach, and the controller gains, Lyapunov parameters and event-triggered parameters are co-designed. Finally, the effectiveness of the designed controller is demonstrated via numerical simulation using the LMI toolbox in MATLAB.


Assuntos
Procedimentos Cirúrgicos Robóticos , Cadeias de Markov , Simulação por Computador
9.
Support Care Cancer ; 31(8): 452, 2023 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-37421451

RESUMO

PURPOSE: Patients with the placement of a totally implantable venous access port (TIVAP) commonly suffer from pain caused by inserting a non-coring needle. At present, lidocaine cream and cold spray are extensively used for pain management, but they are complex to manage in busy medical environments and developing countries. The lidocaine spray combines the analgesic effect of lidocaine cream and the rapid onset of cold spray, which can effectively alleviate the pain related to non-coring needle puncture in patients with TIVAP. This randomized-controlled trial aimed to explore the effectiveness, acceptability, and safety of lidocaine spray in relieving the pain of non-coring needle puncture in patients with TIVAP. METHODS: A total of 84 patients who were hospitalized in the oncology department of a Grade III Level-A hospital in Shanghai from January 2023 to March 2023 and were implanted with TIVAP and required non-coring needle puncture were selected as the study subjects. The recruited patients were randomly assigned to the intervention group and the control group (n=42). Before routine maintenance, the intervention group received lidocaine spray 5 min before disinfection, while the control group received water spray 5 min before disinfection. The main clinical outcome was pain, and the degree of puncture pain in both groups was evaluated using the visual analogue scale. RESULTS: There were no significant differences between the two groups in age, gender, educational level, body mass index, port implantation time, and disease diagnosis (P>0.05). The pain score in the intervention and control groups was 15.12±6.61mm and 36.50±18.79mm, respectively (P<0.001). There were 2 (4.8%) patients with moderate pain in the intervention group and 18 (42.9%) patients with moderate pain in the control group (P<0.001). In the control group, 3 (7.1%) patients reported severe pain. The median comfortability score for the two groups of patients was 10, but there was a difference between the two groups (P<0.05) because the intervention group tilted to the right. The successful puncture rate of the first time puncture had no difference between the two groups, both being 100%. Moreover, 33 patients (78.6%) in the intervention group and 12 patients (28.6%) in the control group reported that they would choose the same spray for intervention in the future (P<0.001). During the 1 week of follow-up, 1 patient in the intervention group developed skin itching (P>0.05). CONCLUSIONS: The local use of lidocaine spray in patients with TIVAP is effective, acceptable, and safe to alleviate the pain caused by non-coring needle puncture. TRIAL REGISTRATION: Chinese Clinical Trial Registry (registration number: ChiCTR2300072976).


Assuntos
Cateterismo Venoso Central , Lidocaína , Humanos , Lidocaína/uso terapêutico , Anestésicos Locais/uso terapêutico , Cateterismo Venoso Central/efeitos adversos , China , Dor/tratamento farmacológico , Dor/etiologia , Punções/efeitos adversos
10.
Artigo em Inglês | MEDLINE | ID: mdl-36901399

RESUMO

The emission of harmful gases has seriously exceeded relative standards with the rapid development of modern industry, which has shown various negative impacts on human health and the natural environment. Recently, metal-organic frameworks (MOFs)-based materials have been widely used as chemiresistive gas sensing materials for the sensitive detection and monitoring of harmful gases such as NOx, H2S, and many volatile organic compounds (VOCs). In particular, the derivatives of MOFs, which are usually semiconducting metal oxides and oxide-carbon composites, hold great potential to prompt the surface reactions with analytes and thus output amplified resistance changing signals of the chemiresistors, due to their high specific surface areas, versatile structural tunability, diversified surface architectures, as well as their superior selectivity. In this review, we introduce the recent progress in applying sophisticated MOFs-derived materials for chemiresistive gas sensors, with specific emphasis placed on the synthesis and structural regulation of the MOF derivatives, and the promoted surface reaction mechanisms between MOF derivatives and gas analytes. Furthermore, the practical application of MOF derivatives for chemiresistive sensing of NO2, H2S, and typical VOCs (e.g., acetone and ethanol) has been discussed in detail.


Assuntos
Estruturas Metalorgânicas , Compostos Orgânicos Voláteis , Humanos , Acetona , Meio Ambiente , Etanol , Gases , Óxidos
11.
ChemSusChem ; 16(14): e202300106, 2023 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-36974944

RESUMO

Nondegradable polyolefin plastics, which account for >60 % of total plastic waste, trigger severe global concerns and thus demand effective management technologies. However, owing to the chemical inertness of non-polar C-C backbones in the polyolefin structure, efficient upcycling of polyolefin plastics under ambient conditions remains a great challenge. This study introduces an integrated plasma-photocatalytic technology, coupling plasma treatment with solar-driven reforming under mild conditions, for the efficient upcycling of polyolefin plastics into value-added hydrogen and gaseous fuels. The first plasma step grafts oxygenated groups, such as -OH, O-C=O, and C=O, onto the polyolefin chains, which leads to the formation of a polar and hydrophilic polymer that facilitates the subsequent reforming in the photocatalytic step. Therefore, high hydrogen production activity with a benchmark efficiency of >100 µmol g-1 h-1 was achieved. Moreover, the integrated process also demonstrates high versatility in upcycling different polyolefin plastics including polyethylene, polypropylene and polyvinyl chloride. The findings provide a new avenue for plastic upcycling in an efficient and sustainable way.

12.
iScience ; 25(8): 104855, 2022 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-35992054

RESUMO

Low-temperature solid oxide fuel cells (LT-SOFCs) are a promising next-generation fuel cell due to their low cost and rapid start-up, posing a significant challenge to electrode materials with high electrocatalytic activity. Herein, we reported the bimetallic nanoparticles encapsulated in carbon nanotubes (NiFe@CNTs) prepared by carefully controlling catalytic pyrolysis of waste plastics. Results showed that plenty of multi-walled CNTs with outer diameters (14.38 ± 3.84 nm) were observed due to the smallest crystalline size of Ni-Fe alloy nanoparticles. SOFCs with such NiFe@CNTs blended in anode exhibited remarkable performances, reaching a maximum power density of 885 mW cm-2 at 500°C. This could be attributed to the well-dispersed alloy nanoparticles and high graphitization degree of NiFe@CNTs to improve HOR activity. Our strategy could upcycle waste plastics to produce nanocomposites and demonstrate a high-performance LT-SOFCs system, addressing the challenges of sustainable waste management and guaranteeing global energy safety simultaneously.

13.
Bioresour Technol ; 359: 127450, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35697262

RESUMO

This study aims to propose a method for upgrading biomass pyrolysis products based on the combination of sodium persulfate pretreatment and fast catalytic pyrolysis. Combined with the analysis of components and thermogravimetric analysis, the result showed that after pretreatment the biomass structure was gradually depolymerized, the contents of lignin, the reaction of activation energy and the crystallinity of cellulose decreased. Due to the destructive effect of persulfate radicals, in fast pyrolysis, the relative contents of acids and oxygen-containing substances decreased, and the relative content of phenols can significantly increase to 19.20%. The yield of aromatic hydrocarbons and total hydrocarbons had a high value under the catalytic pyrolysis in the best performance which amount of yield reached 28.66% and 33.72%, respectively. Sodium persulfate pretreatment was beneficial in the production of hydrocarbon-rich bio-oils and high-value chemicals since the radicals can effectively depolymerize lignin which promoted the process of pyrolysis.


Assuntos
Lignina , Pirólise , Biocombustíveis , Biomassa , Catálise , Temperatura Alta , Hidrocarbonetos , Lignina/química , Óleos de Plantas/química , Polifenóis
14.
ACS Macro Lett ; 11(5): 615-621, 2022 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-35570815

RESUMO

Renal-clearable nanomedicines are considered the next generation of nanomedicines, and show potential application for future clinical translations. However, it is important to determine whether self-assembly can form large aggregates that accrue in tumors and then tailor the size of these assemblies to be excreted renally. In this paper, a renal-clearable nanomedicine based on quanterrylene bisimide-mannose conjugates (QDI-Man) was developed. QDI-Man showed a high renal clearance efficiency of 80.31 ± 2.85% in mice. We confirmed that the self-assembly of QDI-Man exhibited a dynamic adjustment process through the renal filtration thresholds, that is, "aggregation → self-regulating the aggregate size through the renal filtration thresholds → reaggregating into aggregates". Benefiting from the modification of mannose-based glycoclusters, QDI-Man showed selective photothermal therapy because of the mannose receptors overexpressed in breast cancer cells, and showed good photothermal therapy in mice. This paper developed a dynamic adjustment theory for effective renal clearance based on organic self-assembly.


Assuntos
Neoplasias , Terapia Fototérmica , Animais , Humanos , Rim , Manose/uso terapêutico , Camundongos , Nanomedicina , Neoplasias/tratamento farmacológico
15.
Food Chem ; 390: 133126, 2022 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-35567972

RESUMO

Milk species adulteration has become an altering issue worldwide. In this study, a robust quantification method based on LC-HRMS for the simultaneous detection and differentiation of milk type from eight different animal species (namely: cow, water buffalo, wild yak, goat, sheep, donkey, horse, and camel) was established by detecting nine signature peptides originating from casein. The developed method was in-house validated in terms of sensitivity, accuracy, and precision. As a result, limits of quantification (LOQ) were ranging from 5 to 30 µg/L, recoveries ranged from 95.2% to 104.5%, and intra-day and inter-day variability were lower than 11.4% and 12.6%, respectively, for all the targeted peptides. Furthermore, this method was successfully applied to 46 commercial minor species' milk, in which 15 samples were false labeling. The obtained results indicate the necessity to monitor milk species adulteration in order to protect consumers from consuming misleading labeled minor species animal's milk.


Assuntos
Caseínas , Leite , Alérgenos , Animais , Búfalos , Camelus , Caseínas/química , Bovinos , Equidae , Feminino , Cabras , Cavalos , Isótopos , Leite/química , Peptídeos/química , Ovinos
16.
Bioresour Technol ; 341: 125770, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34418845

RESUMO

Combining torrefaction with fast pyrolysis is an achievable route for producing long-chain ether precursors. The results of structural characterization for native and torrefied holocellulose indicated that with increasing torrefaction temperature, the crystallinity index (CrI) decreased slightly and then sharply increased; hydroxyls, O-acetyl branches, ether bond and ß-1,4-glycosidic bond were eliminated but carbonyls increased. Maximum mass loss rate and apparent activation energy increased after torrefaction. With an increase in torrefaction temperature, gaseous yield continuously dropped, and liquid product yield climbed to the highest point of 49.04% for holocellulose torrefied at 240 °C (240CS). Torrefaction was unfavorable for the production of small-molecule gases. The bio-oil analysis demonstrated that the yield of acetic acid decreased from 6.35% to 1.43% with torrefaction temperature increasing from 105 °C to 260 °C. Significantly, yields of targeted compounds were dramatically improved after torrefaction, and 240CS afforded the maximum carbon yield of 14.79%.


Assuntos
Éter , Pirólise , Biomassa , Temperatura Alta , Temperatura
17.
Bioresour Technol ; 338: 125519, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34284297

RESUMO

The pyrolysis behaviors of nine biomass-derived holocelluloses (from seven agricultural and two forestry residues) were studied on a thermogravimetric analyzer (TGA) and pyrolysis-gas chromatography/mass spectrometer (Py-GC/MS). The results illustrated that compared with forestry holocellulose, agricultural holocellulose had quite high ash and hemicellulose contents. Moreover, agricultural holocellulose presented lower initial temperature and maximum mass loss rate. The results of GC/MS revealed that agricultural holocellulose produced more acids, ketones, aldehydes and furans and corn stalk holocellulose led to the highest targeted compounds (ketones, aldehydes and furans with carbonyl group) content of 51.4%. Woody holocellulose was suitable for the production of sugars, particularly levoglucosan, and pine sawdust holocellulose afforded the highest levoglucosan content of 46.55%. Intriguingly, the correlation of sugars/levoglucosan content with a mass ratio of cellulose to hemicellulose (CE/HCE) was put forward.


Assuntos
Éter , Pirólise , Biomassa , Temperatura Alta , Madeira
18.
Neurol Res ; 43(10): 846-853, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34107862

RESUMO

Background and purpose: Low-dose of carbon monoxide delivered by CO-releasing molecule-2 (CORM-2) had been confirmed having anti-inflammatory efficacy in some inflammatory diseases. Herein, we assessed the usefulness of CORM-2 in correcting intracerebral hemorrhage (ICH)-mediated inflammation.Methods: Healthy male Sprague Dawley (SD) rats randomly entered into four groups: sham-ICH, ICH, ICH+CORM-2, and ICH+ inactive carbon monoxide releasing molecule 2 (iCORM-2). ICH was induced by 50 µl of autologous arterial blood injected in situ in the rat brain. Neuro-functions of the ICH rats were evaluated with Garcia 18 scores at the 6th, 24th , 48th hou, and the fifthh day post-ICH. And brain tissues surrounding the hematoma area were collected from all ICH rats and assayed with Western blot and immunofluoresence analysis.Results: Neuro-dysfunctions in ICH rats were very severe than those in ICH +CORM-2 rats. Compared to sham group, the levels of HO-1, IKKß, NF-κB, and TNF-α in ICH group began to elevate at the 6th hour, and reached to peak at the 48th hour post-ICH, all p < 0.05. While in ICH +CORM-2 group, the expressions of IKKß, NF-κB, and TNF-α were very weaker than that in ICH group at every time points mentioned above; however, this phenomenon was not reproduced in ICH + iCORM-2 group. HO-1 in ICH+CORM-2 group highlighted in perihematomal area with many activated microglia (Iba-1-positive cells) and co-expressed with TNF-α, all of which were diminished at the fifth day post-ICH.Conclusion: CORM-2 may attenuate ICH-mediated inflammation by inhibiting microglial activation, which may involve the IKK/NF-κB pathway.AbbreviationsICH: intracerebral hemorrhage; CO: carbon monoxide; CORM-2: carbon monoxide releasing molecule-2; iCORM-2: inactive carbon monoxide releasing molecule-2; HO-1: heme oxygenase 1; IKKß: inhibitor of IκB kinases ß; NF-κB: nuclear factor-κB; TNF-α: tumor necrosis factor-α; Iba-1: ionized calcium binding adaptor molecule-1; IκB: inhibitor of NF-κB; iNOS: inducible nitric oxide synthase; Keap1: Kelch-like ECH-associated protein 1; Nrf2: NF-E2-related factor 2; DMSO: dimethylsulfoxide.


Assuntos
Hemorragia Cerebral/tratamento farmacológico , Inflamação/tratamento farmacológico , Compostos Organometálicos/farmacologia , Animais , Monóxido de Carbono/metabolismo , Hemorragia Cerebral/patologia , Heme Oxigenase-1/metabolismo , Mediadores da Inflamação/metabolismo , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Fator 2 Relacionado a NF-E2/efeitos dos fármacos , Fator 2 Relacionado a NF-E2/metabolismo , NF-kappa B/metabolismo , Ratos
19.
Waste Manag ; 108: 70-77, 2020 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-32335489

RESUMO

Levoglucosan is served as a significant versatile product to generate high value-added chemicals and pharmaceutical additives. Levoglucosan was predominately produced from pyrolysate of cellulose. However, the direct fast pyrolysis of waste biomass produces a small quantity of levoglucosan in comparison with the theoretical value of cellulose. This study explored Fenton pretreatment as a possible route to enhance levoglucosan yield during the fast pyrolysis of the waste corncob. The experimental results showed that different Fenton pretreated conditions and pyrolytic temperatures played vital roles in the formation of levoglucosan. The levoglucosan yield from fast pyrolysis at 500 °C of corncob pretreated by Fenton reaction of 14 mL/g H2O2 and 16 mM FeSO4 was about 95% higher than that of the untreated corncob. Additionally, Fenton pretreated corncob was capable of obtaining the levoglucosan at a low pyrolytic temperature (300 °C). It was mainly attributed to the effective disrupting of biomass structures and the selective degradation of lignin and hemicellulose during pretreatment. Furthermore, the powerful removal of alkali and alkaline earth metals during Fenton pretreatment was beneficial to increasing the levoglucosan yield. These findings demonstrate that Fenton pretreatment can provide a novel effective method to enhance levoglucosan yield during biomass fast pyrolysis.


Assuntos
Peróxido de Hidrogênio , Pirólise , Biomassa , Glucose/análogos & derivados , Lignina
20.
Ecotoxicol Environ Saf ; 187: 109851, 2020 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-31670181

RESUMO

Cadmium is a heavy metal pollutant that has been reported to cause oxidative stress, apoptosis, and autophagy in cells, while the flavone isoorientin is a traditional Chinese medicine extract that has proven antioxidant and anti-inflammatory properties. Accordingly, in this study we used the rat proximal tubular cell line NRK-52E and primary rat proximal tubular (rPT) cells as models to investigate the effects of isoorientin against Cadmium-induced cell injury and the mechanism of these effects. Comet assay, Western blot, flow cytometry, immunofluorescence, and transmission electron microscopy were used to evaluate cell damage and cell-cycle-related protein expression. Furthermore, real-time cell analysis, cell-counting kit-8, and ELISA were used to investigate the role of isoorientin in Cadmium-induced cell injury. The results revealed that treatment of rat renal tubular epithelial cells with 2.5 µM Cd for 12 h resulted in DNA damage and G0/G1 cell cycle arrest, while isoorientin attenuated this Cd-induced damage.


Assuntos
Antioxidantes/farmacologia , Cádmio/toxicidade , Dano ao DNA/efeitos dos fármacos , Poluentes Ambientais/toxicidade , Pontos de Checagem da Fase G1 do Ciclo Celular/efeitos dos fármacos , Luteolina/farmacologia , Fase de Repouso do Ciclo Celular/efeitos dos fármacos , Animais , Apoptose/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Linhagem Celular , Células Epiteliais/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Ratos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA