Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
1.
Front Plant Sci ; 14: 1301445, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38107010

RESUMO

As we face increasing challenges of world food security and malnutrition, coarse cereals are coming into favor as an important supplement to human staple foods due to their high nutritional value. In addition, their functional components, such as flavonoids and polyphenols, make them an important food source for healthy diets. However, we lack a systematic understanding of the importance of coarse cereals for world food security and nutritional goals. This review summarizes the worldwide cultivation and distribution of coarse cereals, indicating that the global area for coarse cereal cultivation is steadily increasing. This paper also focuses on the special adaptive mechanisms of coarse cereals to drought and discusses the strategies to improve coarse cereal crop yields from the perspective of agricultural production systems. The future possibilities, challenges, and opportunities for coarse cereal production are summarized in the face of food security challenges, and new ideas for world coarse cereal production are suggested.

2.
Int J Mol Sci ; 24(10)2023 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-37239932

RESUMO

The plant mirid bug Apolygus lucorum is an omnivorous pest that can cause considerable economic damage. The steroid hormone 20-hydroxyecdysone (20E) is mainly responsible for molting and metamorphosis. The adenosine monophosphate-activated protein kinase (AMPK) is an intracellular energy sensor regulated by 20E, and its activity is regulated allosterically through phosphorylation. It is unknown whether the 20E-regulated insect's molting and gene expression depends on the AMPK phosphorylation. Herein, we cloned the full-length cDNA of the AlAMPK gene in A. lucorum. AlAMPK mRNA was detected at all developmental stages, whereas the dominant expression was in the midgut and, to a lesser extent, in the epidermis and fat body. Treatment with 20E and AMPK activator 5-aminoimidazole-4-carboxamide-1-ß-d-ribofuranoside (AlCAR) or only AlCAR resulted in activation of AlAMPK phosphorylation levels in the fat body, probed with an antibody directed against AMPK phosphorylated at Thr172, enhancing AlAMPK expression, whereas no phosphorylation occurred with compound C. Compared to compound C, 20E and/or AlCAR increased the molting rate, the fifth instar nymphal weight and shortened the development time of A. lucorum in vitro by inducing the expression of EcR-A, EcR-B, USP, and E75-A. Similarly, the knockdown of AlAMPK by RNAi reduced the molting rate of nymphs, the weight of fifth-instar nymphs and blocked the developmental time and the expression of 20E-related genes. Moreover, as observed by TEM, the thickness of the epidermis of the mirid was significantly increased in 20E and/or AlCAR treatments, molting spaces began to form between the cuticle and epidermal cells, and the molting progress of the mirid was significantly improved. These composite data indicated that AlAMPK, as a phosphorylated form in the 20E pathway, plays an important role in hormonal signaling and, in short, regulating insect molting and metamorphosis by switching its phosphorylation status.


Assuntos
Ecdisterona , Muda , Animais , Muda/fisiologia , Ecdisterona/farmacologia , Ecdisterona/metabolismo , Proteínas Quinases Ativadas por AMP/metabolismo , Acetilcarnitina/metabolismo , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo , Larva/metabolismo
3.
Hum Reprod ; 38(7): 1253-1260, 2023 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-37105233

RESUMO

Kisspeptins, encoded by the KISS1 gene, are a family of polypeptides that bind the kisspeptin receptor (KISS1R) to perform biological functions. Produced mainly in the hypothalamus, these neuropeptides regulate the pulsatile secretion of GnRH and trigger the hypothalamus-pituitary-gonadal axis. Other peripheral organs also express kisspeptin, which inhibits metastasis. Kisspeptin and KISS1R are reportedly present in the endometrium and may play roles in limiting the migration and invasion of trophoblasts into the endometrium during pregnancy (decidua) to maintain endometrial homeostasis. A deficiency of kisspeptin and KISS1R in the endometrium can lead to pathological conditions such as endometriosis and endometrial carcinoma. Kisspeptin and KISS1R in the endometrium can also promote endometrial receptivity and decidualization. Overall, kisspeptin and KISS1R are important for maintaining the normal physiological functions of the endometrium. By summarizing the roles of kisspeptin and KISS1R in the endometrium, our review explores the regulatory roles in the peripheral reproductive system of this peptide family that plays broad and profound roles in many physiological processes.


Assuntos
Endometriose , Kisspeptinas , Gravidez , Feminino , Humanos , Receptores de Kisspeptina-1/genética , Kisspeptinas/genética , Endométrio/metabolismo , Hormônio Liberador de Gonadotropina/metabolismo , Endometriose/patologia
4.
Biomaterials ; 296: 122088, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36898222

RESUMO

Intramyocardial injection of hydrogels possesses great potential in the minimally invasive treatment of myocardial infarction (MI), but the current injectable hydrogels lack conductivity, long-term angiogenesis inductive ability, and reactive oxygen species (ROS)-scavenging ability, which are essential for myocardium repair. In this study, lignosulfonate-doped polyaniline (PANI/LS) nanorods and adeno-associated virus encoding vascular endothelial growth factor (AAV9-VEGF) are incorporated in the calcium-crosslinked alginate hydrogel to develop an injectable conductive hydrogel with excellent antioxidative and angiogenic ability (Alg-P-AAV hydrogel). Due to the special nanorod morphology, a conductive network is constructed in the hydrogel with the conductivity matching the native myocardium for excitation conduction. The PANI/LS nanorod network may also have large specific surfaces and effectively scavenges ROS to protect cardiomyocytes from oxidative stress damage. AAV9-VEGF transfects the surrounding cardiomyocytes for continuously expressing VEGF, which significantly promotes the proliferation, migration and tube formation of endothelial cells. After injecting the Alg-P-AAV hydrogel around the MI area in rats, the generation of gap junctions and angiogenesis are greatly improved with reduced infarct area and recovered cardiac function. The remarkable therapeutic effect indicates the promising potential of this multi-functional hydrogel for MI treatment.


Assuntos
Hidrogéis , Infarto do Miocárdio , Ratos , Animais , Hidrogéis/uso terapêutico , Fator A de Crescimento do Endotélio Vascular , Células Endoteliais/metabolismo , Alginatos/uso terapêutico , Espécies Reativas de Oxigênio , Infarto do Miocárdio/tratamento farmacológico
5.
J Invest Dermatol ; 143(3): 419-430.e8, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36049542

RESUMO

Psoriasis is driven by the interplay between hyperproliferative keratinocytes and infiltrating inflammatory cells. GDF15, a member of the TGF-ß superfamily, has been implicated in cachexia, metabolic control, and cancer invasion. However, the expression and immunomodulatory role of GDF15 in inflammatory diseases has not been clarified. In this study, we report that GDF15 is decreased in the epidermis of patients with psoriasis and in an imiquimod-induced psoriasis-like mouse model. TNF-α suppresses GDF15 expression in keratinocytes by inhibiting the protein level of the transcription factor GATA2. GDF15 deficiency aggravates the development of psoriatic lesions, as evidenced by more severe skin inflammation in imiquimod-treated Gdf15-knockout (Gdf15‒/‒) mice compared with that in wild-type mice. Importantly, GDF15 limited the synthesis of a panel of keratinocyte cytokines and chemokines by inhibiting TAK1/NF-κB activation and directly inhibited neutrophil adhesion and migration by inhibiting the activation of the small GTPase Rap1. Epidermal hyperplasia, infiltration of neutrophils, and transcripts of psoriasis-related markers in imiquimod-induced psoriasiform dermatitis were significantly alleviated by a topical supplement of recombinant murine GDF15. In summary, our study revealed an unexpected role of GDF15 in keratinocyte and neutrophil function in the skin of psoriasis, implying its therapeutic potential in treating psoriasis.


Assuntos
Dermatite , Psoríase , Camundongos , Animais , Imiquimode/uso terapêutico , Infiltração de Neutrófilos , Psoríase/patologia , Pele/patologia , Dermatite/patologia , Queratinócitos/metabolismo , Modelos Animais de Doenças , Camundongos Endogâmicos BALB C
6.
Int J Mol Sci ; 23(23)2022 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-36499611

RESUMO

The mirid bug Cyrtorhinus lividipennis (Reuter) is an important predator that consumes eggs and young nymphs of the brown planthopper Nilaparvata lugens as a primary food source and thus becomes an important member of the rice ecosystem. We identified and characterized the ClPSP gene in C. lividipennis encoding the phosphoserine phosphatase enzyme. The ClPSP has an open reading frame (ORF) of 957 bp encoding a protein with a length of 294bp and it possesses a haloacid dehalogenase-like (HAD) hydrolase, phosphoserine phosphatase, eukaryotic-like (HAD_PSP_eu) conserved domain. Furthermore, the in silico analysis of the ClPSP gene unveiled its distinct characteristics and it serves as a key player in the modulation of amino acids. The ClPSP showed expression in all developmental stages, with higher expression observed in the ovary and fat body. Silencing the ClPSP by RNA interference (RNAi) significantly decreased PSP enzyme activity and expression compared to dsGFP at two days after emergence (2DAE). The dsPSP treatment altered free hemolymph amino acid compositions, resulting in a significant reduction of serine (Ser) and Arginine (Arg) proportions and a significant increase of Threonine (Thr), Cystine (Cys), and Tyrosine (Tyr) in the C. lividipennis female at 2 DAE. Additionally, a hindered total protein concentration in the ovary and fat body, and reduced vitellogenin (Vg) expression, body weight, and number of laid eggs, were also observed. The same treatment also prolonged the preoviposition period and hindered ovarian development. Our data, for the first time, demonstrated the influential role of the PSP gene in modulating the fecundity of C. lividipennis and provide a platform for future insect pest control programs using the PSP gene in modulating fecundity.


Assuntos
Hemípteros , Heterópteros , Feminino , Animais , Ecossistema , Aminoácidos/metabolismo , Heterópteros/genética , Hemípteros/metabolismo , Monoéster Fosfórico Hidrolases/metabolismo , Interferência de RNA
7.
J Mater Chem B ; 10(19): 3747-3758, 2022 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-35466983

RESUMO

Challenges in cranial defect reconstruction after craniotomy arise from insufficient osteogenesis and biofilm infection, which requires novel biomaterials. Herein, we propose a mussel-inspired bioactive poly(styrene-butadiene-styrene) (SBS) as a promising cranioplasty material. The catechol-modified quaternized chitosan (QCSC) was employed in the bio-inert surface of 3D-printed SBS to provide the contact-killing ability against bacterial biofilms. The polydopamine-decorated zeolitic imidazolate framework-8 (pZIF-8) and polydopamine hybrid hydroxyapatite (pHA) were further modified on the surface to further enhance the antibacterial property and osteogenesis activity, effectively killing bacteria by no less than two orders of magnitude and significantly facilitating osteogenic gene expression and mineralization. Due to the lack of research using SBS as a cranioplasty material, we believe that the modified SBS materials developed in this study and the in vitro assessment may be beneficial for developing novel cranioplasty implants.


Assuntos
Butadienos , Estireno , Materiais Biocompatíveis/farmacologia , Butadienos/farmacologia , Durapatita , Osteogênese
8.
J Control Release ; 344: 249-260, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35288167

RESUMO

Chronic diabetic wounds are lack of angiogenesis and susceptible to bacterial infections due to their high sugar microenvironment, making them difficult to heal. Here, a conductive and intrinsically antibacterial hydrogel with pH responsiveness has been developed. This hydrogel has good mechanical properties, self-healing ability and biocompatibility, and can smartly release the pro-angiogenic drug, deferoxamine. Application of the hydrogel promotes the proliferation and migration of endothelial cells and enhances vascularization by upregulating the expression of hypoxia-inducible factor-1α and vascular endothelial growth factor. The hydrogel dressing combined with electrical stimulation improves angiogenesis and significantly accelerates the healing of infected diabetic wounds, which would lead to a promising therapeutic strategy.


Assuntos
Diabetes Mellitus , Hidrogéis , Células Endoteliais , Humanos , Hidrogéis/química , Fator A de Crescimento do Endotélio Vascular , Cicatrização
9.
J Colloid Interface Sci ; 607(Pt 1): 378-388, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34509112

RESUMO

Membrane separation technology is one of the best methods to deal with wastewater released from oil spills and industrial wastewater. Therefore, we designed and prepared hydroxyl-rich titanium carbide MXene materials and filtered them onto a commercial polyvinylidene fluoride substrate membrane to obtain a cracked-earth-like MXene membrane with abundant hydroxyl groups and excellent underwater wettability. The underwater oil contact and sliding angles were approximately 157° and less than 3°, respectively. Moreover, the membrane effectively separated a variety of surfactant-stabilized stable emulsions with a high permeation flux of up to 6385 L m-2h-1 bar-1 and offered adequate performance after five cycles of the separation experiment. Additionally, the membrane exhibited remarkable resistance toward corrosive chemicals without any decrease in its underwater wettability performance. For example, the membrane was used to separate the emulsions containing alkali, salt, and acid. This study provides a new strategy to resolve the oily wastewater disposal problem by fabricating a cracked-earth-like MXene membrane with abundant hydroxyl groups.


Assuntos
Purificação da Água , Emulsões , Interações Hidrofóbicas e Hidrofílicas , Membranas Artificiais , Titânio , Água
10.
J Control Release ; 338: 610-622, 2021 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-34481025

RESUMO

Ischemic stroke is still the major cause of disability worldwide. Although vascular endothelial growth factor (VEGF) is able to promote both angiogenesis and functional recovery, its use is limited by needle-induced injury, nonhomogenous VEGF distribution, and limited VEGF retention in the brain after intracranial or intravenous injection. Here, we first present a gelatin methacryloyl (GelMA) microneedle (MN)-based platform for the sustained and controlled local delivery of an adeno-associated virus (AAV) expressing human VEGF (AAV-VEGF) that achieves homogenous distribution and high transfection efficiency in ischemic brains. An ischemic stroke model was established in adult rats, and MNs loaded with AAV-VEGF were epicortically inserted into both the ischemic core and penumbra of these rats one day after the onset of ischemia. One week later, the inflammatory response and microneedle biocompatibility were assessed by enzyme-linked immunosorbent assay (ELISA) and immunofluorescence. Eight weeks later, angiogenesis and neural stem cell proliferation and migration were assessed. GelMA MN implantation did not elicit an obvious inflammatory response and had good biocompatibility in the brain. AAV-green fluorescent protein (GFP)-loaded MNs could achieve successful transfection and homogeneous distribution in the brain cortex three weeks postoperatively. MNs loaded with AAV-VEGF increased VEGF expression and enhanced functional angiogenesis and neurogenesis. In summary, MNs might emerge as a promising platform for delivering various therapeutics to treat ischemic stroke and repair other neurologically diseased tissues.


Assuntos
Isquemia Encefálica , Acidente Vascular Cerebral , Animais , Isquemia Encefálica/terapia , Dependovirus/genética , Neovascularização Fisiológica , Ratos , Recuperação de Função Fisiológica , Acidente Vascular Cerebral/terapia , Fator A de Crescimento do Endotélio Vascular , Fatores de Crescimento do Endotélio Vascular
11.
Molecules ; 26(18)2021 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-34577082

RESUMO

In our continuous search for antibacterial agents against Pseudomonas syringae pv. actinidiae (Psa) from kiwi-associated fungi, two pairs of epimeric cytochalasins, zopfiellasins A-D (1-4), were characterized from the fungus Zopfiella sp. The structures were established on the basis of spectroscopic data analysis, while the absolute configurations were determined by single-crystal X-ray diffraction. Compounds 1 and 3 exhibited antibacterial activity against Psa with MIC values of 25 and 50 µg/mL, respectively. This is the first report of anti-Psa activity of cytochalasin derivatives.


Assuntos
Actinidia/microbiologia , Antibacterianos/química , Antibacterianos/farmacologia , Citocalasinas/química , Citocalasinas/farmacologia , Sordariales/química , Antibacterianos/isolamento & purificação , Citocalasinas/isolamento & purificação , Espectroscopia de Ressonância Magnética , Pseudomonas syringae/efeitos dos fármacos , Estereoisomerismo , Difração de Raios X
12.
J Immunother Cancer ; 9(9)2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34489334

RESUMO

BACKGROUND: A better understanding of the molecular mechanisms that manifest in the immunosuppressive tumor microenvironment (TME) is crucial for developing more efficacious immunotherapies for hepatocellular carcinoma (HCC), which has a poor response to current immunotherapies. Regulatory T (Treg) cells are key mediators of HCC-associated immunosuppression. We investigated the selective mechanism exploited by HCC that lead to Treg cells expansion and to find more efficacious immunotherapies. METHODS: We used matched tumor tissues and blood samples from 150 patients with HCC to identify key factors of Treg cells expansion. We used mass cytometry (CyTOF) and orthotopic cancer mouse models to analyze overall immunological changes after growth differentiation factor 15 (GDF15) gene ablation in HCC. We used flow cytometry, coimmunoprecipitation, RNA sequencing, mass spectrum, chromatin immunoprecipitation and Gdf15-/-, OT-I and GFP transgenic mice to demonstrate the effects of GDF15 on Treg cells and related molecular mechanism. We used hybridoma technology to generate monoclonal antibody to block GDF15 and evaluate its effects on HCC-associated immunosuppression. RESULTS: GDF15 is positively associated with the elevation of Treg cell frequencies in patients wih HCC. Gene ablation of GDF15 in HCC can convert an immunosuppressive TME to an inflammatory state. GDF15 promotes the generation of peripherally derived inducible Treg (iTreg) cells and enhances the suppressive function of natural Treg (nTreg) cells by interacting with a previously unrecognized receptor CD48 on T cells and thus downregulates STUB1, an E3 ligase that mediates forkhead box P3 (FOXP3) protein degradation. GDF15 neutralizing antibody effectively eradicates HCC and augments the antitumor immunity in mouse. CONCLUSIONS: Our results reveal the generation and function enhancement of Treg cells induced by GDF15 is a new mechanism for HCC-related immunosuppression. CD48 is the first discovered receptor of GDF15 in the immune system which provide the possibility to solve the molecular mechanism of the immunomodulatory function of GDF15. The therapeutic GDF15 blockade achieves HCC clearance without obvious adverse events.


Assuntos
Antígeno CD48/imunologia , Carcinoma Hepatocelular/imunologia , Fator 15 de Diferenciação de Crescimento/imunologia , Neoplasias Hepáticas/imunologia , Linfócitos T Reguladores/imunologia , Animais , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patologia , Humanos , Tolerância Imunológica , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patologia , Masculino , Camundongos , Microambiente Tumoral/imunologia
13.
Arch Insect Biochem Physiol ; 107(4): e21825, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34164848

RESUMO

Mating triggers physiological and behavioral changes in female insects. In many species, females experience postmating behavioral and physiological changes that define a post-mated state. These changes are comprised of several conditions, including long-term refractoriness to re-mating and increased production and laying of eggs. Here, we report that mating led to several changes in brown planthopper (BPH) females, including increased octopamine (OA), cAMP concentrations, and activities of several enzymes. Mating also led to changes in the expression of several genes acting in female physiology, including those in the cAMP/PKA signal transduction pathway. OA injections into virgin females led to similar changes. RNAi silencing of the gene encoding tyramine ß-hydroxylase, involved in the final step in OA synthesis, led to decreased expression of these genes, and reduced the cAMP/PKA signaling. At the whole-organism level, the RNAi treatments led to reduced fecundity, body weights, and longevity. RNAi silencing of genes acting in OA signaling led to truncated ovarian development, egg maturation, and ovarian vitellogenin (Vg) uptake. The impact of these decreases is also registered at the population level, seen as decreased population growth. We infer that OA signaling modulates the postmating state in female BPH and possibly other hemipterans.


Assuntos
Hemípteros/fisiologia , Oxigenases de Função Mista/metabolismo , Octopamina/metabolismo , Comportamento Sexual Animal/fisiologia , Animais , AMP Cíclico/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Feminino , Longevidade , Ovário/crescimento & desenvolvimento , Oviposição
14.
Front Pharmacol ; 12: 655652, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34093188

RESUMO

The development of an effective pharmacological countermeasure is needed to reduce the morbidity and mortality in high-dose ionizing radiation-induced acute damage. Genistein has shown bioactivity in alleviating radiation damage and is currently synthesized by chemosynthetic methods. Due to concerns about chemical residues and high costs, the clinical application of genistein is still a major challenge. In this study, we aimed to establish an efficient method for the extraction of genistein from Fructus sophorae. The effects of extracted genistein (FSGen) on preventing intestinal injury from radiation were further investigated in this study. C57/BL mice were exposed to 7.5 Gy whole body irradiation with and without FSGen treatments. Histological analysis demonstrated significant structural and functional restitution of the intestine and bone marrow in FSGen-pretreated cohorts after irradiation. Through mRNA expression, protein expression, and small interfering RNA analyses, we demonstrated that FSGen protects IEC-6 cells against radiation damage by upregulating the Rassf1a and Ercc1 genes to effectively attenuate DNA irradiation damage. Together, our data established an effective method to extract genistein from the Fructus sophorae plant with high purity, and validated the beneficial roles of the FSGen in protecting the radiation damage. These results promise the future applications of Fructus sophorae extracted genistein in the protection of radiation related damages.

15.
PLoS Pathog ; 17(2): e1008992, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33556114

RESUMO

Coxsackievirus B3 (CVB3) belongs to the genus Enterovirus of the family Picornaviridae and can cause acute acinar pancreatitis in adults. However, the molecular mechanisms of pathogenesis underlying CVB3-induced acute pancreatitis have remained unclear. In this study, we discovered that CVB3 capsid protein VP1 inhibited pancreatic cell proliferation and exerted strong cytopathic effects on HPAC cells. Through yeast two-hybrid, co-immunoprecipitation, and confocal microscopy, we show that Menage a trois 1 (MAT1), a subunit of the Cdk-Activating Kinase (CAK) complex involved in cell proliferation and transcription, is a novel interaction protein with CVB3 VP1. Moreover, CVB3 VP1 inhibited MAT1 accumulation and localization, thus interfering with its interaction with CDK7. Furthermore, CVB3 VP1 could suppress CAK complex enzymic phosphorylation activity towards RNA Pol II and CDK4/6, direct substrates of CAK. VP1 also suppresses phosphorylation of retinoblastoma protein (pRb), an indirect CAK substrate, especially at phospho-pRb Ser780 and phospho-pRb Ser807/811 residues, which are associated with cell proliferation. Finally, we present evidence using deletion mutants that the C-terminal domain (VP1-D8, 768-859aa) is the minimal VP1 region required for its interaction with MAT1, and furthermore, VP1-D8 alone was sufficient to arrest cells in G1/S phase as observed during CVB3 infection. Taken together, we demonstrate that CVB3 VP1 can inhibit CAK complex assembly and activity through direct interaction with MAT1, to block MAT1-mediated CAK-CDK4/6-Rb signaling, and ultimately suppress cell proliferation in pancreatic cells. These findings substantially extend our basic understanding of CVB3-mediated pancreatitis, providing strong candidates for strategic therapeutic targeting.


Assuntos
Proteínas do Capsídeo/metabolismo , Proteínas de Ciclo Celular/metabolismo , Proliferação de Células , Infecções por Coxsackievirus/complicações , Quinases Ciclina-Dependentes/metabolismo , Enterovirus Humano B/patogenicidade , Pancreatite/patologia , Fatores de Transcrição/metabolismo , Proteínas do Capsídeo/genética , Pontos de Checagem do Ciclo Celular , Proteínas de Ciclo Celular/genética , Diferenciação Celular , Infecções por Coxsackievirus/virologia , Quinases Ciclina-Dependentes/genética , Humanos , Pancreatite/metabolismo , Pancreatite/virologia , Fosforilação , Fatores de Transcrição/genética , Quinase Ativadora de Quinase Dependente de Ciclina
16.
J Invest Dermatol ; 141(3): 563-574, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-32712160

RESUMO

T helper cells are crucial for psoriasis pathogenesis. Communication between T cells and psoriatic keratinocytes (KCs) helps drive the Th1 and Th17 response, but the underlying mechanism is not well-understood. Small extracellular vesicles (sEVs) are emerging mediators of intercellular communication. Here, we investigated the role of KC-derived sEVs in the Th1 and Th17 response in psoriasis. We isolated and characterized sEVs from KCs under normal (untreated) and psoriatic (cytokine-treated) conditions. sEVs under both conditions exhibited a cup-shaped morphology and expressed markers CD63 and CD81. sEVs from cytokine-treated KCs can be taken up by CD4+T cells, leading to the induction of Th1 and Th17 polarization. Small RNA sequencing revealed that miR-381-3p was significantly increased in sEVs from cytokine-treated KCs and in CD4+T cells from patients with psoriasis. Moreover, sEVs-containing miR-381-3p was responsible for sEVs-induced Th1 and Th17 polarization. We further found that the miR-381-3p targeted to the 3' untranslated region of E3 ubiquitin-ligase UBR5 and stabilized RORγt protein expression. It also targeted to the 3' untranslated region of FOXO1, associated with activated T-bet and RORγt transcription. Taken together, we propose that psoriatic KCs transfer miR-381-3p to CD4+T cells through sEVs, inducing Th1 and Th17 polarization and promoting psoriasis development. Our findings motivate future studies of KC-derived sEVs or their specific cargoes as therapeutic candidates for psoriasis.


Assuntos
Queratinócitos/metabolismo , MicroRNAs/metabolismo , Psoríase/imunologia , Células Th1/imunologia , Células Th17/imunologia , Regiões 3' não Traduzidas/genética , Adulto , Estudos de Casos e Controles , Comunicação Celular/imunologia , Citocinas/metabolismo , Vesículas Extracelulares/metabolismo , Feminino , Proteína Forkhead Box O1/genética , Voluntários Saudáveis , Humanos , Masculino , Pessoa de Meia-Idade , Membro 3 do Grupo F da Subfamília 1 de Receptores Nucleares/genética , Cultura Primária de Células , Psoríase/sangue , Psoríase/genética , Psoríase/patologia , Análise de Sequência de RNA , Células Th1/metabolismo , Células Th17/metabolismo , Ubiquitina-Proteína Ligases/genética , Adulto Jovem
17.
Materials (Basel) ; 13(17)2020 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-32899211

RESUMO

Calcium sulfide (CaS) inclusion with large and irregular shape is detrimental to the properties of steel. Understanding the shape and distribution of CaS inclusions in a continuous casting (CC) slab is of significance for improving the rolling properties. In this study, CaS inclusions were extracted from CC slab of Ni20Mn6 steel using the electrolytic extraction and investigated by scanning electron microscopy (SEM)-energy dispersive X-ray spectroscopy (EDX). The CaS inclusions morphologies vary with their locations in the CC slab and, thus, are classified into five categories. The thermodynamics calculated results showed that CaS inclusions precipitated at the end of solidification due to the microsegregation of sulfur and calcium in the interdendrite liquid and finally precipitated along the austenite grain boundary. The macrosegregation degree of solutes in different regions is one of the reasons that affect the size of CaS inclusion. The morphologies of CaS inclusion are affected by the solidification structure of slab and austenite grain boundary.

18.
ACS Appl Mater Interfaces ; 12(37): 40990-40999, 2020 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-32808753

RESUMO

Flexible bioelectronics for biomedical applications requires a stretchable, conductive, self-healable, and biocompatible material that can be obtained by cost-effective chemicals and strategies. Herein, we synthesized polypyrrole or Zn-functionalized chitosan molecules, which are cross-linked with poly(vinyl alcohol) to form a hydrogel through dynamic di-diol complexations, hydrogen bonding, and zinc-based coordination bonds. These multiple dynamic interactions endow the material with excellent stretchability and autonomous self-healing ability. The choice of Food and Drug Administration (FDA)-approved materials (poly(vinyl alcohol) and chitosan) as the matrix materials ensures the good biocompatibility of the hydrogel. The conductivity contributed by the polypyrrole allowed the hydrogel to sense strain and temperature, and the coordinated Zn significantly enhanced the antibacterial activity of the hydrogel. Moreover, using a diabetic rat model, we have proved that this hydrogel is capable of promoting the healing of the infected chronic wounds with electrical stimulation.


Assuntos
Antibacterianos/farmacologia , Materiais Biocompatíveis/farmacologia , Hidrogéis/farmacologia , Pseudomonas aeruginosa/efeitos dos fármacos , Staphylococcus aureus/efeitos dos fármacos , Temperatura , Animais , Antibacterianos/síntese química , Antibacterianos/química , Materiais Biocompatíveis/síntese química , Materiais Biocompatíveis/química , Condutividade Elétrica , Estimulação Elétrica , Hidrogéis/síntese química , Hidrogéis/química , Masculino , Testes de Sensibilidade Microbiana , Tamanho da Partícula , Ratos , Ratos Sprague-Dawley , Propriedades de Superfície , Cicatrização/efeitos dos fármacos
19.
Biosci Trends ; 14(2): 96-103, 2020 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-32173687

RESUMO

4-anilinoquinazoline-containing inhibitors of the epidermal growth factor receptor (EGFR) are widely used in non-small cell lung cancer patients with mutated EGFR, but they are less effective in multiple myeloma (MM), a fatal malignancy derived from plasma cells. The present study designed a series of novel compounds by conjugating a peroxide bridge to the 4-anilinoquinazoline pharmacophore. Further studies showed that these agents such as 4061 and 4065B displayed potent activity to induce MM cell apoptosis by upregulating pro-apoptotic p53 and Bax while downregulating pro-survival Bcl-2. The mechanistic analysis revealed that both 4061 and 4065B inhibited IGF1-R, AKT and mTOR activation in a concentration dependent manner but had no effects on the expression of their total proteins, suggesting the conjugates of endoperoxide and 4-anilinoquinazoline may exert its anti-myeloma activity by targeting the IGF1-R/AKT/mTOR pathway.


Assuntos
Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Mieloma Múltiplo/tratamento farmacológico , Inibidores de Proteínas Quinases/farmacologia , Compostos de Anilina/química , Compostos de Anilina/farmacologia , Compostos de Anilina/uso terapêutico , Antineoplásicos/química , Antineoplásicos/uso terapêutico , Artemisininas/química , Artemisininas/farmacologia , Artemisininas/uso terapêutico , Linhagem Celular Tumoral , Gefitinibe/farmacologia , Humanos , Mieloma Múltiplo/patologia , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/uso terapêutico , Proteínas Proto-Oncogênicas c-akt/metabolismo , Quinazolinas/química , Quinazolinas/farmacologia , Quinazolinas/uso terapêutico , Receptor IGF Tipo 1/metabolismo , Transdução de Sinais/efeitos dos fármacos , Serina-Treonina Quinases TOR/metabolismo
20.
Adv Healthc Mater ; 8(22): e1901015, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31599123

RESUMO

Tissue structural anisotropy is an important basis for heart function. Attempts to regenerate the complicated heart-tissue alignment has rarely featured macroscale 3D constructs required for myocardial tissue engineering. The feasibility of engineered scaffolds with micro/macro-architecture for guiding spatial cell alignment following complex patterns is reported. The scaffold is composed of stackable dual-structured layers with linear micro-ridge/groove patterns and macro-through-hole arrays, which enable tailorable anisotropy and interconnective free space. When human mesenchymal stem cells are seeded on the scaffold, well-organized spreading alignment showing the precise control in cellular orientation is significantly introduced over nonpatterned controls. Moreover, spatial cell distribution in the scaffold and directional changes of the layered linear patterns that made cell alignment orientations turning accordingly are observed, leading to the complex 3D pattern reconstruction of cellular alignment resembling natural myocardial tissue. This work validates the potential of micro/macro-architecture engineering for spatial cell guidance. Scaffolds with this capability can be potentially used for biomanufacturing of the structural alignment in myocardial tissue engineering.


Assuntos
Miocárdio/citologia , Engenharia Tecidual/métodos , Alicerces Teciduais/química , Anisotropia , Células Cultivadas , Humanos , Células-Tronco Mesenquimais/citologia , Microscopia Confocal
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA