Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
2.
J Ethnopharmacol ; 324: 117617, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38142876

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Erzhi pills (EZP), a traditional Chinese medicine formula prescribed for the treatment of vitiligo, has shown promising efficacy. However, the oral bioactive components and mechanisms underlying the promotion of melanogenesis by EZP remain unclear. AIM OF THE STUDY: This study aimed to investigate the pharmacological basis and mechanism of EZP in promoting melanogenesis. MATERIALS AND METHODS: UHPLC-TOF-MS analysis was used to identify absorbed phytochemicals in serum after oral administration of EZP. Network pharmacology methods were used to predict potential targets and pathways involved in the melanogenic activity of EZP, resulting in the construction of a "compound-target-pathway" network. Zebrafish and B16F10 cells were used to evaluate the effects of EZP on tyrosinase activity and melanin content. Western blot and ELISA analyses were used to validate the effects of EZP on melanogenesis-related proteins, including MITF, TYR, CREB, p-CREB, and cAMP. RESULTS: UHPLC-TOF-MS analysis identified 36 compounds derived from EZP in serum samples. Network pharmacology predictions revealed 89 target proteins associated with the identified compounds and closely related to vitiligo. GO and KEGG analyses indicated the involvement of the cAMP/PKA signaling pathway in the promotion of melanogenesis by EZP. Experimental results showed that EZP increased tyrosinase activity and melanin content in zebrafish and B16F10 cells without inducing toxicity. Western blot and ELISA results suggested that the melanogenic effect of EZP may be related to the activation of the cAMP/PKA signaling pathway. These results confirm the feasibility of combining serum pharmacological and network pharmacological approaches. CONCLUSIONS: EZP have the potential to increase tyrosinase activity and melanin content in zebrafish and cells possibly through activation of the cAMP/PKA pathway.


Assuntos
Medicamentos de Ervas Chinesas , Melanoma Experimental , Vitiligo , Animais , Melaninas/metabolismo , Peixe-Zebra , Melanogênese , Monofenol Mono-Oxigenase/metabolismo , Melanoma Experimental/tratamento farmacológico , Melanoma Experimental/metabolismo , Linhagem Celular Tumoral , Fator de Transcrição Associado à Microftalmia/metabolismo
3.
Biomed Pharmacother ; 158: 114137, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36525817

RESUMO

Homocysteine (Hcy) is one of the independent risk factors of cardiovascular disease. Sodium tanshinone IIA sulfonate (STS) is a hydrophilic derivate of tanshinone IIA which is the main active constitute of Chinese Materia Medica Salviae Miltiorrhizae Radix et Rhizoma, and exhibits multiple pharmacological activities. However, whether STS could prevent from Hcy-induced endothelial cell injury is unknown. We found that STS dramatically reversed Hcy-induced cell death concentration dependently in human umbilical vascular endothelial cells (HUVECs). STS ameliorated the endothelial cell cycle progression, proliferation and cell migratory function impaired by Hcy, which might be co-related to the inhibition of intracellular oxidative stress and mitochondrial dysfunction. STS also elevated the phosphorylation of AKT and MAPKs and protein expression of sirtuin1 (SIRT1), NRF2 and HO-1 which were suppressed by Hcy. The protective effect of STS against Hcy-induced endothelial cell toxicity was partially attenuated by PI3K, AKT, MEK, ERK, SIRT1, NRF2 and HO-1 inhibitors. Besides, knockdown of SIRT1 by its siRNA dramatically decreased the endothelial protective effect of STS accompanied with suppression of SIRT1, NRF2, HO-1 and phosphorylated AKT. The activation of AKT or NRF2 partially reversed SIRT1-knockdown impaired cyto-protective effect of STS against Hcy-induced cell injury. Furthermore, STS prevented from Hcy-induced intracellular nicotinamide N-methyltransferase (NNMT) reduction along with elevation of intracellular methylnicotinamide (MNA), and MNA enhanced STS protecting against Hcy induced endothelial death. Knockdown of NNMT reduced the protective effect of STS against Hcy induced endothelial cell injury. Collectively, STS presented potent endothelial protective effect against Hcy and the underlying molecular mechanisms were involved in the suppression of intracellular oxidative stress and mitochondria dysfunction by activation of AKT/MAPKs, SIRT1/NRF2/HO-1 and NNMT/MNA signaling pathways.


Assuntos
Fator 2 Relacionado a NF-E2 , Proteínas Proto-Oncogênicas c-akt , Humanos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Sirtuína 1/metabolismo , Estresse Oxidativo , Células Endoteliais da Veia Umbilical Humana , Nicotinamida N-Metiltransferase/metabolismo
4.
Front Oncol ; 13: 1283935, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38273858

RESUMO

Background: The primary aim of this present study is to undertake a comprehensive comparative analysis of the perioperative, functional, and oncologic outcomes associated with laparoscopic partial nephrectomy (LPN) and open partial nephrectomy (OPN) as interventions for the treatment of complex renal tumors, defined as PADUA or RENAL score ≥ 7. Methods: We systematically carried out an extensive search across four electronic databases, namely PubMed, the Cochrane Library, Embase, and Web of Science. Our objective was to identify pertinent studies published in the English language up to December 2023, and encompassed controlled trials comparing LPN and OPN as interventions for complex renal tumors. Results: This study encompassed a total of seven comparative trials, involving 934 patients. LPN exhibited a noteworthy reduction in the length of hospital stay (weighted mean difference [WMD] -2.06 days, 95% confidence interval [CI] -2.62, -1.50; p < 0.00001), blood loss (WMD -34.05mL, 95% CI -55.61, -12.48; p = 0.002), and overall complications (OR 0.38, 95% CI 0.19, 0.79; p = 0.009). However, noteworthy distinctions did not arise between LPN and OPN concerning parameters such as warm ischemia time, renal function, and oncological outcomes. Conclusions: This study reveals that LPN presents several advantages over OPN. These benefits encompass a shortened hospital stay, diminished blood loss, and a reduced incidence of complications. Importantly, LPN achieves these benefits while concurrently upholding comparable renal function and oncological outcomes. Systematic Review Registration: https://www.crd.york.ac.uk/prospero/display_record.php?RecordID=457716, identifier CRD42023453816.

5.
Front Pharmacol ; 13: 1037341, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36532721

RESUMO

Metabolic disturbance, particularly of glucose metabolism, is a hallmark of tumors such as non-small cell lung cancer (NSCLC). Cancer cells tend to reprogram a majority of glucose metabolism reactions into glycolysis, even in oxygen-rich environments. Although glycolysis is not an efficient means of ATP production compared to oxidative phosphorylation, the inhibition of tumor glycolysis directly impedes cell survival and growth. This review focuses on research advances in glycolysis in NSCLC and systematically provides an overview of the key enzymes, biomarkers, non-coding RNAs, and signaling pathways that modulate the glycolysis process and, consequently, tumor growth and metastasis in NSCLC. Current medications, therapeutic approaches, and natural products that affect glycolysis in NSCLC are also summarized. We found that the identification of appropriate targets and biomarkers in glycolysis, specifically for NSCLC treatment, is still a challenge at present. However, LDHB, PDK1, MCT2, GLUT1, and PFKM might be promising targets in the treatment of NSCLC or its specific subtypes, and DPPA4, NQO1, GAPDH/MT-CO1, PGC-1α, OTUB2, ISLR, Barx2, OTUB2, and RFP180 might be prognostic predictors of NSCLC. In addition, natural products may serve as promising therapeutic approaches targeting multiple steps in glycolysis metabolism, since natural products always present multi-target properties. The development of metabolic intervention that targets glycolysis, alone or in combination with current therapy, is a potential therapeutic approach in NSCLC treatment. The aim of this review is to describe research patterns and interests concerning the metabolic treatment of NSCLC.

6.
J Ethnopharmacol ; 297: 115547, 2022 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-35870688

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Atherosclerosis (AS) is one of major threatens of death worldwide, and vascular smooth muscle cell (VSMC) proliferation is an important characteristic in the progression of AS. Tribulus terrestris L. is a well-known Chinese Materia Medica for treating skin pruritus, vertigo and cardiovascular diseases in traditional Chinese medicine. However, its anti-AS activity and inhibition effect on VSMC proliferation are not fully elucidated. AIMS: We hypothesize that the furostanol saponins enriched extract (FSEE) of T. terrestris L. presents anti-AS effect by inhibition of VSMC proliferation. The molecular action mechanism underlying the anti-VSMC proliferation effect of FSEE is also investigated. MATERIALS AND METHODS: Apolipoprotein-E deficient (ApoE-/-) mice and rat thoracic smooth muscle cell A7r5 were employed as the in vivo and in vitro models respectively to evaluate the anti- AS and VSMC proliferation effects of FSEE. In ApoE-/- mice, the amounts of total cholesterol, triglyceride, low density lipoprotein and high density lipoprotein in serum were measured by commercially available kits. The size of atherosclerotic plaque was observed by hematoxylin & eosin staining. The protein expressions of α-smooth muscle actin (α-SMA) and osteopontin (OPN) in the plaque were examined by immunohistochemistry. In A7r5 cells, the cell viability and proliferation were tested by MTT and Real Time Cell Analysis assays. The cell migration was evaluated by wound healing assay. Propidium iodide staining followed by flow cytometry was used to analyze the cell cycle progression. The expression of intracellular total and phosphorylated proteins including protein kinase B (Akt) and mitogen-activated protein kinases (MAPKs), such as mitogen-activated extracellular signal-regulated kinase (MEK), extracellular signal-regulated kinase (ERK) and c-Jun N-terminal kinase (JNK), were detected by western blotting analysis. RESULTS: FSEE significantly reduced the area of atherosclerotic plaque in high-fat diet-fed ApoE-/- mice. And FSEE increased the protein expression level of α-SMA and decreased the level of OPN in atherosclerotic plaque, which revealed the inhibition of VSMC phenotype switching and proliferation. In A7r5 cells, FSEE suppressed fetal bovine serum (FBS) or oxidized low density lipoprotein (oxLDL)-triggered VSMC proliferation and migration in a concentration dependent manner. FSEE protected against the elevation of cell numbers in S phase induced by FBS or oxLDL and the reduction of cell numbers in G0/G1 phase induced by oxLDL. Moreover, the phosphorylation of Akt and MAPKs including MEK, ERK and JNK could be facilitated by FBS or oxLDL, while co-treatment of FSEE attenuated the phosphorylation of Akt induced by oxLDL as well as the phosphorylation of MEK and ERK induced by FBS. In addition, (25R)-terrestrinin B (JL-6), which was the main ingredient of FSEE, and its potential active pharmaceutical ingredients tigogenin (Tigo) and hecogenin (Heco) also significantly attenuated FBS or oxLDL-induced VSMC proliferation in A7r5 cells. CONCLUSION: FSEE presents potent anti- AS and VSMC proliferation activities and the underlying mechanism is likely to the suppression of Akt/MEK/ERK signaling. The active components of FSEE are JL-6 and its potential active pharmaceutical ingredients Tigo and Heco. So, FSEE and its active compounds may be potential therapeutic drug candidates for AS.


Assuntos
Aterosclerose , Placa Aterosclerótica , Tribulus , Animais , Apolipoproteínas E/genética , Aterosclerose/metabolismo , Proliferação de Células , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Camundongos , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , Músculo Liso Vascular , Miócitos de Músculo Liso , Preparações Farmacêuticas/metabolismo , Placa Aterosclerótica/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos
7.
Artigo em Inglês | MEDLINE | ID: mdl-33628304

RESUMO

Inflammation response is a regulated cellular process and excessive inflammation has been recognized in numerous diseases, such as cardiovascular disease, neurodegenerative disease, inflammatory bowel disease, and cancer. Tribulus terrestris L. (TT), also known as Bai Jili in Chinese, has been applied in traditional Chinese medicine for thousands of years while its anti-inflammatory activity and underlying mechanism are not fully elucidated. Here, we hypothesize Tribulus terrestris L. extract (BJL) which presents anti-inflammatory effect, and the action mechanism was also investigated. We employed the transgenic zebrafish line Tg(MPO:GFP), which expresses green fluorescence protein (GFP) in neutrophils, and mice macrophage RAW 264.7 cells as the in vivo and in vitro model to evaluate the anti-inflammatory effect of BJL, respectively. The production of nitric oxide (NO) was measured by Griess reagent. The mRNA expression levels of inflammatory cytokines and inducible nitric oxide synthase (iNOS) were measured by real-time PCR, and the intracellular total or phosphorylated protein levels of NF-κB, Akt, and MAPKs including MEK, ERK, p38, and JNK were detected by western blot. We found that BJL significantly inhibited fin transection or lipopolysaccharide- (LPS-) induced neutrophil migration and aggregation in zebrafish in vivo. In mice macrophage RAW 264.7 cells, BJL ameliorated LPS-triggered excessive release of NO and transcription of inflammatory cytokine genes including tumor necrosis factor-alpha (TNF-α), interleukin-6 (IL-6), and interleukin-1 beta (IL-1ß). BJL also reduced the LPS-induced elevations of intracellular iNOS and nuclear factor kappa B (NF-κB) which mediate the cellular NO and inflammatory cytokine productions, respectively. Moreover, LPS dramatically increased the phosphorylation of Akt and MAPKs including MEK, ERK, p38, and JNK in RAW 264.7 cells, while cotreatment BJL with LPS suppressed their phosphorylation. Taken together, our data suggested that BJL presented potent anti-inflammatory effect and the underlying mechanism was closely related to the inhibition of Akt/MAPKs and NF-κB/iNOS-NO signaling pathways.

8.
Front Pharmacol ; 11: 764, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32581782

RESUMO

Anemarrhena asphodeloides Bunge is a famous Chinese Materia Medica and has been used in traditional Chinese medicine for more than two thousand years. Steroidal saponins are important active components isolated from A. asphodeloides Bunge. Among which, the accumulation of numerous experimental studies involved in Timosaponin AIII (Timo AIII) draws our attention in the recent decades. In this review, we searched all the scientific literatures using the key word "timosaponin AIII" in the PubMed database update to March 2020. We comprehensively summarized the pharmacological activity, pharmacokinetics, and toxicity of Timo AIII. We found that Timo AIII presents multiple-pharmacological activities, such as anti-cancer, anti-neuronal disorders, anti-inflammation, anti-coagulant, and so on. And the anti-cancer effect of Timo AIII in various cancers, especially hepatocellular cancer and breast cancer, is supposed as its most potential activity. The anti-inflammatory activity of Timo AIII is also beneficial to many diseases. Moreover, VEGFR, X-linked inhibitor of apoptosis protein (XIAP), B-cell-specific Moloney murine leukemia virus integration site 1 (BMI1), thromboxane (Tx) A2 receptor, mTOR, NF-κB, COX-2, MMPs, acetylcholinesterase (AChE), and so on are identified as the crucial pharmacological targets of Timo AIII. Furthermore, the hepatotoxicity of Timo AIII was most concerned, and the pharmacokinetics and toxicity of Timo AIII need further studies in diverse animal models. In conclusion, Timo AIII is potent as a compound or leading compound for further drug development while still needs in-depth studies.

9.
Int J Infect Dis ; 89: 66-71, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31521852

RESUMO

OBJECTIVES: To determine blood Brucella DNA loads between brucellosis patients and those without brucellosis. METHODS: The patient group included 350 brucellosis patients. The control was composed of 200 subjects without brucellosis. The extracted DNA from blood was tested by quantitative polymerase chain reaction (qPCR). The cutoff value was determined by receiver operating characteristic curve analysis. A portion of the brucellosis patients were monitored by qPCR during therapy. RESULTS: The detection limit of qPCR was between 1E+01cfu/µL and 1E+08cfu/µL. The standard curve R2 reached 0.998. The cutoff value was 4E+01cfu/µL, which was determined by comparison of the patient group and the control. The qPCR assay had a specificity of 100% and a sensitivity of 93.14%. The monitoring results showed that the Brucella DNA load decreased in most patients during the first 4 weeks of treatment. One patient with bad treatment compliance showed a rebound. CONCLUSIONS: The qPCR results were in accordance with the course of brucellosis in the clinic. The DNA load often reflects the situation of the Brucella-infected patient. The cutoff value provides an important reference of infection. This qPCR-based method can be used to assist in the diagnosis of brucellosis and to adjust the therapy.


Assuntos
Brucella/isolamento & purificação , Brucelose/diagnóstico , DNA Bacteriano/sangue , Adulto , Testes de Aglutinação , Medula Óssea/microbiologia , Brucella/efeitos dos fármacos , Brucella/genética , Brucelose/tratamento farmacológico , Brucelose/microbiologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Reação em Cadeia da Polimerase em Tempo Real , Sensibilidade e Especificidade
10.
Cancer Sci ; 98(12): 1921-9, 2007 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-17888035

RESUMO

Hepatitis B virus (HBV) genotype C and the basic core promoter (BCP) mutations were reported to be associated with the development of hepatocellular carcinoma (HCC). In this study the full sequences of HBV genomes were analyzed in order to find the other predictors of HCC development. We determined the full sequences of HBV genomes in 24 genotype C carriers who developed HCC (HCC group) at the beginning of follow-up and at the time of HCC diagnosis, and 20 patients who did not develop HCC (non-HCC group) served as a control. The number of nucleotide and amino acid substitutions in most regions was higher in the HCC group than in the non-HCC group, and the following substitutions and deletions were found more frequently in the HCC group than in the non-HCC group: G1317A and T1341C/A/G in the X promoter region were detected in 13 and six of the HCC cases, four and none of the non-HCC cases, respectively; and pre-S2 deletion was detected in eight HCC and none of the non-HCC cases. Compared with the wild type X promoter, the mutant type X promoters, M1 (G1317A), M2 (T1341C), and M4 (T1341G) showed increases in activity of 2.3, 3.8, and 1.4 times, respectively, in HepG2 cells. Substitutions and deletion of nucleotides of the HBV genome, especially the pre-S2 deletion and G1317A and T1341C/A/G mutations may be useful markers for predicting the development of HCC.


Assuntos
Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/virologia , Genoma Viral , Vírus da Hepatite B/genética , Hepatite C Crônica/genética , Hepatite C Crônica/virologia , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/virologia , Adulto , Substituição de Aminoácidos , Linhagem Celular Tumoral , DNA Viral/sangue , DNA Viral/genética , Feminino , Genes Reporter , Genótipo , Humanos , Masculino , Pessoa de Meia-Idade , Polimorfismo de Nucleotídeo Único , RNA Viral/sangue , RNA Viral/genética , Transfecção , Proteínas Virais/química , Proteínas Virais/genética
11.
Hepatogastroenterology ; 54(73): 32-5, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-17419226

RESUMO

BACKGROUND/AIMS: Antiviral therapy such as combination interferon and ribavirin can eradicate hepatitis C virus (HCV) RNA by up to 40-50%. However, many patients still remain non-responders to this treatment for various reasons. The aim of this study was to evaluate the effect of interferon or ribavirin treatment on subgenomic HCV RNA replication in 'non-hepatic' HeLa cells. METHODOLOGY: Huh-7 or HeLa cells harboring HCV replicon were constructed by using cellular RNA of Huh-7 harboring HCV replicon RNAs, named as C13-3 cells. We also tested whether interferon or ribavirin can suppress HCV RNA in HeLa cells. RESULTS: Huh-7 or HeLa cells harboring HCV replicon RNAs were constructed by using cellular RNA of C13-3 cells than using in vitro-transcribed RNA. Ribavirin at 1 microg/mL or 10 microg/mL did not suppress colony formation in HeLa cells, but at 100 microg/mL suppression was observed. Interferon-alpha 2b suppressed HCV replication even at 1 U/mL. CONCLUSIONS: HeLa cells harboring HCV replicon RNAs also might be useful for the development of antiviral drugs.


Assuntos
Antivirais/farmacologia , Hepacivirus/fisiologia , Interferon-alfa/farmacologia , RNA Viral/fisiologia , Ribavirina/farmacologia , Replicação Viral/efeitos dos fármacos , Linhagem Celular Tumoral , Genoma Viral , Células HeLa , Hepacivirus/efeitos dos fármacos , Humanos , Interferon alfa-2 , Proteínas Recombinantes , Proteínas não Estruturais Virais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA