Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 140
Filtrar
1.
Small ; : e2310964, 2024 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-39030863

RESUMO

Photodynamic therapy (PDT) is long-standing suffered from elevated tumor interstitial fluid pressure (TIFP) and prevalent hypoxic microenvironment within the solid malignancies. Herein, sound-activated flexocatalysis is developed to overcome the dilemma of PDT through both enhancing tumor penetration of photosensitizers by reducing TIFP and establishing an oxygen-rich microenvironment. In detail, a Schottky junction is constructed by flexocatalyst MoSe2 nanoflowers and Pt. Subsequently, the Schottky junction is loaded with the photosensitizer indocyanine green (ICG) and encapsulated within tumor cytomembrane to constitute a bionic-flexocatalytic nanomedicine (MPI@M). After targeting the tumor, MPI@M orchestrates flexocatalytic water splitting in tumor interstitial fluid under acoustic stimulation to lower TIFP, which boosted the tumor penetration of ICG. Concurrently, the oxygen released from the flexocatalytic water splitting overcomes the limitation of hypoxia against PDT. Furthermore, superfluous singlet oxygen generated by PDT can induce mitochondrial dysfunction for further tumor cell apoptosis. After 60 min of flexocatalysis, both the 30% decrease of TIFP and the relieved tumor hypoxia are observed, significantly promoting the therapeutic effect of PDT. Consequently, MoSe2/Pt junction nanoflowers, with the excellent flexocatalytic performance, hold significant potential for future applications in biocatalytic cancer therapies.

2.
Sci China Life Sci ; 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38900236

RESUMO

The spreading of cancer cells from the primary tumor site to other parts of the body, known as metastasis, is the leading cause of cancer recurrence and mortality in patients with triple-negative breast cancer (TNBC). Overexpression of epidermal growth factor receptor (EGFR) is observed in approximately 70% of TNBC patients. EGFR is crucial for promoting tumor metastasis and associated with poor prognosis. Therefore, it is vital to identify effective therapeutic strategies targeting EGFR inhibition. Ononin, an isoflavonoid found in various plants, such as clover and soybeans, has been shown to have anticancer properties in several cancers. In the present study, we aimed to investigate the effects of ononin on TNBC lung metastasis and the associated molecular pathways. We used various assays, including cell viability, colony formation, Transwell, wound healing, ELISA, Western blotting, and staining techniques, to achieve this objective. The results demonstrated that ononin effectively suppressed cellular proliferation and induced apoptosis, as evidenced by the cell viability assay, colony formation assay, and expression of apoptosis markers, and reduced the metastatic capabilities of TNBC cells. These effects were achieved through the direct suppression of cell adhesion, invasiveness and motility. Furthermore, in TNBC xenograft lung metastatic models, ononin treatment significantly reduced tumor growth and lung metastasis. Additionally, ononin reversed the epithelial-mesenchymal transition (EMT) by downregulating the expression of EMT markers and matrix metalloproteinases, as confirmed by Western blot analysis. Furthermore, ononin treatment reduced EGFR phosphorylation and suppressed the PI3K, Akt, and mTOR signaling pathways, which was further confirmed using EGFR agonists or inhibitors. Importantly, ononin treatment did not exert any toxic effects on liver or kidney function. In conclusion, our findings suggest that ononin is a safe and potentially therapeutic treatment for TNBC metastasis that targets the EGFR-mediated PI3K/Akt/mTOR pathway. Further studies are warranted to validate its efficacy and explore its potential clinical applications.

3.
Adv Healthc Mater ; : e2400596, 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38932657

RESUMO

In oncological nanomedicine, overcoming the dual-phase high interstitial pressure in the tumor microenvironment is pivotal for enhancing the penetration and efficacy of nanotherapeutics. The elevated tumor interstitial solid pressure (TISP) is largely attributed to the overaccumulation of collagen in the extracellular matrix, while the increased tumor interstitial fluid pressure (TIFP) stems from the accumulation of fluid due to the aberrant vascular architecture. In this context, metal-organic frameworks (MOFs) with catalytic efficiency have shown potential in degrading tumor interstitial components, thereby reducing interstitial pressure. However, the potential biotoxicity of the organic components of MOFs limits their clinical translation. To circumvent this, a MOF-like photocatalytic nanozyme, RPC@M, using naturally derived cobalt phytate (CoPA) and resveratrol (Res) is developed. This nanozyme not only facilitates the decomposition of water in the tumor interstitium under photoactivation to reduce TIFP, but also generates an abundance of reactive oxygen species through its peroxidase-like activity to exert cytotoxic effects on tumor cells. Moreover, Res contributes to the reduction of collagen deposition, thereby lowering TISP. The concurrent diminution of both TISP and TIFP by RPC@M leads to enhanced tumor penetration and potent antitumor activity, presenting an innovative approach in constructing tumor therapeutic nanozymes from natural products.

5.
Biosens Bioelectron ; 258: 116373, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-38729048

RESUMO

Breast cancer is reported to be one of the most lethal cancers in women, and its multi-target detection can help improve the accuracy of diagnosis. In this work, a cluster regularly interspaced short palindromic repeats (CRISPR)-Cas13a/Cas12a-based system was established for the simultaneous fluorescence detection of breast cancer biomarkers circROBO1 and BRCA1. CRISPR-Cas13a and CRISPR-Cas12a were directly activated by their respective targets, resulting in the cleavage of short RNA and DNA reporters, respectively, thus the signals of 6-carboxyfluorescein (FAM) and 6-carboxy-xrhodamine (ROX) were restored. As the fluorescence intensities of FAM and ROX were dependent on the concentrations of circROBO1 and BRCA1, respectively, synchronous fluorescence scanning could achieve one-step detection of circROBO1 and BRCA1 with detection limits of 0.013 pM and 0.26 pM, respectively. The system was highly sensitive and specific, holding high diagnostic potential for the detection of clinical samples. Furthermore, the competing endogenous RNA mechanism between circROBO1 and BRCA1 was also explored, providing a reliable basis for the intrinsic regulatory mechanism of breast cancer.


Assuntos
Proteína BRCA1 , Biomarcadores Tumorais , Técnicas Biossensoriais , Neoplasias da Mama , Sistemas CRISPR-Cas , Humanos , Neoplasias da Mama/genética , Neoplasias da Mama/diagnóstico , Feminino , Biomarcadores Tumorais/genética , Técnicas Biossensoriais/métodos , Proteína BRCA1/genética , RNA Circular/genética , Limite de Detecção , Fluoresceínas/química , Proteínas Associadas a CRISPR/genética
6.
Front Cell Dev Biol ; 12: 1381920, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38566827

RESUMO

Introduction: Despite the abundance of research indicating the participation of immune cells in prostate cancer development, establishing a definitive cause-and-effect relationship has proven to be a difficult undertaking. Methods: This study employs Mendelian randomization (MR), leveraging genetic variables related to immune cells from publicly available genome-wide association studies (GWAS), to investigate this association. The primary analytical method used in this study is inverse variance weighting (IVW) analysis. Comprehensive sensitivity analyses were conducted to assess the heterogeneity and horizontal pleiotropy of the results. Results: The study identifies four immune cell traits as causally contributing to prostate cancer risk, including CD127- CD8+ T cell %CD8+ T cell (OR = 1.0042, 95%CI:1.0011-1.0073, p = 0.0077), CD45RA on CD39+ resting CD4 regulatory T cell (OR = 1.0029, 95%CI:1.0008-1.0050, p = 0.0065), CD62L- Dendritic Cell Absolute Count (OR = 1.0016; 95%CI:1.0005-1.0026; p = 0.0039), CX3CR1 on CD14+ CD16- monocyte (OR = 1.0024, 95%CI:1.0007-1.0040, p = 0.0060). Additionally, two immune cell traits are identified as causally protective factors: CD4 on monocyte (OR = 0.9975, 95%CI:0.9958-0.9992, p = 0.0047), FSC-A on plasmacytoid Dendritic Cell (OR = 0.9983, 95%CI:0.9970-0.9995, p = 0.0070). Sensitivity analyses indicated no horizontal pleiotropy. Discussion: Our MR study provide evidence for a causal relationship between immune cells and prostate cancer, holding implications for clinical diagnosis and treatment.

7.
Front Biosci (Elite Ed) ; 16(1): 6, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38538524

RESUMO

BACKGROUND: This research explores the significance of miR-215-5p and vasculogenic mimicry (VM) in forecasting the prognosis for hepatocellular carcinoma (HCC). METHODS: We analyzed HCC-associated miRNA expression profiles using data from The Cancer Genome Atlas (TCGA) and the Gene Expression Omnibus (GEO). Samples included tissue and blood from 80 early-stage HCC patients and serum from 120 healthy individuals. Reverse transcription-quantitative polymerase chain reaction (RT-qPCR) was employed to measure miR-215-5p and zinc finger E-box binding homeobox 2 (ZEB2) gene expressions. Hematoxylin and eosin (H&E) and CD34/Periodic Acid-Schiff (PAS) double staining assessed VM presence in HCC tissue sections. Bioinformatics tools predicted interactions between miR-215-5p and ZEB2, confirmed through luciferase reporter assays. We also examined the impact of miR-215-5p or ZEB2 overexpression on HCC cell invasion, migration, and VM formation using scratch, Transwell invasion assays, and Matrigel 3D cultures. RESULTS: Bioinformatics analysis indicated that miR-215-5p was under-expressed in HCC, particularly in cases with vascular invasion, which correlated with worse patient outcomes. In contrast, ZEB2, targeted by miR-215-5p, was overexpressed in HCC. RT-qPCR validated these expression patterns in HCC tissues. Among the HCC patients, 38 were VM positive and 42 VM negative. Logistic regression highlighted a negative correlation between miR-215-5p levels and VM positivity in HCC tissues and a positive correlation for ZEB2 with VM positivity and tumor vascular invasion. Lower miR-215-5p levels were linked to increased HCC recurrence and metastasis. Both bioinformatics analysis and luciferase assays demonstrated a direct interaction between miR-215-5p and ZEB2. Enhancing miR-215-5p levels reduced ZEB2 expression, consequently diminishing invasion, migration, and VM formation of the HCC cells in vitro. CONCLUSIONS: miR-215-5p expression inversely correlates with VM occurrence in HCC tissues, while ZEB2 expression shows a direct correlation. By targeting ZEB2, miR-215-5p may hinder VM in HCC tissues, helping to prevent vascular invasion and HCC recurrence. Thus, miR-215-5p emerges as a vital prognostic indicator for predicting vascular invasion and recurrence in HCC.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , MicroRNAs , Humanos , Carcinoma Hepatocelular/genética , Neoplasias Hepáticas/genética , MicroRNAs/genética , MicroRNAs/metabolismo , Linhagem Celular Tumoral , Luciferases/genética , Luciferases/metabolismo , Proliferação de Células , Regulação Neoplásica da Expressão Gênica , Movimento Celular/genética
8.
Cardiovasc Toxicol ; 24(3): 302-320, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38453799

RESUMO

Abdominal aortic aneurysm (AAA) is a chronic vascular degenerative disease. Vascular smooth muscle cells (VSMCs) are essential for maintaining the integrity of healthy blood vessels. Macrophages play an important role in the inflammatory process of AAA. However, the effect of macrophage-derived exosome LncRNA PVT1 on VSMCs is unclear. Exosomes from M1 macrophages (M1φ-exos) were isolated and identified. The expression of LncRNA PVT1 in M1φ-exos was determined. AAA cell model was constructed by treating VSMCs with Ang-II. AAA cell model was treated with M1φ exosomes transfected with si-LncRNA PVT1 (M1φsi-LncRNA PVT1-exo). VSMCs were transfected with miR-186-5p mimic and oe-HMGB1. Cell viability was detected by CCK-8. The accumulation of LDH was detected by ELISA. Western blot was used to detect the expression of HMGB1, inflammatory factors (IL-6, TNF-α and IL-1ß) and pyroptosis-related proteins (GSDMD, N-GSDMD, ASC, NLRP3, Caspase-1 and Cleaved-Capase-1). Cell pyroptosis rate was detected by flow cytometry. At the same time, the targeting relationship between miR-186-5p and LncRNA PVT1 and HMGB1 was verified by double fluorescein experiment. Exosomes from M1φ were successfully extracted. The expression of LncRNA PVT1 in M1φ-exos was significantly increased. M1φ-exo promotes inflammation and pyroptosis of VSMCs. M1φsi-LncRNA PVT1-exos inhibited the inflammation and pyroptosis of VSMCs. LncRNA PVT1 can sponge miR-186-5p mimic to regulate HMGB1 expression. MiR-186-5p mimic further inhibited inflammation and pyroptosis induced by M1φsi-LncRNA PVT1-exos. However, oe-HMGB1 could inhibit the reversal effect of miR-186-5p mimic. LncRNA PVT1 in exosomes secreted by M1φ can regulate HMGB1 by acting as ceRNA on sponge miR-186-5p, thereby promoting cell inflammatory and pyroptosis and accelerating AAA progression.


Assuntos
Aneurisma da Aorta Abdominal , Exossomos , Proteína HMGB1 , MicroRNAs , RNA Longo não Codificante , Humanos , Músculo Liso Vascular , Piroptose , Inflamação , Macrófagos
9.
Am J Cancer Res ; 14(2): 545-561, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38455413

RESUMO

Aberrant autophagy could promote cancer cells to survive and proliferate in prostate cancer (PCa). LncRNAs play key roles in autophagy regulatory network. We established a prognostic model, which autophagy-related lncRNAs (au-lncRNAs) were used as biomarkers to predict prognosis of individuals with PCa. Depending on au-lncRNAs from the Cancer Genome Atlas and the Human Autophagy Database, a risk score model was created. To evaluate the prediction accuracy, the calibration, Kaplan-Meier, and receiver operating characteristic curves were used. To clarify the biological function, gene set enrichment analyses (GSEA) were performed. Quantitative real-time PCR (qRT-PCR) was employed to determine the au-lncRNAs expression in PCa cell lines and healthy prostate cells for further confirmation. We identified five au-lncRNAs with prognostic significance (AC068580.6, AF131215.2, LINC00996, LINC01125 and LINC01547). The development of a risk scoring model required the utilization of multivariate Cox analysis. According to the model, we categorized PCa individuals into low- and high-risk cohorts. PCa subjects in the high-risk group had a worse disease-free survival rate than those in the low-risk group. The 1-, 3-, and 5-year periods had corresponding areas under curves (AUC) of 0.788, 0.794, and 0.818. The prognosis of individuals with PCa could be predicted by the model with accuracy. Further analysis with GSEA showed that the prognostic model was associated with the tumor microenvironment, including immunotherapy, cancer-related inflammation, and metabolic reprogramming. Four lncRNAs expression in PCa cell lines was greater than that in healthy prostate cells. The au-lncRNA prognostic model has significant clinical implications in prognosis of PCa patient.

10.
J Environ Manage ; 354: 120394, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38412729

RESUMO

Algal blooms, exacerbated by climate change and eutrophication, have emerged as a global concern. In this study, we introduce a novel interpretable machine learning (ML) workflow tailored for investigating the dynamics of algal populations in grass-type lakes, Liangzi lake. Utilizing seven ML methods and incorporating the covariance matrix adaptation evolution strategy (CMA-ES), we predict algal density across three distinct time periods, resulting in the construction of a total of 30 ML models. The CMA-ES-CatBoost model consistently demonstrates superior predictive accuracy and generalization capability across these periods. Through the collective validation of various interpretable tools, we identify water temperature and permanganate index as the two most critical water quality parameters (WQIs) influencing algal density in Liangzi Lake. Additionally, we quantify the independent and interactive effects of WQIs on algal density, pinpointing key thresholds and trends. Furthermore, we determine the minimum combination of WQIs that achieves near-optimal predictive performance, striking a balance between accuracy and cost-effectiveness. These findings offer a scientific and economically efficient foundation for governmental agencies to formulate strategies for water quality management and sustainable development.


Assuntos
Lagos , Poaceae , Qualidade da Água , Eutrofização , Aprendizado de Máquina , Dinâmica Populacional , Monitoramento Ambiental , China
12.
Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi ; 37(11): 1375-1379, 2023 Nov 15.
Artigo em Chinês | MEDLINE | ID: mdl-37987047

RESUMO

Objective: To investigate the effectiveness of compression screw combined with Buttress plate through direct axillary approach for Ideberg typeⅡ scapular glenoid fractures. Methods: A retrospective analysis was conducted on 11 patients with Ideberg type Ⅱ scapular glenoid fractures treated with compression screws combined with Buttress plate fixation through the direct axillary approach between January 2014 and June 2022. There were 7 males and 4 females, aged from 34 to 75 years, with an average of 56.0 years. The causes of injury included 4 cases of falling from height injury, 4 cases of heavy object injury, and 3 cases of traffic accident injury. The time from injury to operation was 2-5 days, with an average of 3.8 days. The operation time, intraoperative blood loss, hospital stay, complications, and fracture healing time were recorded. The Constant-Murley score, American Society of Shoulder and Elbow Surgeons (ASES) score, and shoulder joint flexion, abduction, external rotation (neutral position), and internal rotation (neutral position) range of motion were used to evaluate shoulder joint pain and function. Results: The operation time was 45-105 minutes, with an average of 79.0 minutes; the intraoperative blood loss was 80-200 mL, with an average of 99.2 mL; the hospital stay was 3-8 days, with an average of 5.8 days. One patient had poor wound healing after operation, and the wound healed after strengthening dressing change; the rest wounds had primary healing, and no axillary nerve paralysis occurred. Except for 1 patient lost follow-up, the remaining 10 patients were followed up 10-54 months, with an average of 26.4 months. The postoperative X-ray film examination showed that the fractures healed well within 8-15 weeks, with an average of 11.0 weeks. There was no complication such as fracture displacement, internal fixator failure or fracture during follow-up. At last follow-up, the patient's shoulder joint flexion, abduction, external rotation (neutral position), and internal rotation (neutral position) range of motion, Constant-Murley score, and ASES score significantly improved when compared with those before operation ( P<0.05). Conclusion: Compression screw combined with Buttress plate through direct axillary approach is an effective way to treat Ideberg typeⅡ scapular glenoid fracture, with advantages of small trauma, concealed incision, and good effectiveness.


Assuntos
Perda Sanguínea Cirúrgica , Fraturas do Ombro , Masculino , Feminino , Humanos , Estudos Retrospectivos , Fixação Interna de Fraturas , Resultado do Tratamento , Fraturas do Ombro/cirurgia , Parafusos Ósseos , Placas Ósseas
13.
Cell Death Differ ; 30(12): 2477-2490, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37903990

RESUMO

Ferroptosis is a regulated cell death process initiated by iron-dependent phospholipid peroxidation and is mainly suppressed by GPX4-dependent and FSP1-dependent surveillance mechanisms. However, how the ferroptosis surveillance system is regulated during cancer development remains largely unknown. Here, we report that the YTHDC1-mediated m6A epigenetic regulation of FSP1 alleviates the FSP1-dependent ferroptosis suppression that partially contributes to the tumor suppressive role of YTHDC1 in lung cancer progression. YTHDC1 knockdown promoted the lung tumor progression and upregulated FSP1 protein level that resulted in ferroptosis resistance of lung cancer cells. Silencing FSP1 abrogated YTHDC1 knockdown-induced proliferation increase and ferroptosis resistance. Mechanistically, YTHDC1 binding to the m6A sites in the FSP1 3'-UTR recruited the alternative polyadenylation regulator CSTF3 to generate a less stable shorter 3'-UTR contained FSP1 mRNA, whereas YTHDC1 downregulation generated the longer 3'-UTR contained FSP1 mRNA that is stabilized by RNA binding protein HuR and thus led to the enhanced FSP1 protein level. Therefore, our findings identify YTHDC1 as a tumor progression suppressor in lung cancer and a ferroptosis regulator through modulating the FSP1 mRNA stability and thus suggest a ferroptosis-related therapeutic option for YTHDC1high lung cancer.


Assuntos
Ferroptose , Neoplasias Pulmonares , Morte Celular Regulada , Humanos , Epigênese Genética , Ferroptose/genética , Neoplasias Pulmonares/genética , Proteínas do Tecido Nervoso , Fatores de Processamento de RNA , RNA Mensageiro
14.
Proc Natl Acad Sci U S A ; 120(38): e2310163120, 2023 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-37703282

RESUMO

Callus is a reprogrammed cell mass involved in plant regeneration and gene transformation in crop engineering. Pluripotent callus cells develop into fertile shoots through shoot regeneration. The molecular basis of the shoot regeneration process in crop callus remains largely elusive. This study pioneers the exploration of the spatial transcriptome of tomato callus during shoot regeneration. The findings reveal the presence of highly heterogeneous cell populations within the callus, including epidermis, vascular tissue, shoot primordia, inner callus, and outgrowth shoots. By characterizing the spatially resolved molecular features of shoot primordia and surrounding cells, specific factors essential for shoot primordia formation are identified. Notably, chlorenchyma cells, enriched in photosynthesis-related processes, play a crucial role in promoting shoot primordia formation and subsequent shoot regeneration. Light is shown to promote shoot regeneration by inducing chlorenchyma cell development and coordinating sugar signaling. These findings significantly advance our understanding of the cellular and molecular aspects of shoot regeneration in tomato callus and demonstrate the immense potential of spatial transcriptomics in plant biology.


Assuntos
Solanum lycopersicum , Solanum lycopersicum/genética , Transcriptoma , Células Epiteliais , Perfilação da Expressão Gênica , Regeneração/genética
15.
Int J Surg Case Rep ; 109: 108628, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37562280

RESUMO

INTRODUCTION AND IMPORTANCE: Femoral fractures are common in the patients with osteopetrosis and multiple treatment strategies have been described with varying results. However, there is a paucity of literature describing the treatment of recurrent fractures and subsequent deformity. CASE PRESENTATION: We present detailed revision strategies and long-term follow-up results of a patient with osteopetrosis who suffered unsuccessful operative treatment using the plate-screw system (recurrent femoral shaft fracture and implant failure). CLINICAL DISCUSSION: The success of revision surgery of osteopetrosis is based on good preoperative planning, appropriate selection of fixation methods, and a meticulous approach during surgery. The combined application of the expert adolescent lateral femoral nail, the reconstruction locked plate, and bone morphogenic protein (BMP)-7 in this patient achieved good clinical results. CONCLUSION: In the treatment of failed plated and recurrent osteopetrotic femoral shaft fractures, the combination of nails and plating presents an alternative, potentially more successful, revision strategy.

16.
J Orthop Surg Res ; 18(1): 546, 2023 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-37516879

RESUMO

BACKGROUND: Osteoporosis remains a significant clinical challenge worldwide. Recent studies have shown that exosomes stimulate bone regeneration. Thus, it is worthwhile to explore whether exosomes could be a useful therapeutic strategy for osteoporosis. The purpose of this study was to investigate the effects of exosomes derived from human umbilical cord mesenchymal stem cells (hucMSCs) on osteoblast proliferation and differentiation. METHODS: Exosomes were isolated from hucMSCs. Bioinformatics analysis was performed to identify the differentially expressed lncRNAs in myeloma-derived mesenchymal stem cells. Plasmids encoding LINC00520 or short hairpin RNA of LINC00520 were transfected into hucMSCs and then exosomes were isolated. After human osteoblasts hFOB1.19 were exposed to the obtained exosomes, cell survival, cell cycle, apoptosis and calcium deposits of hFOB1.19 cell were detected by MTT, 7-aminoactinomycin D, Annexin V-FITC/propidium iodide and Alizarin red staining, respectively. RESULTS: In hFOB1.19 cells, 10 × 109/mL hucMSC-derived exosomes inhibited cell proliferation, arrested cell cycle, and promoted apoptosis, while hucMSCs or 1 × 109/mL exosomes promoted cell proliferation, accelerated cell cycle, and promoted calcium deposits and the expression of OCN, RUNX2, collagen I and ALP. In hFOB1.19 cells, exosomes from hucMSCs with LINC00520 knockdown reduced the survival and calcium deposits, arrested the cell cycle, and enhanced the apoptosis, while exosomes from hucMSCs overexpressing LINC00520 enhance the proliferation and calcium deposits and accelerated the cell cycle. CONCLUSIONS: LINC00520 functions as a modulator of calcium deposits, and exosomes derived from hucMSCs overexpressing LINC00520 might be a novel therapeutic approach for osteoporosis.


Assuntos
Cálcio , Exossomos , Humanos , Exossomos/genética , Ciclo Celular/genética , Diferenciação Celular/genética , Proliferação de Células/genética
17.
Cell Death Dis ; 14(6): 359, 2023 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-37311754

RESUMO

The prognosis of lung cancer is poor with few effective therapies. Targeting ferroptosis is a new promising strategy for cancer therapy. LINC00641 has been involved in several cancers, however, its specific roles in lung cancer treatment remain largely unknown. Here, we reported that LINC00641 was down-regulated in tumor tissues and its downregulation was associated with poor outcomes in lung adenocarcinoma. LINC00641 was localized primarily in the nucleus and was modified by m6A. The nuclear m6A reader YTHDC1 regulated LINC00641 expression by affecting its stability. We demonstrated that LINC00641 suppressed lung cancer by inhibiting migration and invasion in vitro and metastasis in vivo. Knockdown of LINC00641 upregulated HuR protein level (especially in the cytoplasm), which subsequently increased N-cadherin levels by stabilizing its mRNA, then ultimately promoted EMT. Interestingly, LINC00641 knockdown in lung cancer cells increased the arachidonic acid metabolism and promoted ferroptosis sensitivity. Our findings identified LINC00641 as a tumor suppressor through inhibiting EMT. In another aspect, low expression of LINC00641 caused a ferroptotic vulnerability in lung cancer cells, which may serve as a potential ferroptosis-related therapeutic target for lung cancer.


Assuntos
Adenocarcinoma de Pulmão , Neoplasias Pulmonares , Humanos , Regulação para Baixo/genética , Neoplasias Pulmonares/genética , Núcleo Celular , Adenosina
18.
Comput Methods Programs Biomed ; 240: 107646, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37320941

RESUMO

BACKGROUND AND OBJECTIVE: Magnetic guidewire, fabricated from hard-magnetic soft composites, has recently emerged as an appropriate candidate for magnetic actuation systems to perform intravascular surgical navigation, owing to its elastic, magnetically steerable properties and good interphase with biological tissues. A suitable and efficient mathematical model for the magnetic guidewire is essential in the system to execute remote manipulation and active control. METHODS: This paper presents a real-time Kirchhoff rod-based dynamical modeling approach, the magneto-elastic rod model, to simulate magnetic guidewire, which provides accurate simulations for two- and three-dimensional dynamic deflections induced by external magnetic fields and obtains deformed guidewire shapes in quasi-static status. RESULTS: The proposed model is capable of describing the intrinsic principles of elastic body actuation by torques generated from the hard-magnetic soft matrix. The effectiveness of the developed model is validated, and the real-time simulation application is conducted via the semi-implicit numerical integration method. CONCLUSIONS: It has been shown that the presented dynamical model captures large nonlinear deformations and transient responses of the magnetic guidewire in an imitated human blood environment, which could offer robust support for the construction of a simulated magnetically driven surgical system.


Assuntos
Cateterismo , Modelos Teóricos , Humanos , Simulação por Computador , Cateterismo/métodos , Fenômenos Físicos , Fenômenos Magnéticos
19.
Int J Mol Sci ; 24(12)2023 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-37373508

RESUMO

With potential anti-tumor and antioxidant properties, the polysaccharide content of D. nobile is relatively lower than that of the other medicinal Dendrobium. To find high-content polysaccharide resources, the polysaccharide (DHPP-Ⅰs) was prepared from D. Second Love 'Tokimeki' (a D. nobile hybrid) and compared with DNPP-Ⅰs from D. nobile. DHPP-Is (Mn 31.09 kDa) and DNPP-Is (Mn 46.65 kDa) were found to be O-acetylated glucomannans (-Glcp-(1,4) and O-acetylated-D-Manp-(1,4) backbones), analogous to other Dendrobium polysaccharides. DHPP-Ⅰs had higher glucose content (31.1%) and a lower degree (0.16) of acetylation than DNPP-Ⅰs (15.8%, 0.28). Meanwhile, DHPP-Ⅰs and DNPP-Ⅰs had the same ability in the radical scavenging assay, which was milder than the control of Vc. Both DHPP-Is and DNPP-Is inhibited SPC-A-1 cell proliferation in vitro, with obvious differences in dose concentrations (0.5-2.0 mg/mL) and treatment times (24-72 h). Therefore, the antioxidant activity of DHPP-Ⅰs and DNPP-Ⅰs is not associated with distinction in anti-proliferative activity. As a glucomannan derived from non-medicinal Dendrobium, DHPP-Ⅰs has similar bioactivity to other medicinal Dendrobium, and this could serve as a starting point for studying the conformational-bioactivity relationship of Dendrobium polysaccharides.


Assuntos
Dendrobium , Neoplasias , Antioxidantes/farmacologia , Água/química , Dendrobium/química , Amor , Polissacarídeos/farmacologia , Polissacarídeos/química
20.
J Pharm Sci ; 112(12): 3075-3087, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37364772

RESUMO

Nitrosamine compounds are classified as potential human carcinogens, the origin of these impurities can be broadly classified in two categories, nitrosamine impurity found in drug products that are not associated with the Active Pharmaceutical Ingredient (API), such as N-nitrosodimethylamine (NDMA) or nitrosamine impurities associated with the API, such as nitrosamine drug substance-related impurities (NDSRIs). The mechanistic pathway for the formation of these two classes of impurities can be different and the approach to mitigate the risk should be tailored to address the specific concern. In the last couple of years number of NDSRIs have been reported for different drug products. Though, not the only contributing factor for the formation of NDSIRs, it is widely accepted that the presence of residual a nitrites/nitrates in the components used in the manufacturing of the drug products can be the primary contributor to the formation of NDSRIs. Approaches to mitigate the formation of NDSRIs in drug products include the use of antioxidants or pH modifiers in the formulation. The primary objective of this work was to evaluate the role of different inhibitors (antioxidants) and pH modifiers in tablet formulations prepared in-house using bumetanide (BMT) as a model drug to mitigate the formation of N-nitrosobumetanide (NBMT). A multi-factor study design was created, and several bumetanide formulations were prepared by wet granulation with and without sodium nitrite spike (100 ppm) and different antioxidants (ascorbic acid, ferulic acid or caffeic acid) at three concentrations (0.1%, 0.5% or 1% of the total tablet weight). Formulations with acidic and basic pH were also prepared using 0.1 N hydrochloric acid and 0.1 N sodium bicarbonate, respectively. The formulations were subjected to different storage (temperature and humidity) conditions over 6 months and stability data was collected. The rank order of N-nitrosobumetanide inhibition was highest with alkaline pH formulations, followed by formulations with ascorbic acid, caffeic acid or ferulic acid present. In summary, we hypothesize that maintaining a basic pH or the addition of an antioxidant in the drug product can mitigate the conversion of nitrite to nitrosating agent and thus reduce the formation of bumetanide nitrosamines.


Assuntos
Bumetanida , Ácidos Cafeicos , Ácidos Cumáricos , Nitrosaminas , Humanos , Nitrosaminas/metabolismo , Antioxidantes/farmacologia , Ácido Ascórbico , Nitritos/metabolismo , Comprimidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA