Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 13(1): 1911, 2023 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-36732358

RESUMO

Survival and second malignancy prediction models can aid clinical decision making. Most commonly, survival analysis studies are performed using traditional proportional hazards models, which require strong assumptions and can lead to biased estimates if violated. Therefore, this study aims to implement an alternative, machine learning (ML) model for survival analysis: Random Survival Forest (RSF). In this study, RSFs were built using the U.S. Surveillance Epidemiology and End Results to (1) predict 30-year survival in pediatric, adolescent, and young adult cancer survivors; and (2) predict risk and site of a second tumor within 30 years of the first tumor diagnosis in these age groups. The final RSF model for pediatric, adolescent, and young adult survival has an average Concordance index (C-index) of 92.9%, 94.2%, and 94.4% and average time-dependent area under the receiver operating characteristic curve (AUC) at 30-years since first diagnosis of 90.8%, 93.6%, 96.1% respectively. The final RSF model for pediatric, adolescent, and young adult second malignancy has an average C-index of 86.8%, 85.2%, and 88.6% and average time-dependent AUC at 30-years since first diagnosis of 76.5%, 88.1%, and 99.0% respectively. This study suggests the robustness and potential clinical value of ML models to alleviate physician burden by quickly identifying highest risk individuals.


Assuntos
Sobreviventes de Câncer , Segunda Neoplasia Primária , Neoplasias , Humanos , Criança , Adolescente , Adulto Jovem , Segunda Neoplasia Primária/epidemiologia , Modelos de Riscos Proporcionais , Análise de Sobrevida , Neoplasias/diagnóstico , Neoplasias/epidemiologia
2.
Artigo em Inglês | MEDLINE | ID: mdl-26457333

RESUMO

The fate of mouse uterine epithelial progenitor cells is determined between postnatal days 5 to 7. Around this critical time window, exposure to an endocrine disruptor, diethylstilbestrol (DES), can profoundly alter uterine cytodifferentiation. We have shown previously that a homeo domain transcription factor MSX-2 plays an important role in DES-responsiveness in the female reproductive tract (FRT). Mutant FRTs exhibited a much more severe phenotype when treated with DES, accompanied by gene expression changes that are dependent on Msx2. To better understand the role that MSX-2 plays in uterine response to DES, we performed global gene expression profiling experiment in mice lacking Msx2 By comparing this result to our previously published microarray data performed on wild-type mice, we extracted common and differentially regulated genes in the two genotypes. In so doing, we identified potential downstream targets of MSX-2, as well as genes whose regulation by DES is modulated through MSX-2. Discovery of these genes will lead to a better understanding of how DES, and possibly other endocrine disruptors, affects reproductive organ development.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA