Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 92
Filtrar
1.
Biomaterials ; 311: 122696, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38971121

RESUMO

Cancer immunotherapy has been developed to improve therapeutic effects for patients by activating the innate immune stimulator of interferon gene (STING) pathway. However, most patients cannot benefit from this therapy, mainly due to the problems of excessively low immune responses and lack of tumor specificity. Herein, we report a solution to these two problems by developing a bifunctional platform of black phosphorus quantum dots (BPQDs) for STING agonists. Specifically, BPQDs could connect targeted functional groups and regulate surface zeta potential by coordinating metal ions to increase loading (over 5 times) while maintaining high universality (7 STING agonists). The controlled release of STING agonists enabled specific interactions with their proteins, activating the STING pathway and stimulating the secretion release of immunosuppressive factors by phosphorylating TBK1 and IFN-IRF3 and secreting high levels of immunostimulatory cytokines, including IL-6, IFN-α, and IFN-ß. Moreover, the immunotherapy was enhanced was enhanced mild photothermal therapy (PTT) of BPQDs platform, producing enough T cells to eliminate tumors and prevent tumor recurrence. This work facilitates further research on targeted delivery of small-molecule immune drugs to enhance the development of clinical immunotherapy.

2.
Antioxidants (Basel) ; 13(4)2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38671916

RESUMO

Oxidative stress causes gut dysfunction and is a contributing factor in several intestinal disorders. Intestinal epithelial cell survival is essential for maintaining human and animal health under oxidative stress. 18beta-Glycyrrhetinic acid (GA) is known to have multiple beneficial effects, including antioxidant activity; however, the underlying molecular mechanisms have not been well established. Thus, the present study evaluated the therapeutic effects of GA on H2O2-induced oxidative stress in intestinal porcine epithelial cells. The results showed that pretreatment with GA (100 nM for 16 h) significantly increased the levels of several antioxidant enzymes and reduced corresponding intracellular levels of reactive oxidative species and malondialdehyde. GA inhibited cell apoptosis via activating the phosphoinositide 3-kinase/protein kinase B (PI3K/Akt) signaling pathway, as confirmed by RNA sequencing. Further analyses demonstrated that GA upregulated the phosphorylation levels of PI3K and Akt and the protein level of B cell lymphoma 2, whereas it downregulated Cytochrome c and tumor suppressor protein p53 levels. Moreover, molecular docking analysis predicted the binding of GA to Vasoactive intestinal peptide receptor 1, a primary membrane receptor, to activate the PI3K/Akt signaling pathway. Collectively, these results revealed that GA protected against H2O2-induced oxidative damage and cell apoptosis via activating the PI3K/Akt signaling pathway, suggesting the potential therapeutic use of GA to alleviate oxidative stress in humans/animals.

3.
Free Radic Biol Med ; 219: 215-230, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38636715

RESUMO

Selenium (Se) is indispensable in alleviating various types of intestinal injuries. Here, we thoroughly investigated the protective effect of Se on the regulation of the epithelial cell-M2 macrophages pathway in deoxynivalenol (DON)-induced intestinal damage. In the present study, Se has positive impacts on gut health by improving gut barrier function and reducing the levels of serum DON in vivo. Furthermore, our study revealed that Se supplementation increased the abundances of GPX4, p-PI3K, and AKT, decreased the levels of 4-HNE and inhibited ferroptosis. Moreover, when mice were treated with DON and Fer-1(ferroptosis inhibitor), ferroptosis was suppressed and PI3K/AKT pathway was activated. These results indicated that GPX4-PI3K/AKT-ferroptosis was a predominant pathway in DON-induced intestinal inflammation. Interestingly, we discovered that both the number of M2 anti-inflammatory macrophages and the levels of CSF-1 decreased while the pro-inflammatory cytokine IL-6 increased in the intestine and MODE-K cells supernatant. Therefore, Se supplementation activated the CSF-1-M2 macrophages axis, resulting in a decrease in IL-6 expression and an enhancement of the intestinal anti-inflammatory capacity. This study provides novel insights into how intestinal epithelial cells regulate the CSF-1-M2 macrophage pathway, which is essential in maintaining intestinal homeostasis confer to environmental hazardous stimuli.


Assuntos
Células Epiteliais , Mucosa Intestinal , Macrófagos , Selênio , Tricotecenos , Animais , Tricotecenos/toxicidade , Camundongos , Macrófagos/metabolismo , Macrófagos/efeitos dos fármacos , Selênio/farmacologia , Mucosa Intestinal/metabolismo , Mucosa Intestinal/efeitos dos fármacos , Mucosa Intestinal/patologia , Células Epiteliais/metabolismo , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/patologia , Ativação de Macrófagos/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Transdução de Sinais/efeitos dos fármacos , Ferroptose/efeitos dos fármacos , Masculino , Fosfatidilinositol 3-Quinases/metabolismo
4.
Mycology ; 15(1): 45-56, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38558842

RESUMO

Chromoblastomycosis is a chronic granulomatous subcutaneous fungal disease caused mainly by Fonsecaea monophora in southern China. Melanin is an important virulence factor in wild strain (Mel+), and the strains lack of the polyketide synthase gene is a melanin-deficient mutant strain (Mel-). We investigated the effect of melanin in F. monophora on Dectin-1 receptor-mediated immune responses in macrophages. Conidia and tiny hyphae of Mel+ and Mel- were co-cultured with THP-1 macrophages expressing normal or low levels of Dectin-1. Compare the killing rate, phagocytosis rate, and expression levels of the inflammatory cytokines tumour necrosis factor-α, interleukin-1ß, interleukin-6, and nitric oxide in each group. The results showed that the killing rate, phagocytosis rate, and pro-inflammatory factor levels of Mel+ infected macrophages with normal expression of Dectin-1 were lower than those of Mel-. And the knockdown of Dectin-1 inhibited the phagocytic rate, killing rate, and proinflammatory factor expression in macrophages infected with Mel+ and Mel-. And there was no significant difference in the above indexes between Mel+ and Mel- groups in Dectin-1 knockdown macrophages. In summary, the study reveals that melanin of F. monophora inhibits the immune response effect of the host by hindering its binding to Dectin-1 on the surface of macrophage, which may lead to persistent fungal infections.

5.
Eur J Med Chem ; 268: 116218, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38387331

RESUMO

Radiotherapy (RT) stands as a cornerstone in the clinical armamentarium against various cancers due to its proven efficacy. However, the intrinsic radiation resistance exhibited by cancer cells, coupled with the adverse effects of RT on normal tissues, often compromises its therapeutic potential and leads to unwanted side effects. This comprehensive review aims to consolidate our understanding of how radiosensitizers inhibit the thioredoxin (Trx) system in cellular contexts. Notable radiosensitizers, including gold nanoparticles (GNPs), gold triethylphosphine cyanide ([Au(SCN) (PEt3)]), auranofin, ceria nanoparticles (CONPs), curcumin and its derivatives, piperlongamide, indolequinone derivatives, micheliolide, motexafin gadolinium, and ethane selenide selenidazole derivatives (SeDs), are meticulously elucidated in terms of their applications in radiotherapy. In this review, the sensitization mechanisms and the current research progress of these radiosensitizers are discussed in detail, with the overall aim of providing valuable insights for the judicious application of Trx system inhibitors in the field of cancer radiosensitization therapy.


Assuntos
Cianatos , Nanopartículas Metálicas , Neoplasias , Radiossensibilizantes , Humanos , Ouro/uso terapêutico , Neoplasias/tratamento farmacológico , Radiossensibilizantes/farmacologia , Tiorredoxinas
6.
J Am Chem Soc ; 146(8): 5502-5510, 2024 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-38359445

RESUMO

Glycoproteins account for numerous biological processes including those associated with diseases and infections. The advancement of glycopeptides has emerged as a promising strategy for unraveling biological pathways and discovering novel medicines. In this arena, a key challenge arises from the absence of efficient synthetic strategies to access glycopeptides and glycoproteins. Here, we present a highly concise approach to bridging saccharides with amino acids and peptides through an amide linkage. Our amide-linked C-glycosyl amino acids and peptides are synthesized through cooperative Ni-catalyzed and photoredox processes. The catalytic process generates a glycosyl radical and an amide carbonyl radical, which subsequently combine to yield the C-glycosyl products. The saccharide reaction partners encompass mono-, di-, and trisaccharides. All 20 natural amino acids, peptides, and their derivatives can efficiently undergo glycosylations with yields ranging from acceptable to high, demonstrating excellent stereoselectivities. As a substantial expansion of applications, we have shown that simple C-glycosyl amino acids can function as versatile building units for constructing C-glycopeptides with intricate spatial complexities.


Assuntos
Amidas , Aminoácidos , Níquel/química , Peptídeos , Carboidratos/química , Glicopeptídeos , Glicoproteínas , Catálise
7.
Pharmacol Ther ; 254: 108593, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38301771

RESUMO

Non-alcoholic fatty liver disease (NAFLD) is a global metabolic disease with high prevalence in both adults and children. Importantly, NAFLD is becoming the main cause of hepatocellular carcinoma (HCC). Berberine (BBR), a naturally occurring plant component, has been demonstrated to have advantageous effects on a number of metabolic pathways as well as the ability to kill liver tumor cells by causing cell death and other routes. This permits us to speculate and make assumptions about the value of BBR in the prevention and defense against NAFLD and HCC by a global modulation of metabolic disorders. Herein, we briefly describe the etiology of NAFLD and NAFLD-related HCC, with a particular emphasis on analyzing the potential mechanisms of BBR in the treatment of NAFLD from aspects including increasing insulin sensitivity, controlling the intestinal milieu, and controlling lipid metabolism. We also elucidate the mechanism of BBR in the treatment of HCC. More significantly, we provided a list of clinical studies for BBR in NAFLD. Taking into account our conclusions and perspectives, we can make further progress in the treatment of BBR in NAFLD and NAFLD-related HCC.


Assuntos
Berberina , Carcinoma Hepatocelular , Resistência à Insulina , Neoplasias Hepáticas , Hepatopatia Gordurosa não Alcoólica , Criança , Humanos , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Hepatopatia Gordurosa não Alcoólica/metabolismo , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/prevenção & controle , Berberina/farmacologia , Berberina/uso terapêutico , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/prevenção & controle
8.
Poult Sci ; 103(2): 103286, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38100949

RESUMO

In this study, we evaluated the enrichment efficiency of lutein in eggs and its function in preventing fatty liver hemorrhagic syndrome (FLHS) in aged laying hens. Five groups of laying hens (65 wk old) were fed basal diets supplemented with 0, 30, 60, 90, or 120 mg/kg of lutein. The supplementation period lasted 12 wk followed by 2 wk of lutein depletion in feed. The results revealed that lutein efficiently enriched the egg yolks and improved their color with a significant increase in relative redness (P < 0.001). Lutein accumulation increased in the egg yolk until day 10, then depletion reached a minimum level after 14 d. Overall, zeaxanthin content in all the groups was similar throughout the experimental period. However, triglycerides and total cholesterol were significantly decreased in the liver (P < 0.05) but not significantly different in the serum (P > 0.05). In the serum, the lipid metabolism enzyme acetyl-CoA synthetase was significantly reduced (P < 0.05), whereas dipeptidyl-peptidase 4 was not significantly different (P > 0.05), and there was no statistical difference of either enzyme in the liver (P > 0.05). Regarding oxidation and inflammation-related indexes, malondialdehyde, tumor necrosis factors alpha, interleukin-6, and interleukin-1 beta were decreased, whereas superoxide dismutase and total antioxidant capacity increased in the liver (P < 0.001). The function of lutein for the same indexes in serum was limited. It was concluded that lutein efficiently enriched the egg yolk of old laying hens to improve their color and reached the highest level on day 10 without being subject to a significant conversion into zeaxanthin. At the same time, lutein prevented liver steatosis in aged laying hens by exerting strong antioxidant and anti-inflammatory functions, but also through the modulation of lipid metabolism, which may contribute to reducing the incidence of FLHS in poultry.


Assuntos
Anormalidades Múltiplas , Anormalidades Craniofaciais , Fígado Gorduroso , Transtornos do Crescimento , Comunicação Interventricular , Luteína , Feminino , Animais , Luteína/metabolismo , Antioxidantes/metabolismo , Galinhas/metabolismo , Zeaxantinas/metabolismo , Suplementos Nutricionais/análise , Dieta/veterinária , Gema de Ovo/metabolismo , Fígado Gorduroso/prevenção & controle , Fígado Gorduroso/veterinária , Ração Animal/análise
9.
Int J Mol Sci ; 24(22)2023 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-38003270

RESUMO

Cancer poses a significant global public health challenge [...].


Assuntos
Antineoplásicos , Neoplasias , Humanos , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Neoplasias/tratamento farmacológico
10.
Open Life Sci ; 18(1): 20220675, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37589011

RESUMO

With the continuous development of the pharmaceutical industry, people have always paid attention to the safety and effectiveness of drugs, including innovative drugs and generic drugs. For pharmaceutical companies as manufacturers, drug development is a very lengthy process that requires high costs, millions of man-hours, thousands of trials, and the mobilization of hundreds of researchers. Therefore, efforts need to be made to develop drugs with high safety and effectiveness. Drug research and development plays an important role today. Based on this, this article applied computer molecular simulation embedded technology and artificial intelligence technology to drug research and development. First, the problems faced in the research and development of anti-inflammatory disease-dependent tumor drugs were introduced, and then the applications of computer molecular simulation embedded technology and artificial intelligence technology in drug research and development were analyzed. Subsequently, the application of artificial intelligence in drug research and development teaching was analyzed, and a teaching system based on computer molecular simulation embedded technology and artificial intelligence was designed. Finally, the application effects of computer molecular simulation embedded technology and artificial intelligence technology were analyzed, and a feasible conclusion was drawn. The use of computer molecular simulation embedded technology and artificial intelligence technology can greatly improve the efficiency of drug research and development, and the research and development safety of imatinib mesylate has been improved by 7%. On the other hand, it can improve students' learning interest and stimulate their learning interest, and students' drug research and development capabilities have been improved. Drug research and development for inflammatory-dependent tumors has good application prospects.

11.
J Med Chem ; 66(5): 3250-3261, 2023 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-36855911

RESUMO

Overexpression of the selenoprotein thioredoxin reductase (TrxR) has been documented in malignant tissues and is of pathological significance for many types of tumors. The antibiotic puromycin (Puro) is a protein synthesis inhibitor causing premature polypeptide chain termination during translation. The well-defined action mechanism of Puro makes it a useful tool in biomedical studies. However, the nonselective cytotoxicity of Puro limits its therapeutic applications. We report herein the construction and evaluation of two Puro prodrugs, that is, S1-Puro with a five-membered cyclic disulfide trigger and S2-Puro with a linear disulfide trigger. S1-Puro is selectively activated by TrxR and shows the TrxR-dependent cytotoxicity to cancer cells, while S2-Puro is readily activated by thiols. Furthermore, S1-Puro displays higher stability in plasma than S2-Puro. We expect that this prodrug strategy may promote the further development of Puro as a therapeutic agent.


Assuntos
Pró-Fármacos , Tiorredoxina Dissulfeto Redutase , Tiorredoxina Dissulfeto Redutase/metabolismo , Pró-Fármacos/farmacologia , Puromicina/farmacologia
12.
Int J Mol Sci ; 24(5)2023 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-36902397

RESUMO

Inhibition of thioredoxin reductase (TrxR) is a crucial strategy for the discovery of antineoplastic drugs. 6-Shogaol (6-S), a primary bioactive compound in ginger, has high anticancer activity. However, its potential mechanism of action has not been thoroughly investigated. In this study, we demonstrated for the first time that 6-S, a novel TrxR inhibitor, promoted oxidative-stress-mediated apoptosis in HeLa cells. The other two constituents of ginger, 6-gingerol (6-G) and 6-dehydrogingerduone (6-DG), have a similar structure to 6-S but fail to kill HeLa cells at low concentrations. 6-Shogaol specifically inhibits purified TrxR1 activity by targeting selenocysteine residues. It also induced apoptosis and was more cytotoxic to HeLa cells than normal cells. The molecular mechanism of 6-S-mediated apoptosis involves TrxR inhibition, followed by an outburst of reactive oxygen species (ROS) production. Furthermore, TrxR knockdown enhanced the cytotoxic sensitivity of 6-S cells, highlighting the physiological significance of targeting TrxR by 6-S. Our findings show that targeting TrxR by 6-S reveals a new mechanism underlying the biological activity of 6-S and provides meaningful insights into its action in cancer therapeutics.


Assuntos
Antineoplásicos , Tiorredoxina Dissulfeto Redutase , Humanos , Células HeLa , Tiorredoxina Dissulfeto Redutase/metabolismo , Estresse Oxidativo , Inibidores Enzimáticos/farmacologia , Espécies Reativas de Oxigênio/farmacologia , Antineoplásicos/farmacologia , Apoptose
13.
Alkaloids Chem Biol ; 89: 1-37, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36731966

RESUMO

Quinolizidine alkaloids isolated from various marine and terrestrial animals and plants are primarily composed of lupinine-, matrine-, and sparteine-type alkaloids. Matrine, phenanthroquinolizidines, bis-quinolizidines, and small molecules from amphibian skins are representative compounds of such alkaloids. Quinolizidine alkaloids harbor anticancer, antibacterial, antiinflammatory, antifibrosis, antiviral, and anti-arrhythmia. In this chapter, we comprehensively outline the biological activity and pharmacological action of quinolizidine alkaloids and discuss new avenues toward the discovery of novel and more efficient drugs based on these naturally occurring compounds. It is urgent for basic research and clinical practice to conduct more targeted comprehensive research based on the lead drugs of quinolizidine alkaloids with significant pharmacological activity.


Assuntos
Alcaloides , Quinolizidinas , Esparteína , Animais , Alcaloides Quinolizidínicos , Alcaloides/farmacologia , Quinolizidinas/farmacologia , Anti-Inflamatórios , Matrinas
15.
Expert Opin Investig Drugs ; 32(2): 101-106, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36749819

RESUMO

INTRODUCTION: KRAS G12C targeted covalent inhibitors for cancer therapy are revolutionary. However, resistance to KRAS G12C inhibitors in clinical trials is a proven fact. AREAS COVERED: The authors focus on providing coverage and emphasizing the strategy of conquering KRAS G12C inhibitor resistance from the perspective of clinical therapy. The authors also provide the readers with their expert perspectives for future development. EXPERT OPINION: It is essential to improve the therapeutic effect and achieve long-term disease control through accumulating rapid exploration of drug resistance mechanisms in preclinical trials and developing rational combination dosing approaches from clinical practice. Our presentation of the perspective provides insights into drug resistance in this groundbreaking area of research.


Assuntos
Proteínas Proto-Oncogênicas p21(ras) , Humanos , Mutação , Proteínas Proto-Oncogênicas p21(ras)/genética
16.
Antioxid Redox Signal ; 38(4-6): 403-424, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-35686449

RESUMO

Significance: Thioredoxin (Trx) is a powerful antioxidant that reduces protein disulfides to maintain redox stability in cells and is involved in regulating multiple redox-dependent signaling pathways. Recent Advance: The current accumulation of findings suggests that Trx participates in signaling pathways that interact with various proteins to manipulate their dynamic regulation of structure and function. These network pathways are critical for cancer pathogenesis and therapy. Promising clinical advances have been presented by most anticancer agents targeting such signaling pathways. Critical Issues: We herein link the signaling pathways regulated by the Trx system to potential cancer therapeutic opportunities, focusing on the coordination and strengths of the Trx signaling pathways in apoptosis, ferroptosis, immunomodulation, and drug resistance. We also provide a mechanistic network for the exploitation of therapeutic small molecules targeting the Trx signaling pathways. Future Directions: As research data accumulate, future complex networks of Trx-related signaling pathways will gain in detail. In-depth exploration and establishment of these signaling pathways, including Trx upstream and downstream regulatory proteins, will be critical to advancing novel cancer therapeutics. Antioxid. Redox Signal. 38, 403-424.


Assuntos
Antineoplásicos , Neoplasias , Humanos , Neoplasias/tratamento farmacológico , Antioxidantes/metabolismo , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Oxirredução , Tiorredoxinas/metabolismo , Transdução de Sinais
17.
Poult Sci ; 102(1): 102258, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36435161

RESUMO

We investigated the effects of astaxanthin supplementation on the egg quality, antioxidant capacity, and ovarian aging of aged laying hens. Six groups of 68-wk-old Hy-line brown laying hens with six replications each, fifteen chickens in each replicate were fed for 12 wk. The control group was fed a basal diet, the positive control group was fed the basal diet supplemented with 100 mg/kg vitamin E, and the experimental groups were fed the basal diet supplemented with 15 mg/kg, 30 mg/kg, 45 mg/kg, or 60 mg/kg astaxanthin (Ax15, Ax30, Ax45, and Ax60, respectively). The results showed that astaxanthin accumulated in the egg yolks and improved egg yolk color (P < 0.01) and Haugh unit (P < 0.05). Compared with the control group, the experimental groups a higher number of follicles in the ovary and a lower rate of atresia (P < 0.01). Astaxanthin increased the expression of nuclear factor e2-related factor 2 (NRF2) in the ovary (P < 0.05), enhanced the antioxidant capacity of aged laying hens (P < 0.05), and reduced cellular apoptosis (P < 0.05). In addition, astaxanthin improved serum reproductive hormone levels (follicle-stimulating hormone, luteinizing hormone, and progesterone) (P < 0.05) with a maximum value observed in Ax60. However, astaxanthin had no effects on estrogen level (P > 0.05). The expression of FSHR and CYP11A1 increased in the follicular granulosa cells (P < 0.05). Therefore, astaxanthin prevented ovarian aging by improving the antioxidant capacity of laying hens and promoting the production of reproductive hormones. The declining reproductive performance of laying hens in the late laying period may be improved with astaxanthin supplementation.


Assuntos
Antioxidantes , Ovário , Animais , Feminino , Antioxidantes/metabolismo , Ovário/metabolismo , Galinhas/metabolismo , Suplementos Nutricionais , Dieta/veterinária , Hormônio Luteinizante , Envelhecimento , Ração Animal/análise
18.
Pharmacol Res ; 187: 106565, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36414124

RESUMO

A primary strategy employed in cancer therapy is the inhibition of topoisomerase II (Topo II), implicated in cell survival. However, side effects and adverse reactions restrict the utilization of Topo II inhibitors. Thus, investigations focus on the discovery of novel compounds that are capable of inhibiting the Topo II enzyme and feature safer toxicological profiles. Herein, we upgrade an old antibiotic chrysomycin A from Streptomyces sp. 891 as a compelling Topo II enzyme inhibitor. Our results show that chrysomycin A is a new chemical entity. Notably, chrysomycin A targets the DNA-unwinding enzyme Topo II with an efficient binding potency and a significant inhibition of intracellular enzyme levels. Intriguingly, chrysomycin A kills KRAS-mutant lung adenocarcinoma cells and is negligible cytotoxic to normal cells at the cellular level, thus indicating a capability of potential treatment. Furthermore, mechanism studies demonstrate that chrysomycin A inhibits the Topo II enzyme and stimulates the accumulation of reactive oxygen species, thereby inducing DNA damage-mediated cancer cell apoptosis. Importantly, chrysomycin A exhibits excellent control of cancer progression and excellent safety in tumor-bearing models. Our results provide a chemical scaffold for the synthesis of new types of Topo II inhibitors and reveal a novel target for chrysomycin A to meet its further application.


Assuntos
Adenocarcinoma de Pulmão , Antineoplásicos , Neoplasias Pulmonares , Proteínas Proto-Oncogênicas p21(ras) , Inibidores da Topoisomerase II , Humanos , Adenocarcinoma de Pulmão/tratamento farmacológico , Adenocarcinoma de Pulmão/genética , Adenocarcinoma de Pulmão/patologia , Antineoplásicos/química , Antineoplásicos/uso terapêutico , DNA Topoisomerases Tipo II/metabolismo , Proteínas Proto-Oncogênicas p21(ras)/genética , Inibidores da Topoisomerase II/farmacologia , Inibidores da Topoisomerase II/uso terapêutico , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia
19.
Antioxid Redox Signal ; 38(4-6): 298-315, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36017627

RESUMO

Significance: Microbial neurotransmitters, as potential targets for cancer therapy, are expected to provide a new perspective on the interaction between the gut microbiome and cancer immunotherapy. Recent Advances: Mounting data reveal that most neurotransmitters can be derived from gut microbiota. Furthermore, modulation of neurotransmitter signaling can limit tumor growth and enhance antitumor immunity. Critical Issues: Here, we first present the relationships between microbial neurotransmitters and cancer cells mediated by immune cells. Then, we discuss the microbial neurotransmitters recently associated with cancer immunotherapy. Notably, the review emphasizes that neurotransmitter signaling plays a substantial role in cancer immunotherapy as an emerging cancer treatment target by regulating targeted receptors and interfering with the tumor microenvironment. Future Directions: Future studies are required to uncover the antitumor mechanisms of neurotransmitter signaling to develop novel treatment strategies to overcome cancer immunotherapy resistance. Antioxid. Redox Signal. 38, 298-315.


Assuntos
Microbioma Gastrointestinal , Neoplasias , Humanos , Neoplasias/patologia , Microambiente Tumoral , Imunoterapia , Neurotransmissores
20.
Front Immunol ; 13: 1028418, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36569896

RESUMO

The extracellular vesicles (EVs) in edible food have a typical saucer-like structure and are nanoparticles released by numerous cells. They have different components and interact with other biological samples in diverse ways. Therefore, these nanoparticles could be used to develop bioactives delivery nanoplatforms and anti-inflammatory treatments to meet the stringent demands of current clinical challenges. This review aims to summarize current researches into EVs from edible plants, particularly those that can protect siRNAs or facilitate drug transportation. We will discuss their isolation, characterization and functions, their regulatory effects under various physiological and pathological conditions, and their immune regulation, anti-tumor, regeneration, and anti-inflammatory effects. We also review advances in their potential application as bioactives carriers, and medicinal and edible plants that change their EVs compositions during disease to achieve a therapy propose. It is expected that future research on plant-derived EVs will considerably expand their application.


Assuntos
Vesículas Extracelulares , Neoplasias , Plantas Comestíveis , Vesículas Extracelulares/patologia , Sistemas de Liberação de Medicamentos , Neoplasias/patologia , Anti-Inflamatórios
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA