Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 95
Filtrar
1.
Comp Biochem Physiol B Biochem Mol Biol ; 274: 111000, 2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38879151

RESUMO

The thermogenic capacity of brown adipose tissue (BAT) in rodents decreases with prolonged heat exposure. However, the underlying mechanisms are not well understood. In this study, Kunming mice were acclimated at 23 ± 1 °C and 33 ± 1 °C for four weeks each to examine the body heat balance and BAT alterations. Results showed that heat-acclimated Kunming mice exhibited reduced body mass and elevated body temperature. Additionally, they displayed lower resting metabolic rates, diminished non-shivering thermogenesis, and reduced BAT thermogenic function. Metabolically, there was a significant reduction in several key metabolites involved in energy metabolism in BAT, including thiamine pyrophosphate, citric acid, cis-Aconitate, isocitric acid, oxoglutaric acid, succinate, fumarate, L-Malic acid, oxaloacetate, flavin mononucleotide, nicotinamide adenine dinucleotide, and adenosine 5'-triphosphate. These findings suggest that BAT adapts to heat acclimation by regulating pathways related to pyruvate oxidation, tricarboxylic acid cycle, and oxidative phosphorylation, which may help maintain thermal homeostasis in Kunming mice.

2.
Nutrients ; 16(10)2024 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-38794748

RESUMO

The high prevalence of constipation after fracture surgery brings intolerable discomfort to patients on the one hand, and affects post-surgery nutrient absorption on the other hand, resulting in poor prognosis. Given the acknowledged probiotic properties of Lactobacillus rhamnosus, 100 fracture patients with post-surgery constipation were centrally enrolled and administered orally with L. rhamnosus JYLR-127 to assess the efficacy of probiotic-adjuvant therapy in alleviating post-fracture constipation symptoms. The results showed that L. rhamnosus JYLR-127 improved fecal properties, promoted gastrointestinal recovery, and relieved constipation symptoms, which were mainly achieved by elevating Firmicutes (p < 0.01) and descending Bacteroidetes (p < 0.001), hence remodeling the disrupted intestinal microecology. In addition, blood routine presented a decrease in C-reactive protein levels (p < 0.05) and an increase in platelet counts (p < 0.05) after probiotic supplementation, prompting the feasibility of L. rhamnosus JYLR-127 in anti-inflammation, anti-infection and hemorrhagic tendency prevention after fracture surgery. Our study to apply probiotics in ameliorating constipation after fracture surgery is expected to bless the bothered patients, and provide broader application scenarios for L. rhamnosus preparations.


Assuntos
Constipação Intestinal , Fraturas Ósseas , Lacticaseibacillus rhamnosus , Complicações Pós-Operatórias , Probióticos , Humanos , Constipação Intestinal/terapia , Probióticos/uso terapêutico , Probióticos/administração & dosagem , Feminino , Masculino , Pessoa de Meia-Idade , Complicações Pós-Operatórias/etiologia , Método Simples-Cego , Fraturas Ósseas/cirurgia , Fraturas Ósseas/complicações , Adulto , Microbioma Gastrointestinal , Fezes/microbiologia , Idoso , Resultado do Tratamento
3.
Biomed Pharmacother ; 175: 116727, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38733771

RESUMO

Myelodysplastic syndromes (MDS) encompass a collection of clonal hematopoietic malignancies distinguished by the depletion of peripheral blood cells. The treatment of MDS is hindered by the advanced age of patients, with a restricted repertoire of drugs currently accessible for therapeutic intervention. In this study, we found that ES-Cu strongly inhibited the viability of MDS cell lines and activated cuproptosis in a copper-dependent manner. Importantly, ferroptosis inducer IKE synergistically enhanced ES-Cu-mediated cytotoxicity both in vitro and in vivo. Of note, the combination of IKE and ES-Cu intensively impaired mitochondrial homeostasis with increased mitochondrial ROS, MMP hyperpolarized, down-regulated iron-sulfur proteins and declined oxygen consumption rate. Additionally, ES-Cu/IKE treatment could enhance the lipoylation-dependent oligomerization of the DLAT. To elucidate the specific order of events in the synergistic cell death, inhibitors of ferroptosis and cuproptosis were utilized to further characterize the basis of cell death. Cell viability assays showed that the glutathione and its precursor N-acetylcysteine could significantly rescue the cell death under either mono or combination treatment, demonstrating that GSH acts at the crossing point in the regulation network of cuproptosis and ferroptosis. Significantly, the reconstitution of xCT expression and knockdown of FDX1 cells have been found to contribute to the tolerance of mono treatment but have little recovery impact on the combined treatment. Collectively, these findings suggest that a synergistic interaction leading to the induction of multiple programmed cell death pathways could be a promising approach to enhance the effectiveness of therapy for MDS.


Assuntos
Cobre , Sinergismo Farmacológico , Ferroptose , Síndromes Mielodisplásicas , Ferroptose/efeitos dos fármacos , Síndromes Mielodisplásicas/tratamento farmacológico , Síndromes Mielodisplásicas/patologia , Síndromes Mielodisplásicas/metabolismo , Humanos , Animais , Cobre/química , Cobre/metabolismo , Piperazinas/farmacologia , Camundongos , Sobrevivência Celular/efeitos dos fármacos , Imidazóis/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Linhagem Celular Tumoral , Glutationa/metabolismo
4.
World J Clin Cases ; 12(15): 2655-2663, 2024 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-38817237

RESUMO

BACKGROUND: High-grade B-cell lymphoma (HGBL) is an unusual malignancy that includes myelocytomatosis viral oncogene (MYC), B-cell lymphoma-2 (BCL-2), and/or BCL-6 rearrangements, termed double-hit or triple-hit lymphomas, and HGBL-not otherwise specific (HGBL-NOS), which are morphologically characteristic of HGBL but lack MYC, BCL-2, or BCL-6 rearrangements. HGBL is partially transformed by follicular lymphoma and other indolent lymphoma, with few cases of marginal zone lymphoma (MZL) transformation. HGBL often has a poor prognosis and intensive therapy is currently mainly advocated, but there is no good treatment for these patients who cannot tolerate chemotherapy. CASE SUMMARY: We reported a case of MZL transformed into HGBL-NOS with TP53 mutation and terminal deoxynucleotidyl transferase expression. Gene analysis revealed the gene expression profile was identical in the pre- and post-transformed tissues, suggesting that the two diseases are homologous, not secondary tumors. The chemotherapy was ineffective and the side effect was severe, so we tried combination therapy including venetoclax and obinutuzumab. The patient tolerated treatment well, and reached partial response. The patient had recurrence of hepatocellular carcinoma and died of multifunctional organ failure. He survived for 12 months after diagnosis. CONCLUSION: Venetoclax combined with obinutuzumab might improve the survival in some HGBL patients, who are unsuitable for chemotherapy.

5.
World J Clin Cases ; 12(10): 1772-1777, 2024 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-38660073

RESUMO

BACKGROUND: Purpureocillium lilacinum (P. lilacinum) is a saprophytic fungus widespread in soil and vegetation. As a causative agent, it is very rarely detected in humans, most commonly in the skin. CASE SUMMARY: In this article, we reported the case of a 72-year-old patient with chronic lymphocytic leukemia who was admitted with cough and fever. Computed tomography revealed an infection in the right lower lobe. Bronchoalveolar lavage fluid culture and metagenomic next-generation sequencing were ultimately confirmed to have a pulmonary infection with P. lilacinum. She was eventually discharged with good outcomes after treatment with isavuconazole. CONCLUSION: Pulmonary infection with P. lilacinum was exceedingly rare. While currently there are no definitive therapeutic agents, there are reports of high resistance to amphotericin B and fluconazole and good sensitivity to second-generation triazoles. The present report is the first known use of isavuconazole for pulmonary P. lilacinum infection. It provides new evidence for the characterization and treatment of clinical P. lilacinum lung infections.

6.
Cell Mol Biol Lett ; 29(1): 53, 2024 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-38616283

RESUMO

Reactive oxygen species (ROS) serve as typical metabolic byproducts of aerobic life and play a pivotal role in redox reactions and signal transduction pathways. Contingent upon their concentration, ROS production not only initiates or stimulates tumorigenesis but also causes oxidative stress (OS) and triggers cellular apoptosis. Mounting literature supports the view that ROS are closely interwoven with the pathogenesis of a cluster of diseases, particularly those involving cell proliferation and differentiation, such as myelodysplastic syndromes (MDS) and chronic/acute myeloid leukemia (CML/AML). OS caused by excessive ROS at physiological levels is likely to affect the functions of hematopoietic stem cells, such as cell growth and self-renewal, which may contribute to defective hematopoiesis. We review herein the eminent role of ROS in the hematological niche and their profound influence on the progress of MDS. We also highlight that targeting ROS is a practical and reliable tactic for MDS therapy.


Assuntos
Leucemia Mielogênica Crônica BCR-ABL Positiva , Síndromes Mielodisplásicas , Humanos , Espécies Reativas de Oxigênio , Estresse Oxidativo , Apoptose , Carcinogênese
7.
Heliyon ; 10(8): e29735, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38681547

RESUMO

The carcinogenic and teratogenic risks of nitrofurazone (NFZ) led to its restriction in aquatic products. Semicarbazide (SEM), one of its metabolites, is a primary focus of modern monitoring techniques. However, the SEM residue in aquatic products is believed to be formed through endogenous mechanisms, especially for aquatic crustaceans. In this article, we will discuss the source of SEM, including its usage as an antibiotic in aquatic products (nitrofurazone), its production during food processing (azodicarbonamide and hypochlorite treatment), its occurrence naturally in the body, and its intake from the environment. SEM detection techniques were divided into three groups: derivatization, extraction/purification, and analytical methods. Applications based on liquid chromatography and its tandem mass spectrometry, immunoassay, and electrochemical methods were outlined, as were the use of various derivatives and their assisted derivatization, as well as extraction and purification techniques based on liquid-liquid extraction and solid-phase extraction. The difficulties of implementing SEM for nitrofurazone monitoring in aquatic products from crustaceans are also discussed. Possible new markers and methods for detecting them are discussed. Finally, the present research on monitoring illicit nitrofurazone usage through its metabolites is summarised, and potential problems that need to be overcome by continuing research are proposed with an eye toward giving references for future studies.

8.
Food Chem X ; 22: 101265, 2024 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-38468636

RESUMO

Adulteration in dairy products presents food safety challenges, driven by economic factors. Processing may change specific biomarkers, thus affecting their effectiveness in detection. In this study, proteomics and metabolomics approaches were to investigate the detection of bovine milk (BM) constituents adulteration in pasteurized mare milk (PMM) and mare milk powder (MMP). Several bovine proteins and metabolites were identified, with their abundances in PMM and MMP increasing upon addition of BM. Proteins like osteopontin (OPN) and serotransferrin (TF) detected adulteration down to 1 % in PMM, whereas these proteins in MMP were utilized to identify 10 % adulteration. Biotin and N6-Me-adenosine were effective in detecting adulteration in PMM as low as 10 % and 1 % respectively, while in MMP, their detection limits extend down to 0.1 %. These findings offer insights for authenticating mare milk products and underscore the influence of processing methods on biomarker levels, stressing the need to consider these effects in milk product authentication.

9.
Biol Direct ; 19(1): 13, 2024 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-38308285

RESUMO

BACKGROUND: Hepatocellular carcinoma (HCC) is a prevalent malignant tumor that poses a major threat to people's lives and health. Previous studies have found that multiple deubiquitinating enzymes are involved in the pathogenesis of HCC. The purpose of this work was to elucidate the function and mechanism of the deubiquitinating enzyme USP40 in HCC progression. METHODS: The expression of USP40 in human HCC tissues and HCC cell lines was investigated using RT-qPCR, western blotting and immunohistochemistry (IHC). Both in vitro and in vivo experiments were conducted to determine the crucial role of USP40 in HCC progression. The interaction between USP40 and Claudin1 was identified by immunofluorescence, co-immunoprecipitation and ubiquitination assays. RESULTS: We discovered that USP40 is elevated in HCC tissues and predicts poor prognosis in HCC patients. USP40 knockdown inhibits HCC cell proliferation, migration and stemness, whereas USP40 overexpression shows the opposite impact. Furthermore, we confirmed that Claudin1 is a downstream gene of USP40. Mechanistically, USP40 interacts with Claudin1 and inhibits its polyubiquitination to stabilize Claudin1 protein. CONCLUSIONS: Our study reveals that USP40 enhances HCC malignant development by deubiquitinating and stabilizing Claudin1, suggesting that targeting USP40 may be a novel approach for HCC therapy.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/genética , Linhagem Celular , Linhagem Celular Tumoral , Proliferação de Células , Regulação Neoplásica da Expressão Gênica , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patologia , Ubiquitinação
10.
Sci Rep ; 14(1): 4809, 2024 02 27.
Artigo em Inglês | MEDLINE | ID: mdl-38413662

RESUMO

2-[18F]fluoro-2-deoxy-d-glucose positron emission tomography/computed tomography (18F-FDG PET/CT) can provide tumor biological metabolism and skeletal muscle composition information. The aim of this study was to evaluate overall survival (OS) and short-term efficacy of cervical squamous cell carcinoma combining tumor biological metabolism and skeletal muscle composition parameters. Eighty two patients with cervical squamous cell carcinoma were included in the study, who received 18F-FDG PET/CT scans before treatment. Clinical characteristics, tumor biological metabolism parameters [standardized uptake value, metabolic tumor volume (MTV), total lesion glycolysis, heterogeneity of tumors, etc.] and body composition parameters were recorded. The survival analysis of cervical squamous cell carcinoma patients was performed by univariate and multivariate analysis. A combined model included clinical indicators, tumor metabolism parameters and sarcopenia was constructed to evaluate OS of patients. According to the Response Evaluation Criteria in Solid Tumours version 1.1, the relationship between sarcopenia with tumor metabolism parameters and short-term efficacy was investigated in subgroup. The results indicate that sarcopenia and high value of the sum of MTV of lesions and metastases (MTVtotal) were poor prognostic factors in patients with cervical squamous cell carcinoma. The combination of sarcopenia, MTVtotal and clinical factors provided an improved prediction of OS especially in the long term after treatment. Nutritional status of the patients and tumor metabolism may not affect the short-term efficacy of chemoradiotherapy in cervical squamous cell carcinoma patients.


Assuntos
Carcinoma de Células Escamosas , Sarcopenia , Neoplasias do Colo do Útero , Feminino , Humanos , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada/métodos , Carcinoma de Células Escamosas/diagnóstico por imagem , Carcinoma de Células Escamosas/terapia , Carcinoma de Células Escamosas/metabolismo , Fluordesoxiglucose F18/metabolismo , Sarcopenia/diagnóstico por imagem , Sarcopenia/patologia , Prognóstico , Neoplasias do Colo do Útero/diagnóstico por imagem , Neoplasias do Colo do Útero/terapia , Neoplasias do Colo do Útero/metabolismo , Tomografia por Emissão de Pósitrons , Músculo Esquelético/metabolismo , Carga Tumoral , Compostos Radiofarmacêuticos , Estudos Retrospectivos
11.
Bioorg Chem ; 145: 107211, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38364550

RESUMO

Based on the crucial role of histone deacetylase (HDAC) and receptor tyrosine kinase in angiogenesis, in situ assembly, skeletal transition, molecular hybridization, and pharmacophore fusion were employed to yield seventy-six multi-target angiogenesis inhibitors. Biological evaluation indicated that most of the compounds exhibited potent proliferation inhibitory activity on MCF-7 cells, with the TH series having the highest inhibitory activity on MCF-7 cells. In addition, the IC50 values of TA11 and TH3 against HT-29 cellswere 0.078 µmol/L and 0.068 µmol/L, respectively. The cytotoxicity evaluation indicated that TC9, TA11, TM4, and TH3 displayed good safety against HEK293T cells. TH2 and TH3 could induce apoptosis of MCF-7 cells. Molecular modeling and ADMET prediction results indicated that most of target compounds showed promising medicinal properties, which was consistent with the experimental results. Our findings provided new lead compounds for the structural optimization of multi-target angiogenesis inhibitors.


Assuntos
Inibidores da Angiogênese , Antineoplásicos , Humanos , Relação Estrutura-Atividade , Linhagem Celular Tumoral , Inibidores da Angiogênese/farmacologia , Angiogênese , Células HEK293 , Inibidores de Histona Desacetilases/química , Ensaios de Seleção de Medicamentos Antitumorais , Desenho de Fármacos , Simulação de Acoplamento Molecular , Antineoplásicos/química , Proliferação de Células
12.
Oncogene ; 43(10): 744-757, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38243079

RESUMO

Androgen receptors (ARs) play key roles in prostate cancer (PCa) progression and castration-resistant prostate cancer (CRPC) resistance to drug therapy. SET and MYND domain containing protein 2 (SMYD2), a lysine methyltransferase, has been reported to promote tumors by transcriptionally methylating important oncogenes or tumor repressor genes. However, the role of SMYD2 in CRPC drug resistance remains unclear. In this study, we found that SMYD2 expression was significantly upregulated in PCa tissues and cell lines. High SMYD2 expression indicated poor CRPC-free survival and overall survival in patients. SMYD2 knockdown dramatically inhibited the proliferation, migration, invasion, and epithelial-mesenchymal transition (EMT) potential of 22Rv1 and C4-2 cells. Conversely, ectopic overexpression of SMYD2 promoted these effects in 22Rv1 and C4-2 cells. Mechanistically, SMYD2 methylated and phosphorylated ARs to affect AR ubiquitination and proteasome degradation, which further alters the AR transcriptome in CRPC cells. Importantly, the SMYD2 inhibitor AZ505 had a synergistic therapeutic effect with enzalutamide in CRPC cells and mouse models; however, it could also re-sensitize resistant CRPC cells to enzalutamide. Our findings demonstrated that SMYD2 enhances the methylation and phosphorylation of ARs and affects AR ubiquitination and proteasome degradation to modulate CRPC cell resistance to enzalutamide, indicating that SMYD2 serves as a crucial oncogene in PCa and is an ideal therapeutic target for CRPC.


Assuntos
Benzamidas , Lisina , Nitrilas , Feniltioidantoína , Neoplasias de Próstata Resistentes à Castração , Animais , Camundongos , Masculino , Humanos , Receptores Androgênicos/genética , Metiltransferases , Neoplasias de Próstata Resistentes à Castração/tratamento farmacológico , Neoplasias de Próstata Resistentes à Castração/genética , Complexo de Endopeptidases do Proteassoma , Histona-Lisina N-Metiltransferase/genética
13.
Zool Res ; 45(2): 233-241, 2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38287904

RESUMO

Neural tube defects (NTDs) are severe congenital neurodevelopmental disorders arising from incomplete neural tube closure. Although folate supplementation has been shown to mitigate the incidence of NTDs, some cases, often attributable to genetic factors, remain unpreventable. The SHROOM3 gene has been implicated in NTD cases that are unresponsive to folate supplementation; at present, however, the underlying mechanism remains unclear. Neural tube morphogenesis is a complex process involving the folding of the planar epithelium of the neural plate. To determine the role of SHROOM3 in early developmental morphogenesis, we established a neuroepithelial organoid culture system derived from cynomolgus monkeys to closely mimic the in vivo neural plate phase. Loss of SHROOM3 resulted in shorter neuroepithelial cells and smaller nuclei. These morphological changes were attributed to the insufficient recruitment of cytoskeletal proteins, namely fibrous actin (F-actin), myosin II, and phospho-myosin light chain (PMLC), to the apical side of the neuroepithelial cells. Notably, these defects were not rescued by folate supplementation. RNA sequencing revealed that differentially expressed genes were enriched in biological processes associated with cellular and organ morphogenesis. In summary, we established an authentic in vitro system to study NTDs and identified a novel mechanism for NTDs that are unresponsive to folate supplementation.


Assuntos
Proteínas do Citoesqueleto , Defeitos do Tubo Neural , Animais , Proteínas do Citoesqueleto/metabolismo , Tubo Neural/metabolismo , Macaca fascicularis , Defeitos do Tubo Neural/genética , Defeitos do Tubo Neural/metabolismo , Defeitos do Tubo Neural/veterinária , Células Neuroepiteliais/metabolismo , Ácido Fólico/metabolismo , Organoides , Citoesqueleto
15.
Expert Opin Ther Pat ; 33(12): 821-840, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38084667

RESUMO

INTRODUCTION: Angiogenesis plays a crucial role in the development of numerous vascular structures and is involved in a variety of physiologic and pathologic processes, including psoriasis, diabetic retinopathy, and especially cancer. By obstructing the process of angiogenesis, these therapies effectively inhibit the progression of the disease. Consequently, anti-angiogenic agents were subsequently developed. AREAS COVERED: This review provides a comprehensive summary of the anti-angiogenic inhibitors developed in the past five years in terms of chemical structure, biochemical/pharmacological activity and potential clinical applications. A literature search was conducted using utilizing the databases Web of Science, SciFinder and PubMed with the key word 'anti-angiogenic agents' and 'angiogenesis inhibitor.' EXPERT OPINION: This is despite the fact that the concept of antiangiogenesis has been proposed for more than 50 years and angiogenesis inhibitors are extensively employed in clinical practice. However, significant challenges continue to confront them. In recent years, there has been a significant increase in the number of patents focusing on angiogenesis inhibitors. These patents aim to enhance the selectivity of drugs against VEGF/VEGFR, explore new targets to overcome drug resistance, and explore potential drug combinations, thereby expanding the therapeutic possibilities in this field.


Assuntos
Inibidores da Angiogênese , Neoplasias , Humanos , Inibidores da Angiogênese/farmacologia , Neovascularização Patológica/tratamento farmacológico , Neovascularização Patológica/patologia , Patentes como Assunto , Neoplasias/tratamento farmacológico
16.
World J Clin Cases ; 11(24): 5643-5652, 2023 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-37727707

RESUMO

BACKGROUND: Multiple myeloma (MM) is a common hematologic malignancy that originates from a malignant clone of plasma cells. Solitary plasmacytoma, history of diabetes, and platelet count are considered as prognostic factors for MM. But some patients are still associated with much worse outcomes without any prognostic predictors. This study aimed to observe the reduction rate of monoclonal protein (M protein) after the first and fourth chemotherapy cycles, which is considered as a new prognostic factor for progression-free survival (PFS) in standard-risk group of newly diagnosed MM patients. AIM: To investigate the reduction rate of M protein after first and fourth cycle chemotherapy as a useful prognostic factor. METHODS: A total of 316 patients diagnosed with MM for the first time between 2010 and 2019 at the Lishui Municipal Central Hospital were included. All patients were diagnosed according to the National Comprehensive Cancer Network (NCCN) 2020.V1 diagnostic criteria. The risk assessment was performed by the Mayo Stratification for Macroglobulinemia and Risk-Adapted Therapy guidelines. After diagnosis, 164 patients were evaluated and underwent treatment with four to eight courses of continuous induction chemotherapy. The patients with no response after induction treatment were administered additional therapy following the NCCN 2020.V1 criteria. The following baseline data from the patients were collected: Gender, age at diagnosis, Durie-Salmon stage, glutamic-pyruvic transaminase, glutamic-oxaloacetic transaminase, catabolite activator protein, albumin/globulin ratio, lactate dehydrogenase, translocation (t)(6;14), t(11;14), maintenance regimen, total cholesterol (TC), triglyceride, and phosphorous. All baseline data and the reduction rate of M protein after each chemotherapy cycle from the first to fourth were assessed by univariate analysis. The factors influencing the overall survival and PFS were then assessed by multivariate analysis. We found the first cycle (C1) reduction rate and the fourth cycle (C4) reduction rate as predictors of PFS. Then, PFS was compared between patients with a C1 reduction rate of M protein of ≥ 25% vs < 25% and ≥ 50% vs < 50%, and between patients with a C4 reduction rate of ≥ 25% vs < 25%, ≥ 50% vs < 50%, and ≥ 75% vs < 75%. RESULTS: Multivariate analysis revealed age [hazard ratio (HR): 1.059, 95% confidence interval (95%CI): 1.033-1.085, P ≤ 0.001], International Staging System stage (HR: 2.136, 95%CI: 1.500-3.041, P ≤ 0.001), autotransplantion (HR: 0.201, 95%CI: 0.069-0.583, P = 0.019), TC (HR: 0.689, 95%CI: 0.533-0.891, P = 0.019), C1 reduction rate (HR: 0474, 95%CI: 0.293-0.767, P = 0.019), and C4 reduction rate (HR: 0.254, 95%CI: 0.139-0.463, P = 0.019) as predictors of PFS. The Kaplan-Meier survival analysis and the log-rank tests revealed that a higher reduction rate of M protein after first cycle (≥ 50%) and fourth cycle (≥ 75%) chemotherapy was associated with a longer PFS than the lower one. CONCLUSION: Higher reduction rates of M protein after the first and fourth chemotherapy cycles can act as advantageous prognostic factors for PFS in standard-risk group of MM patients during initial diagnosis.

17.
Zhongguo Zhen Jiu ; 43(7): 783-92, 2023 Jul 12.
Artigo em Chinês | MEDLINE | ID: mdl-37429658

RESUMO

OBJECTIVE: To observe the effect of Tongdu Tiaoshen (promoting the circulation of the governor vessel and regulating the spirit) electroacupuncture (EA) pretreatment on pyroptosis mediated by peroxisome proliferators-activated receptor γ (PPARγ) of the cerebral cortex in rats with cerebral ischemia reperfusion injury (CIRI) and explore the potential mechanism of EA for the prevention and treatment of CIRI. METHODS: A total of 110 clean-grade male SD rats were randomly divided into a sham-operation group, a model group, an EA group, an EA + inhibitor group and an agonist group, 22 rats in each group. In the EA group, before modeling, EA was applied to "Baihui" (GV 20), "Fengfu" (GV 16) and "Dazhui" (GV 14), with disperse-dense wave, 2 Hz/5 Hz in frequency, 1 to 2 mA in intensity, lasting 20 min; once a day, consecutively for 7 days. On the base of the intervention as the EA group, on the day 7, the intraperitoneal injection with the PPARγ inhibitor, GW9662 (10 mg/kg) was delivered in the EA + inhibitor group. In the agonist group, on the day 7, the PPARγ agonist, pioglitazone hydrochloride (10 mg/kg) was injected intraperitoneally. At the end of intervention, except the sham-operation group, the modified thread embolization method was adopted to establish the right CIRI model in the rats of the other groups. Using the score of the modified neurological severity score (mNSS), the neurological defect condition of rats was evaluated. TTC staining was adopted to detect the relative cerebral infarction volume of rat, TUNEL staining was used to detect apoptosis of cerebral cortical nerve cells and the transmission electron microscope was used to observe pyroptosis of cerebral cortical neural cells. The positive expression of PPARγ and nucleotide-binding to oligomerization domain-like receptor protein 3 (NLRP3) in the cerebral cortex was detected with the immunofluorescence staining. The protein expression of PPARγ, NLRP3, cysteinyl aspartate specific protease-1 (caspase-1), gasdermin D (GSDMD) and GSDMD-N terminal (GSDMD-N) in the cerebral cortex was detected with Western blot. Using the quantitative real-time fluorescence-PCR, the mRNA expression of PPARγ, NLRP3, caspase-1 and GSDMD of the cerebral cortex was detected. The contents of interleukin (IL)-1ß and IL-18 in the cerebral cortex of rats were determined by ELISA. RESULTS: Compared with the sham-operation group, the mNSS, the relative cerebral infarction volume and the TUNEL positive cells rate were increased (P<0.01), pyroptosis was severe, the protein and mRNA expression levels of PPARγ, NLRP3, caspase-1 and GSDMD were elevated (P<0.01); and the protein expression of GSDMD-N and contents of IL-1ß and IL-18 were increased (P<0.01) in the model group. When compared with the model group, the mNSS, the relative cerebral infarction volume and the TUNEL positive cells rate were decreased (P<0.01), pyroptosis was alleviated, the protein and mRNA expression levels of PPARγ were increased (P<0.01), the protein and mRNA expression levels of NLRP3, caspase-1 and GSDMD were decreased (P<0.01), the protein expression of GSDMD-N was reduced (P<0.01); and the contents of IL-1ß and IL-18 were lower (P<0.01) in the EA group and the agonist group; while, in the EA + inhibitor group, the protein expression of PPARγ was increased (P<0.01), the protein and mRNA expression levels of NLRP3 and GSDMD were decreased (P<0.01, P<0.05), the mRNA expression of caspase-1 was reduced (P<0.01); and the contents of IL-1ß and IL-18 were lower (P<0.01). When compared with the EA + inhibitor group, the mNSS, the relative cerebral infarction volume and the TUNEL positive cells rate were decreased (P<0.05, P<0.01), pyroptosis was alleviated, the protein and mRNA expression levels of PPARγ were increased (P<0.01), the protein and mRNA expression levels of NLRP3, caspase-1 and GSDMD were decreased (P<0.01), the protein expression of GSDMD-N was reduced (P<0.01); and the contents of IL-1ß and IL-18 were declined (P<0.01) in the EA group. Compared with the agonist group, in the EA group, the relative cerebral infarction volume and the TUNEL positive cells rate were increased (P<0.05, P<0.01), the mRNA expression of PPARγ was decreased (P<0.01) and the protein expression of GSDMD-N was elevated (P<0.05); and the contents of IL-1ß and IL-18 were higher (P<0.01). CONCLUSION: Tongdu Tiaoshen EA pretreatment can attenuate the neurological impairment in the rats with CIRI, and the underlying mechanism is related to the up-regulation of PPARγ inducing the inhibition of NLRP3 in the cerebral cortex of rats so that pyroptosis is affected.


Assuntos
Eletroacupuntura , PPAR gama , Masculino , Animais , Ratos , Ratos Sprague-Dawley , PPAR gama/genética , Piroptose , Interleucina-18 , Proteína 3 que Contém Domínio de Pirina da Família NLR , Córtex Cerebral , Infarto Cerebral/genética , Infarto Cerebral/terapia , Caspases , RNA Mensageiro
18.
Int J Mol Sci ; 24(14)2023 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-37511325

RESUMO

Serpin family A member 1 (SERPINA1) encodes a protease inhibitor participating in many human diseases, but its value in immunoregulation and prognosis of human cancers remains unclear. In this study, through comprehensive analysis of data from The Cancer Genome Atlas (TCGA) datasets, we found that SERPINA1 was dysregulated in many cancers compared with normal tissues. SERPINA1 expression was significantly associated with prognosis, immune subtype, molecular subtype, immune checkpoint (ICP) genes, tumor mutational burden (TMB), microsatellite instability (MSI), and the estimation of stromal and immune cells in malignant tumor tissues using expression data (ESTIMATE) score. There was a strong connection between SERPINA1 expression and tumor-infiltrating lymphocytes, and SERPINA1 showed significant relation to gene markers of immune cells in digestive tumors. Fluorescence-based multiplex immunohistochemistry confirmed that SERPINA1 protein expression was related to clinicopathologic features and immune infiltrates in hepatic cancer. This study suggests that SERPINA can potentially serve as a novel biomarker for cancer prognosis and immunotherapy.


Assuntos
Neoplasias Hepáticas , Humanos , Antivirais , Terapia Enzimática , Neoplasias Hepáticas/genética , Prognóstico , Inibidores de Proteases
19.
Front Oncol ; 13: 1138284, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37361573

RESUMO

Introduction: Diffuse large B-cell lymphoma (DLBCL) is the most common subtypes of lymphoma. Clinical biomarkers are still required for DLBCL patients to identify high-risk patients. Therefore, we developed and validated the platelet-to-albumin (PTA) ratio as a predictor for DLBCL patients. Methods: A group of 749 patients was randomly divided into a training set (600 patients) and an internal validation set (149 cases). The independent cohort of 110 patients was enrolled from the other hospital as an external validation set. Penalized smoothing spline (PS) Cox regression models were used to explore the non-linear relationship between the PTA ratio and overall survival (OS) as well as progression-free survival (PFS), respectively. Results: A U-shaped relation between the PTA ratio and PFS was identified in the training set. The PTA ratio less than 2.7 or greater than 8.6 was associated with the shorter PFS. Additionally, the PTA ratio had an additional prognostic value to the well-established predictors. What's more, the U-shaped pattern of the PTA ratio and PFS was respectively validated in the two validation sets. Discussion: A U-shaped association between the PTA ratio and PFS was found in patients with DLBCLs. The PTA ratio can be used as a biomarker, and may suggest abnormalities of both host nutritional aspect and systemic inflammation in DLBCL.

20.
Mol Carcinog ; 62(7): 940-950, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37036190

RESUMO

SMYD2 is a lysine histone methyl transferase involved in various cancers epigenetically via methylating histone H3K4, and H3K36. c-Myc is one of the major drivers of prostate cancer (PCa) initiation and progression. The roles of SMYD2 in PCa and the regulators of c-Myc activity in PCa are still under-researched. SMYD2 expression and survival outcomes in PCa cohorts were analyzed by bioinformatics analysis. SMYD2 protein levels were detected in PCa tissues by immunohistochemistry. SMYD2 knockdown cells were established to identify the effects of SMYD2 on cell growth in vitro and in vivo. GSEA and RNA sequencing were adopted to reconnoiter the signaling regulated by SMYD2 in PCa. The relationship between SMYD2 and c-Myc was examined by western blot analysis, qPCR, and immunohistochemistry. SMYD2 specific inhibitor-AZ505 was used to pharmacologically inhibit SMYD2 function in vitro and in vivo. SMYD2 expression increased in PCa tissues compared with benign prostate tissues and higher SMYD2 expression was associated with a higher risk of biochemical relapse after radical prostatectomy. SMYD2 knockdown inhibited the growth of PCa cells both in vitro and in vivo. Furthermore, high SMYD2 levels conduced to activated c-Myc signaling in PCa cells. Importantly, the pharmacological intervention of SMYD2 by AZ505 significantly repressed PCa cell growth both in vitro and in vivo. Our findings indicate that SMYD2 inhibition restrains PCa cell proliferation by regulating c-Myc signaling and provide evidence for the potential practice of SMYD2 targeting in the treatment of PCa.


Assuntos
Neoplasias da Próstata , Transdução de Sinais , Masculino , Humanos , Histonas/metabolismo , Proteínas Proto-Oncogênicas c-myc/genética , Proteínas Proto-Oncogênicas c-myc/metabolismo , Próstata/metabolismo , Recidiva Local de Neoplasia , Neoplasias da Próstata/genética , Neoplasias da Próstata/metabolismo , Proliferação de Células , Linhagem Celular Tumoral , Histona-Lisina N-Metiltransferase/genética , Histona-Lisina N-Metiltransferase/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA