Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Nat Biotechnol ; 41(11): 1557-1566, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36879006

RESUMO

Current single-cell RNA-sequencing approaches have limitations that stem from the microfluidic devices or fluid handling steps required for sample processing. We develop a method that does not require specialized microfluidic devices, expertise or hardware. Our approach is based on particle-templated emulsification, which allows single-cell encapsulation and barcoding of cDNA in uniform droplet emulsions with only a vortexer. Particle-templated instant partition sequencing (PIP-seq) accommodates a wide range of emulsification formats, including microwell plates and large-volume conical tubes, enabling thousands of samples or millions of cells to be processed in minutes. We demonstrate that PIP-seq produces high-purity transcriptomes in mouse-human mixing studies, is compatible with multiomics measurements and can accurately characterize cell types in human breast tissue compared to a commercial microfluidic platform. Single-cell transcriptional profiling of mixed phenotype acute leukemia using PIP-seq reveals the emergence of heterogeneity within chemotherapy-resistant cell subsets that were hidden by standard immunophenotyping. PIP-seq is a simple, flexible and scalable next-generation workflow that extends single-cell sequencing to new applications.


Assuntos
Sequenciamento de Nucleotídeos em Larga Escala , Microfluídica , Humanos , Animais , Camundongos , Microfluídica/métodos , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Análise de Célula Única/métodos , Genômica/métodos , Transcriptoma/genética
2.
Sci Rep ; 11(1): 4351, 2021 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-33623093

RESUMO

Droplet libraries consisting of many reagents encapsulated in separate droplets are necessary for applications of microfluidics, including combinatorial chemical synthesis, DNA-encoded libraries, and massively multiplexed PCR. However, existing approaches for generating them are laborious and impractical. Here, we describe an automated approach using a commercial array spotter. The approach can controllably emulsify hundreds of different reagents in a fraction of the time of manual operation of a microfluidic device, and without any user intervention. We demonstrate that the droplets produced by the spotter are similarly uniform to those produced by microfluidics and automate the generation of a ~ 2 mL emulsion containing 192 different reagents in ~ 4 h. The ease with which it can generate high diversity droplet libraries should make combinatorial applications more feasible in droplet microfluidics. Moreover, the instrument serves as an automated droplet generator, allowing execution of droplet reactions without microfluidic expertise.


Assuntos
Automação Laboratorial/métodos , Microfluídica/métodos , Automação Laboratorial/instrumentação , Emulsões/química , Ensaios de Triagem em Larga Escala/instrumentação , Ensaios de Triagem em Larga Escala/métodos , Lipídeos/química , Microfluídica/instrumentação , Bibliotecas de Moléculas Pequenas/química
3.
Proc Natl Acad Sci U S A ; 114(33): 8728-8733, 2017 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-28760972

RESUMO

Although the elementary unit of biology is the cell, high-throughput methods for the microscale manipulation of cells and reagents are limited. The existing options either are slow, lack single-cell specificity, or use fluid volumes out of scale with those of cells. Here we present printed droplet microfluidics, a technology to dispense picoliter droplets and cells with deterministic control. The core technology is a fluorescence-activated droplet sorter coupled to a specialized substrate that together act as a picoliter droplet and single-cell printer, enabling high-throughput generation of intricate arrays of droplets, cells, and microparticles. Printed droplet microfluidics provides a programmable and robust technology to construct arrays of defined cell and reagent combinations and to integrate multiple measurement modalities together in a single assay.


Assuntos
Técnicas Analíticas Microfluídicas/métodos , Microfluídica/métodos , Bioensaio/métodos , Contagem de Células/métodos , Linhagem Celular Tumoral , Humanos , Impressão/métodos
4.
Sci Adv ; 1(9): e1500379, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26601282

RESUMO

Delivering therapeutics deep into damaged tissue during bleeding is challenging because of the outward flow of blood. When coagulants cannot reach and clot blood at its source, uncontrolled bleeding can occur and increase surgical complications and fatalities. Self-propelling particles have been proposed as a strategy for transporting agents upstream through blood. Many nanoparticle and microparticle systems exhibiting autonomous or collective movement have been developed, but propulsion has not been used successfully in blood or used in vivo to transport therapeutics. We show that simple gas-generating microparticles consisting of carbonate and tranexamic acid traveled through aqueous solutions at velocities of up to 1.5 cm/s and delivered therapeutics millimeters into the vasculature of wounds. The particles transported themselves through a combination of lateral propulsion, buoyant rise, and convection. When loaded with active thrombin, these particles worked effectively as a hemostatic agent and halted severe hemorrhage in multiple animal models of intraoperative and traumatic bleeding. Many medical applications have been suggested for self-propelling particles, and the findings of this study show that the active self-fueled transport of particles can function in vivo to enhance drug delivery.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA