RESUMO
Lactic acid bacteria fermentation is a beneficial bioprocessing method that can improve the flavor, transform nutrients, and maintain the biological activity of foods. The aim of this study is to investigate the effects of Lactiplantibacillus plantarum dy-1 fermentation on the nutritional components, flavor and taste properties, and composition of saponin compounds and their hypolipidemic and antioxidant activities. The results suggested that the total polyphenol content increased, and the soluble polysaccharides and total saponin contents decreased in fermented bitter melon juice (FJ) compared with those in non-fermented bitter melon juice (NFJ). The determination of volatile flavor substances by GC-MS revealed that the response values of acetic acid, n-octanol, sedumol, etc., augmented significantly, and taste analysis with an electronic tongue demonstrated lower bitterness and higher acidity in FJ. Furthermore, UPLC-Q-TOF-MS/MS testing showed a significant decrease in bitter compounds, including momordicines I and II, and a significant increase in the active saponin momordicine U in the fermented bitter melon saponin group (FJBMS). The in vitro assays indicated that FJBMS exhibited similar antioxidant activities as the non-fermented bitter melon saponin group (NFBMS). The in vitro results show that both NFBMS and FJBMS, when used at 50 µg/mL, could significantly reduce fat accumulation and the malondialdehyde (MDA) content and increased the catalase (CAT) activity, while there was no significant difference in the bioactivities of NFBMS and FJBMS. In conclusion, Lactiplantibacillus plantarum dy-1 fermentation is an effective means to lower the bitterness value of bitter melon and preserve the well-known bioactivities of its raw materials, which can improve the edibility of bitter melon.
RESUMO
Backgroundsand Aims. Colorectal cancer (CRC) represents a major global health challenge, necessitating comprehensive investigations into its underlying molecular mechanisms to enhance diagnostic and therapeutic strategies. This study focuses on elucidating the oncogenic role of Membrane-Associated Ring-CH-Type Finger 9 (MARCHF9), a RING-Type E3 ubiquitin transferase, in CRC. We aim to assess MARCHF9's clinical significance, functional impact on CRC progression, and its potential as a prognostic biomarker. Methods. We leveraged data from the Cancer Genome Atlas (TCGA) cohort to evaluate MARCHF9 expression profiles in CRC. In vitro experiments involved siRNA-mediated MARCHF9 knockdown in COAD cell lines (SW480 and LoVo). Cell proliferation and invasion assays were conducted to investigate MARCHF9's functional relevance. Survival analyses were performed to assess its prognostic role. Results. Our analysis revealed significantly elevated MARCHF9 expression in CRC tissues compared to normal colorectal tissues (P < 0.05). High MARCHF9 expression correlated with advanced clinical stages, distant metastases, and the presence of residual tumors in CRC patients. Survival analyses demonstrated that high MARCHF9 expression predicted unfavorable overall and disease-free survival outcomes (P < 0.05). In vitro experiments further supported its oncogenic potential, with MARCHF9 knockdown inhibiting COAD cell proliferation and invasion. Conclusions. This study unveils the oncogenic role of MARCHF9 in CRC, highlighting its clinical relevance as a potential biomarker and therapeutic target. MARCHF9's association with adverse clinicopathological features and its functional impact on cancer cell behavior underscore its significance in CRC progression. Further research is essential to elucidate precise mechanisms by which MARCHF9 enhances tumorigenesis and to explore its therapeutic potential in CRC management.
Assuntos
Biomarcadores Tumorais , Proliferação de Células , Neoplasias Colorretais , Idoso , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Carcinogênese/genética , Linhagem Celular Tumoral , Proliferação de Células/genética , Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia , Regulação Neoplásica da Expressão Gênica , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Oncogenes/genética , PrognósticoRESUMO
ETHNOPHARMACOLOGICAL RELEVANCE: Postmenopausal osteoporosis (PMOP) has been considered as a major causative factor for bone-joint pain and inducing pathologic fractures. Bu-Sui-Dan (BSD), a classic ancient herbal formula, has been shown to exhibit osteoprotective effects by promoting bone marrow development and bone growth. However, the exact mechanism of BSD are still unexplored. AIM OF STUDY: The study aimed to investigate the protective effect of BSD against osteoporotic injury, and to explore whether BSD regulated BMSCs' osteogenic differentiation by targeting VGLL4, which in turn improved PMOP. MATERIALS AND METHODS: The anti-osteoporotic effect of BSD was studied in ovariectomized (OVX) rats and bone marrow mesenchymal stem cells (BMSCs). Micro-CT imaging and HE staining were performed, and the levels of osteogenic protein RUNX2 and osteogenesis-related factor VGLL4 were determined. Co-immunoprecipitation (Co-IP) was further employed to delve into the effects of BSD on the interactions between TEAD4 and RUNX2. The key osteogenic factors 1ALP, COLl1A1, and Osterix expression were detected by RT-qPCR. Co-IP and proximity ligation assay (PLA) were employed to scrutinize the influence of BSD on TEAD4 and RUNX2 inter-binding. Moreover, VGLL4 knockdown in BMSCs was conducted to confirm the role of VGLL4 in the therapeutic mechanism of BSD. RESULTS: BSD showed a dose-dependent protective effect against osteoporotic injury, as evidenced by improvement in bone volume, bone microarchitecture, and histomorphometry. Additionally, BSD treatment increased the levels of RUNX2 and its downstream target genes including ALP, COL1A1, and Osterix. Moreover, BSD upregulated VGLL4 expression and lessened TEAD4-RUNX2 interactions. In BMSCs experiment, BSD-containing serum could promote osteogenic differentiation of BMSCs, boosted the expression of osteogenesis-related factors and VGLL4 level. The knockdown of VGLL4 in BMSCs diminished the promotion effect of BSD in osteoblast differentiation, suggesting that VGLL4 play a vital role in the therapeutic effects exerted by BSD. CONCLUSION: BSD ameliorated osteoporosis injury and promoted osteoblast differentiation through upregulation of VGLL4 levels, which in turn antagonized TEAD4-mediated RUNX2 transcriptional repression. Our study implied that BSD may be an osteoporosis therapeutic agent.
Assuntos
Diferenciação Celular , Subunidade alfa 1 de Fator de Ligação ao Core , Células-Tronco Mesenquimais , Osteoblastos , Osteogênese , Ovariectomia , Ratos Sprague-Dawley , Fatores de Transcrição , Regulação para Cima , Animais , Feminino , Osteoblastos/efeitos dos fármacos , Osteoblastos/metabolismo , Subunidade alfa 1 de Fator de Ligação ao Core/metabolismo , Subunidade alfa 1 de Fator de Ligação ao Core/genética , Diferenciação Celular/efeitos dos fármacos , Regulação para Cima/efeitos dos fármacos , Osteogênese/efeitos dos fármacos , Células-Tronco Mesenquimais/efeitos dos fármacos , Células-Tronco Mesenquimais/metabolismo , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Ratos , Fatores de Transcrição de Domínio TEA , Osteoporose Pós-Menopausa/prevenção & controle , Células CultivadasRESUMO
BACKGROUND: Excessive activation of cardiac fibroblasts (CFs) significantly contributes to adverse cardiac remodeling post-myocardial infarction (MI). CEMIP, initially recognized as an enzyme involved in hyaluronic acid (HA) degradation, has also been implicated in the activation of pulmonary fibroblasts. Nevertheless, the role and mechanism of CEMIP in adverse cardiac remodeling following MI remain largely unexplored. MATERIALS AND METHODS: RNA sequencing (RNA-seq) was performed on cardiac tissue harvested from the infarct/peri-infarct region of mice 28 days post-MI. RNA-seq was conducted on primary cardiac fibroblasts (CFs) transfected with adenovirus overexpressing CEMIP. Adeno-associated virus serotype 9 (AAV9) was engineered for in vivo CEMIP knockdown to elucidate its impact on cardiac remodeling. Immunoprecipitation coupled with mass spectrometry (IP-MS) and co-immunoprecipitation (co-IP) were employed to elucidate the mechanism by which CEMIP affected cardiac remodeling. KEY FINDINGS: RNA-seq of fibrotic heart tissue at day 28 post-MI revealed a significant upregulation of CEMIP. In vitro, CEMIP facilitated the activation of cardiac fibroblasts. In vivo, knockdown of CEMIP markedly reduced cardiac fibrosis and improved cardiac function post-MI. IP-MS and co-immunoprecipitation (co-IP) confirmed that CEMIP interacted with TSP4 through the G8 domain. Further experiments confirmed that CEMIP promoted TSP4 degradation in lysosomes in an ACTN4-dependent manner, thereby activating the FAK signaling pathway. SIGNIFICANCE: Our findings suggest that CEMIP significantly contributes to cardiac remodeling post-MI, which might be a novel approach for treating cardiac fibrosis following MI.
Assuntos
Infarto do Miocárdio , Trombospondinas , Remodelação Ventricular , Animais , Infarto do Miocárdio/metabolismo , Infarto do Miocárdio/genética , Infarto do Miocárdio/patologia , Camundongos , Remodelação Ventricular/genética , Masculino , Trombospondinas/genética , Trombospondinas/metabolismo , Hialuronoglucosaminidase/genética , Hialuronoglucosaminidase/metabolismo , Fibroblastos/metabolismo , Fibroblastos/patologia , Transdução de Sinais , Técnicas de Silenciamento de Genes , Camundongos Endogâmicos C57BL , Humanos , Fibrose , Miocárdio/metabolismo , Miocárdio/patologia , Modelos Animais de DoençasRESUMO
Background: There is no unified scope for regional lymph node (LN) dissection in patients with pancreatic ductal adenocarcinoma (PDAC). Incomplete regional LN dissection can lead to postoperative recurrence, while blind expansion of the scope of regional LN dissection significantly increases the perioperative risk without significantly prolonging overall survival. We aimed to establish a noninvasive visualization tool based on dual-layer detector spectral computed tomography (DLCT) to predict the probability of regional LN metastasis in patients with PDAC. Methods: A total of 163 regional LNs were reviewed and divided into a metastatic cohort (n=58 LNs) and nonmetastatic cohort (n=105 LNs). The DLCT quantitative parameters and the nodal ratio of the longest axis to the shortest axis (L/S) of the regional LNs were compared between the two cohorts. The DLCT quantitative parameters included the iodine concentration in the arterial phase (APIC), normalized iodine concentration in the arterial phase (APNIC), effective atomic number in the arterial phase (APZeff), normalized effective atomic number in the arterial phase (APNZeff), slope of the spectral attenuation curves in the arterial phase (APλHU), iodine concentration in the portal venous phase (PVPIC), normalized iodine concentration in the portal venous phase (PVPNIC), effective atomic number in the portal venous phase (PVPZeff), normalized effective atomic number in the portal venous phase (PVPNZeff), and slope of the spectral attenuation curves in the portal venous phase (PVPλHU). Logistic regression analysis based on area under the curve (AUC) was used to analyze the diagnostic performance of significant DLCT quantitative parameters, L/S, and the models combining significant DLCT quantitative parameters and L/S. A nomogram based on the models with highest diagnostic performance was developed as a predictor. The goodness of fit and clinical applicability of the nomogram were assessed through calibration curve and decision curve analysis (DCA). Results: The combined model of APNIC + L/S (APNIC + L/S) had the highest diagnostic performance among all models, yielding an AUC, sensitivity, and specificity of 0.878 [95% confidence interval (CI): 0.825-0.931], 0.707, and 0.886, respectively. The calibration curve indicated that the APNIC-L/S nomogram had good agreement between the predicted probability and the actual probability. Meanwhile, the decision curve indicated that the APNIC-L/S nomogram could produce a greater net benefit than could the all- or-no-intervention strategy, with threshold probabilities ranging from 0.0 to 0.75. Conclusions: As a valid and visual noninvasive prediction tool, the APNIC-L/S nomogram demonstrated favorable predictive efficacy for identifying metastatic LNs in patients with PDAC.
RESUMO
Background: Thyroid nodules (TNs) cytologically defined as category Bethesda III and IV pose a major diagnostic challenge before surgery, demanding new methods to reduce unnecessary diagnostic thyroid lobectomies for patients with benign TNs. This study aimed to assess whether a model combining dual-energy computed tomography (DECT) quantitative parameters with morphologic features could reliably differentiate between benign and malignant lesions in Bethesda III and IV TNs. Methods: Data from 77 patients scheduled for thyroid surgery for Bethesda III and IV TNs (malignant =48; benign =29) who underwent DECT scans were reviewed. DECT quantitative parameters including normalized iodine concentration (NIC), attenuation on the slope of spectral Hounsfield unit (HU) curve, and normalized effective atomic number (Zeff) were measured in the arterial phase (AP) and venous phase (VP). DECT quantitative parameters and morphologic features were compared between the malignant and benign cohorts. The receiver operating characteristic curve was performed to compare the performances of significant DECT quantitative parameters, morphologic features, or the models combining the DECT parameters, respectively, with morphologic features. A nomogram was constructed from the optimal performance model, and the performance was evaluated via the calibration curve and decision curve analysis. Results: The areas under the receiver operating characteristic curve with 95% confidence interval (CI) of the NIC in the AP (AP-NIC), slope of spectral HU curve in the AP, and NZeff in the AP were 0.749 (95% CI: 0.641-0.857), 0.654 (95% CI: 0.530-0.778), and 0.722 (95% CI: 0.602-0.842), respectively. The model combining AP-NIC with enhanced blurring showed the highest diagnostic performance, with an area under the receiver operating characteristic curve (AUC), sensitivity, and specificity of 0.808, 0.854, and 0.655, respectively; it was then used to construct a nomogram. The calibration curve showed that the discrepancy between the prediction of the nomogram and actual observations was less than 5%. The decision curve analysis indicated the nomogram had a positive net benefit in threshold risk ranges of 14% to 58% or 60% to 91% for malignant Bethesda III and IV TNs. Conclusions: The model combining AP-NIC with enhanced blurring could reliably differentiate between benign and malignant lesions in Bethesda III and IV TNs.
RESUMO
Purpose: To evaluate the capability of dual-layer detector spectral CT (DLCT) quantitative parameters in conjunction with clinical variables to detect malignant lesions in cytologically indeterminate thyroid nodules (TNs). Materials and methods: Data from 107 patients with cytologically indeterminate TNs who underwent DLCT scans were retrospectively reviewed and randomly divided into training and validation sets (7:3 ratio). DLCT quantitative parameters (iodine concentration (IC), NICP (IC nodule/IC thyroid parenchyma), NICA (IC nodule/IC ipsilateral carotid artery), attenuation on the slope of spectral HU curve and effective atomic number), along with clinical variables, were compared between benign and malignant cohorts through univariate analysis. Multivariable logistic regression analysis was employed to identify independent predictors which were used to construct the clinical model, DLCT model, and combined model. A nomogram was formulated based on optimal performing model, and its performance was assessed using receiver operating characteristic curve, calibration curve, and decision curve analysis. The nomogram was subsequently tested in the validation set. Results: Independent predictors associated with malignant TNs with indeterminate cytology included NICP in the arterial phase, Hashimoto's Thyroiditis (HT), and BRAF V600E (all p < 0.05). The DLCT-clinical nomogram, incorporating the aforementioned variables, exhibited superior performance than the clinical model or DLCT model in both training set (AUC: 0.875 vs 0.792 vs 0.824) and validation set (AUC: 0.874 vs 0.792 vs 0.779). The DLCT-clinical nomogram demonstrated satisfactory calibration and clinical utility in both training set and validation set. Conclusion: The DLCT-clinical nomogram emerges as an effective tool to detect malignant lesions in cytologically indeterminate TNs.
RESUMO
OBJECTIVE: To construct and validate a model based on the dual-energy computed tomography (DECT) quantitative parameters and radiological features to predict Ki-67 expression levels in pancreatic ductal adenocarcinoma (PDAC). MATERIALS AND METHODS: Data from 143 PDAC patients were analysed. The variables of clinic, radiology and DECT were evaluated. In the arterial phase and portal venous phase (PVP), the normalized iodine concentration (NIC), normalized effective atomic number and slope of the spectral attenuation curves were measured. The extracellular volume fraction (ECVf) was measured in the equilibrium phase. Univariate analysis was used to screen independent risk factors to predict Ki-67 expression. The Radiology, DECT and DECT-Radiology models were constructed, and their diagnostic effectiveness and clinical applicability were obtained through area under the curve (AUC) and decision curve analysis, respectively. The nomogram was established based on the optimal model, and its goodness-of-fit was assessed by a calibration curve. RESULTS: Computed tomography reported regional lymph node status, NIC of PVP, and ECVf were independent predictors for Ki-67 expression prediction. The AUCs of the Radiology, DECT, and DECT-Radiology models were 0.705, 0.884, and 0.905, respectively, in the training cohort, and 0.669, 0.835, and 0.865, respectively, in the validation cohort. The DECT-Radiology nomogram was established based on the DECT-Radiology model, which showed the highest net benefit and satisfactory consistency. CONCLUSIONS: The DECT-Radiology model shows favourable predictive efficacy for Ki-67 expression, which may be of value for clinical decision-making in PDAC patients. CRITICAL RELEVANCE STATEMENT: The DECT-Radiology model could contribute to the preoperative and non-invasive assessment of Ki-67 expression of PDAC, which may help clinicians to screen out PDAC patients with high Ki-67 expression. KEY POINTS: ⢠Dual-energy computed tomography (DECT) can predict Ki-67 in pancreatic ductal adenocarcinoma (PDAC). ⢠The DECT-Radiology model facilitates preoperative and non-invasive assessment of PDAC Ki-67 expression. ⢠The nomogram may help screen out PDAC patients with high Ki-67 expression.
RESUMO
Background: The misdiagnosis of papillary thyroid microcarcinoma (PTMC) and micronodular goiter (MNG) may lead to overtreatment and unnecessary medical expenditure by patients. This study developed and validated a dual-energy computed tomography (DECT)-based nomogram for the preoperative differential diagnosis of PTMC and MNG. Methods: This retrospective study analyzed the data of 366 pathologically confirmed thyroid micronodules, of which 183 were PTMCs and 183 were MNGs, from 326 patients who underwent DECT examinations. The cohort was divided into the training (n=256) and validation cohorts (n=110). The conventional radiological features and DECT quantitative parameters were analyzed. The iodine concentration (IC), normalized iodine concentration (NIC), effective atomic number, normalized effective atomic number, and slope of the spectral attenuation curves in the arterial phase (AP) and venous phase (VP) were measured. A univariate analysis and stepwise logistic regression analysis were performed to screen the independent indicators for PTMC. A radiological model, DECT model, and DECT-radiological nomogram were constructed, and the performances of the 3 models were assessed using the receiver operating characteristic curve, DeLong test, and a decision curve analysis (DCA). Results: The IC in the AP [odds ratio (OR) =0.172], NIC in the AP (OR =0.003), punctate calcification (OR =2.163), and enhanced blurring (OR =3.188) were identified as independent predictors in the stepwise-logistic regression. The areas under the curve with 95% confidence intervals (CIs) of the radiological model, DECT model, and DECT-radiological nomogram were 0.661 (95% CI: 0.595-0.728), 0.856 (95% CI: 0.810-0.902), and 0.880 (95% CI: 0.839-0.921), respectively, in the training cohort; and 0.701 (95% CI: 0.601-0.800), 0.791 (95% CI: 0.704-0.877), and 0.836 (95% CI: 0.760-0.911), respectively, in the validation cohort. The diagnostic performance of the DECT-radiological nomogram was better than that of the radiological model (P<0.05). The DECT-radiological nomogram was found to be well calibrated and had a good net benefit. Conclusions: DECT provides valuable information for differentiating between PTMC and MNG. The DECT-radiological nomogram could serve as an easy-to-use, noninvasive, and effective method for differentiating between PTMC and MNG and help clinicians in decision-making.
RESUMO
The effect of barley ß-glucan on soybean oil digestion characteristics before and after fermentation was studied in an in vitro-simulated gastrointestinal digestion model. The addition of barley ß-glucan made the system more unstable, the particle size increased significantly, and confocal laser imaging showed that it was easier to form agglomerates. The addition of barley ß-glucan increased the proportion of unsaturated fatty acids in digestion products, and reduced digestibility of soybean oil. In a co-culture model of Caco-2/HT29 and HepG2 cells, the effects of digestive products of soybean oil and barley ß-glucan before and after fermentation on lipid metabolism in HepG2 cells were investigated. The results showed that adding only soybean oil digestion products significantly increased triglycerides (TG) content and lipid accumulation in basolateral HepG2 cells. When fermented barley ß-glucan was added, lipid deposition was significantly decreased, and the lipid-lowering activity was better than that of unfermented barley ß-glucan.
Assuntos
Hordeum , Hipercolesterolemia , beta-Glucanas , Humanos , Óleo de Soja/metabolismo , Técnicas de Cocultura , Células CACO-2 , beta-Glucanas/farmacologia , DigestãoRESUMO
Barley bran has potential bioactivities due to its high content of polyphenols and dietary fiber, etc. Fermentation has been considered as an effective way to promote the functional activity of food raw materials. In this study, polysaccharides from barley bran extract fermented by Lactiplantibacillus plantarum dy-1 (FBBE-PS) were analyzed, and its effects on lipid accumulation and oxidative stress in high-fat HepG2 cells induced by sodium oleate were evaluated. The results showed that the molecular weight decreased and monosaccharide composition of polysaccharides changed significantly after fermentation. In addition, 50 µg/mL FBBE-PS could reduce the triglyceride (TG) content and reaction oxygen species (ROS) level in high-fat HepG2 cells by 21.62% and 30.01%, respectively, while increasing the activities of superoxide dismutase (SOD) and catalase (CAT) represented by 64.87% and 22.93%, respectively. RT-qPCR analysis revealed that FBBE-PS could up-regulate the lipid metabolism-related genes such as ppar-α, acox-1 and cpt-1α, and oxidation-related genes such as nrf2, ho-1, nqo-1, sod1, cat, etc. The metabolomics analysis indicated that FBBE-PS could alleviate lipid deposition by inhibiting the biosynthesis of unsaturated fatty acids, which is consistent with the downregulation of scd-1 expression. It is demonstrated that fermentation can alter the properties and physiological activities of polysaccharides in barley bran, and FBBE-PS exhibited an alleviating effect on lipid deposition and oxidative stress in high-fat cells.
RESUMO
Doxorubicin (DOX) is frequently used in clinical practice for its broad-spectrum effects. However, its benefit is limited by a series of complications, including excessive apoptosis and autophagy of cardiomyocytes, overproduction of reactive oxygen species (ROS) and high level of oxidative stress. As a new protein, OTU domain-containing 7B (OTUD7B), also called Cezanne, has been reported to regulate many pathological processes. However, whether it plays a role in DOX-induced cardiotoxicity is still unclear. We discovered that the Cezanne level was significantly increased in DOX-treated neonatal rat cardiomyocytes (NRCMs) and C57BL/6 J mice hearts. In vitro, the knockdown of Cezanne with adenovirus in NRCMs significantly worsened DOX-induced apoptosis, autophagy and oxidative stress, while Cezanne overexpression showed opposite results. In vivo, the overexpression of Cezanne using cardiomyocyte-targeted adeno-associated virus 9 (AAV9) significantly reduced cardiomyocyte apoptosis, autophagy and oxidative stress level when C57BL/6 J mice were subjected to DOX. Mechanistically, the overexpression of Cezanne significantly reversed the in-activation of the PI3K/AKT/mTOR pathway induced by DOX, while the inhibitors of this pathway abolished the effect of Cezanne, suggesting that the PI3K/AKT/mTOR pathway plays a role in the protective function of Cezanne. These findings indicate that Cezanne could ameliorate DOX-induced cardiotoxicity by attenuating the apoptosis and autophagy of cardiomyocytes and decreasing the level of oxidative stress.
Assuntos
Cardiotoxicidade , Proteínas Proto-Oncogênicas c-akt , Camundongos , Ratos , Animais , Cardiotoxicidade/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Camundongos Endogâmicos C57BL , Estresse Oxidativo , Doxorrubicina/toxicidade , Miócitos Cardíacos , Apoptose , Serina-Treonina Quinases TOR/metabolismo , AutofagiaRESUMO
Objectives: To investigate the potential value of a contrast enhanced computed tomography (CECT)-based radiological-radiomics nomogram combining a lymph node (LN) radiomics signature and LNs' radiological features for preoperative detection of LN metastasis in patients with pancreatic ductal adenocarcinoma (PDAC). Materials and methods: In this retrospective study, 196 LNs in 61 PDAC patients were enrolled and divided into the training (137 LNs) and validation (59 LNs) cohorts. Radiomic features were extracted from portal venous phase images of LNs. The least absolute shrinkage and selection operator (LASSO) regression algorithm with 10-fold cross-validation was used to select optimal features to determine the radiomics score (Rad-score). The radiological-radiomics nomogram was developed by using significant predictors of LN metastasis by multivariate logistic regression (LR) analysis in the training cohort and validated in the validation cohort independently. Its diagnostic performance was assessed by receiver operating characteristic curve (ROC), decision curve (DCA) and calibration curve analyses. Results: The radiological model, including LN size, and margin and enhancement pattern (three significant predictors), exhibited areas under the curves (AUCs) of 0.831 and 0.756 in the training and validation cohorts, respectively. Nine radiomic features were used to construct a radiomics model, which showed AUCs of 0.879 and 0.804 in the training and validation cohorts, respectively. The radiological-radiomics nomogram, which incorporated the LN Rad-score and the three LNs' radiological features, performed better than the Rad-score and radiological models individually, with AUCs of 0.937 and 0.851 in the training and validation cohorts, respectively. Calibration curve analysis and DCA revealed that the radiological-radiomics nomogram showed satisfactory consistency and the highest net benefit for preoperative diagnosis of LN metastasis. Conclusions: The CT-based LN radiological-radiomics nomogram may serve as a valid and convenient computer-aided tool for personalized risk assessment of LN metastasis and help clinicians make appropriate clinical decisions for PADC patients.
RESUMO
Currently, the reported source of extracellular vesicles (EVs) for the treatment of ischemic strokeï¼ISï¼is limited to mammals. Moreover, these EVs are restricted to clinical translation by the high cost of cell culture. In this respect, Lactobacillus plantarum culture is advantaged by low cost and high yield. However, it is poorly understood whether Lactobacillus plantarum-derived EVs (LEVs) are applicable for the treatment of IS. Here, our results demonstrated that LEVs reduced apoptosis in ischemic neuron both in vivo and in vitro. As revealed by high-throughput sequencing, miR-101a-3p expression was significantly elevated by LEV treatment in OGD/R-induced neurons, as confirmed in the tMCAO mice treated with LEVs. Mechanistically, c-Fos was directly targeted by miR-101a-3p. In addition, c-Fos determined ischemia-induced neuron apoptosis in vivo and in vitro through the TGF-ß1 pathway, miR-101a-3p inhibition aggravated ischemia-induced neuron apoptosis in vitro and in vivo, and miR-101a-3p overexpression produced the opposite results. Hsa-miR-101-3p was downregulated in the plasma of patients with IS but upregulated in the patients with neurological recovery after rt-PA intravenous thrombolysis. In conclusion, Our results demonstrated for the first time that LEVs might inhibit neuron apoptosis via the miR-101a-3p/c-Fos/TGF-ß axis, and has-miR-101-3p is a potential marker of neurological recovery in IS patients.
Assuntos
Lesões Encefálicas , Vesículas Extracelulares , Lactobacillus plantarum , MicroRNAs , Animais , Apoptose , Vesículas Extracelulares/metabolismo , Lactobacillus plantarum/genética , Lactobacillus plantarum/metabolismo , Mamíferos/metabolismo , Camundongos , MicroRNAs/genética , MicroRNAs/metabolismo , Proteínas Proto-Oncogênicas c-fos/genética , Fator de Crescimento Transformador betaRESUMO
Fibrosis is one of the crucial reasons for cardiac dysfunction after myocardial infarction (MI). Understanding the underlying molecular mechanism that causes fibrosis is crucial to developing effective therapy. Recently, OUT domain-containing 7B (OTUD7B), also called Cezanne, a multifunctional deubiquitylate, has been found to play various roles in cancer and vascular diseases and control many important signaling pathways, including inflammation, proliferation, and so on. However, whether OTUD7B plays a role in fibrosis caused by MI remains unclear. Our study aimed to explore the function of OTUD7B in cardiac fibrosis and investigate the underlying mechanism. We found that the expression of OTUD7B was downregulated in the MI rat model and cultured cardiac fibroblasts (CFs) in hypoxic conditions and after TGF-ß1 treatment. In vitro, silencing OTUD7B using small interfering RNA (siRNA) increased α-SMA (smooth muscle actin α) and collagen â levels in CFs, whereas the overexpression of OTUD7B using adenovirus decreased their expression. Mechanistically, OTUD7B could regulate the phosphorylation of focal adhesion kinase (FAK), a non-receptor tyrosine kinase that has been proved to act as a potential mediator of fibrosis, and ERK/P38 MAPK was involved in this regulation process. In vitro, overexpression of OTUD7B downregulated the phosphorylation level of FAK and then inhibited ERK/P38 phosphorylation, thus leading to decreased α-SMA and collagen â expressions, while OTUD7B knockdown showed an opposite result. These findings suggest that OTUD7B could become a potentially effective therapeutic strategy against fibrosis after MI.
Assuntos
Endopeptidases/metabolismo , Infarto do Miocárdio , Animais , Colágeno Tipo I/metabolismo , Fibroblastos/metabolismo , Fibrose , Proteína-Tirosina Quinases de Adesão Focal/metabolismo , Infarto do Miocárdio/metabolismo , Miocárdio/metabolismo , RNA Interferente Pequeno/metabolismo , Ratos , Transdução de Sinais , Fator de Crescimento Transformador beta1/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismoRESUMO
Mesenchymal stem cells (MSCs) have been widely used as functional components in tissue engineering. However, the immunogenicity and limited pro-angiogenic efficacy of MSCs greatly limited their pro-regenerative ability in allogenic treatment. Herein, utilizing a chemically defined cocktail in the culture system, including cytokines, small molecules, structural protein, and other essential components, we generated the immunoprivileged and pro-angiogenic cells (IACs) derived from human adipose tissues. Conventional adipose-derived MSCs (cADSCs) were used as a control in all the experiments. IACs show typical MSC properties with enhanced stemness capacity and a robust safety profile. IACs induce a significantly milder immune response of allogenic peripheral blood mononuclear cells in an H3K27me3-HLA axis-dependent manner. IACs, through superior paracrine effects, further promote nitric oxide production, anti-apoptotic ability, and the tube formation of human vein endothelial cells. Embedded in a photo-reactive hydrogel (Gel) termed as GelMA/HA-NB/LAP for tissue engineering treatment, IACs promote faster tissue regeneration in a xenogeneic full-thickness skin defect model, eliciting a milder immune response and enhanced blood vessel formation in IACs-treated defect areas. Together with its excellent pro-regenerative potential and robust safety, our findings suggest that IACs may be a promising candidate for clinically relevant stem cell and tissue engineering therapeutics.
Assuntos
Células Endoteliais , Células-Tronco Mesenquimais , Tecido Adiposo , Células Cultivadas , Humanos , Leucócitos Mononucleares , Neovascularização Fisiológica , CicatrizaçãoRESUMO
BACKGROUND: A reduced level of fatty acid oxidation (FAO) by skeletal muscle leads to the accumulation of intermuscular fat (IMF), which is linked to impaired exercise capacity. Previously, we have reported that Lactiplantibacillus plantarum fermented barley extract (LFBE) has effective anti-obesity properties. In this study, the effects of LFBE on muscle were investigated. RESULTS: LFBE improved running endurance and muscle strength, which was caused by the elevation of FAO in muscle. In addition, LFBE renovated muscle regeneration through the upregulation of paired box 7 and myogenic differentiation 1 expression avoiding the injury of skeletal muscle fibers. Furthermore, total polyphenol isolated from LFBE (FTP) reinforced mobility and showed a significant protective effect on maintaining muscle fiber morphogenesis in Caenorhabditis elegans. Transmission electron microscope observation suggested FTP induced mitophagy in C. elegans body wall muscle, which was strongly connected with enhanced FAO in mitochondria. CONCLUSIONS: Our findings highlighted the beneficial bioactivities of FTP and its potential application for stimulating mitophagy and muscle function in obese individuals. © 2022 Society of Chemical Industry.
Assuntos
Hordeum , Lactobacillus plantarum , Animais , Caenorhabditis elegans , Dieta Hiperlipídica , Fermentação , Hordeum/química , Humanos , Lactobacillus plantarum/metabolismo , Mitofagia , Músculo Esquelético/metabolismo , Músculos/metabolismo , Obesidade/metabolismo , Extratos Vegetais/químicaRESUMO
Doxorubicin (DOX) is an effective chemotherapeutic agent that plays an unparalleled role in cancer treatment. However, its serious dose-dependent cardiotoxicity, which eventually contributes to irreversible heart failure, has greatly limited the widespread clinical application of DOX. A previous study has demonstrated that the ribonucleotide reductase M2 subunit (RRM2) exerts salutary effects on promoting proliferation and inhibiting apoptosis and autophagy. However, the specific function of RRM2 in DOX-induced cardiotoxicity is yet to be determined. This study aimed to elucidate the role and potential mechanism of RRM2 on DOX-induced cardiotoxicity by investigating neonatal primary cardiomyocytes and mice treated with DOX. Subsequently, the results indicated that RRM2 expression was significantly reduced in mice hearts and primary cardiomyocytes. Apoptosis and autophagy-related proteins, such as cleaved-Caspase3 (C-Caspase3), LC3B, and beclin1, were distinctly upregulated. Additionally, RRM2 deficiency led to increased autophagy and apoptosis in cells. RRM2 overexpression, on the contrary, alleviated DOX-induced cardiotoxicity in vivo and in vitro. Consistently, DIDOX, an inhibitor of RRM2, attenuated the protective effect of RRM2. Mechanistically, we found that AKT/mTOR inhibitors could reverse the function of RRM2 overexpression on DOX-induced autophagy and apoptosis, which means that RRM2 could have regulated DOX-induced cardiotoxicity through the AKT/mTOR signaling pathway. In conclusion, our experiment established that RRM2 could be a potential treatment in reversing DOX-induced cardiac dysfunction.
Assuntos
Cardiotoxicidade , Doxorrubicina , Proteínas Proto-Oncogênicas c-akt , Ribonucleosídeo Difosfato Redutase , Animais , Apoptose , Cardiotoxicidade/tratamento farmacológico , Doxorrubicina/farmacologia , Camundongos , Miócitos Cardíacos/metabolismo , Estresse Oxidativo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ribonucleosídeo Difosfato Redutase/metabolismo , Transdução de Sinais/efeitos dos fármacos , Serina-Treonina Quinases TOR/metabolismoRESUMO
Myocardial infarction or pressure overload leads to cardiac fibrosis, the leading cause of heart failure. ADAMTS8 (A disintegrin and metalloproteinase with thrombospondin motifs 8) has been reported to be involved in many fibrosis-related diseases. However, the specific role of ADAMTS8 in cardiac fibrosis caused by myocardial infarction or pressure overload is yet unclear. The present study aimed to explore the function of ADAMTS8 in cardiac fibrosis and its underlying mechanism. ADAMTS8 expression was significantly increased in patients with dilated cardiomyopathy; its expression myocardial infarction and TAC rat models was also increased, accompanied by increased expression of α-SMA and Collagen1. Adenovirus-mediated overexpression of ADAMTS8 through cardiac in situ injection aggravated cardiac fibrosis and impaired cardiac function in the myocardial infarction rat model. Furthermore, in vitro studies revealed that ADAMTS8 promoted the activation of cardiac fibroblasts; ADAMTS8 acted as a paracrine mediator allowing for cardiomyocytes and fibroblasts to communicate indirectly. Our findings showed that ADAMTS8 could damage the mitochondrial function of cardiac fibroblasts and then activate the PI3K-Akt pathway and MAPK pathways, promoting up-regulation of YAP expression, with EGFR upstream of this pathway. This study systematically revealed the pro-fibrosis effect of ADAMTS8 in cardiac fibrosis and explored its potential role as a therapeutic target for the treatment of cardiac fibrosis and heart failure.
RESUMO
This article explored the effect of Lactobacillus plantarum dy-1 (L. plantarum dy-1) fermentation on the basic physicochemical properties and associated in vitro antioxidant activity of barley ß-glucan, including its molecular weight, monosaccharide composition, characteristic structure and rheology. Its DPPH, ABTS, hydroxyl radical scavenging capacity, and ferric reducing antioxidant potential (FRAP) were measured at different fermentation times. The results showed that the molecular weight of barley ß-glucan was decreased from 1.052 × 105 Da to 4.965 × 104 Da within 0-24 h by L. plantarum dy-1 fermentation, but there was no effect on its characteristic structure. The water- and oil-holding properties of barley ß-glucan were significantly enhanced with increased fermentation time, and the fluid viscous behavior of barley ß-glucan was enhanced at 6% concentration, while elastic characteristics were weakened. The fermentation had no significant effect on the scavenging effect of DPPH and ABTS radicals of barley ß-glucan, but the hydroxyl radical scavenging activity and total antioxidant capacity of FRAP were enhanced with increased fermentation time. Fermentation time may change the physicochemical properties and enhance antioxidant activity of barley ß-glucan by reducing its molecular weight.