Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Drug Deliv ; 29(1): 1184-1200, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35403517

RESUMO

Self-assembling peptides (SAPs) have enormous potential in medical and biological applications, particularly noninvasive tumor therapy. SAPs self-assembly is governed by multiple non-covalent interactions and results in the formation of a variety of morphological features. SAPs can be assembled in a variety of ways, including chemical conjugation and physical encapsulation, to incorporate multiple bioactive motifs. Peptide-based nanomaterials are used for chemotherapy, delivery vehicles, immunotherapy, and noninvasive tumor therapies (e.g. photodynamic therapy) by employing the self-assembling properties of peptides. The recent increase of SAPs is almost entirely due to their excellent biocompatibility, responsiveness toward tumor microenvironment, multivalency, and structural versatility. Synergistic therapy is a more effective and powerful approach to treat the tumor. Notably, SAPs can be used to subtly combine various treatments. Importantly, SAPs are capable of subtly making the combination of various treatments. This review describes mechanisms of peptides self-assemble into various structures and their biomedical applications with a focus on possible treatments.


Assuntos
Nanoestruturas , Neoplasias , Humanos , Hidrogéis/química , Fatores Imunológicos , Imunoterapia , Nanoestruturas/química , Neoplasias/tratamento farmacológico , Peptídeos/química , Microambiente Tumoral
2.
Curr Top Med Chem ; 20(30): 2789-2800, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33076809

RESUMO

Traditional Chinese Medicine (TCM) is one of the ancient and most accepted alternative medicinal systems in the world for the treatment of health ailments. World Health Organization recognizes TCM as one of the primary healthcare practices followed across the globe. TCM utilizes a holistic approach for the diagnosis and treatment of cancers. The tumor microenvironment (TME) surrounds cancer cells and plays pivotal roles in tumor development, growth, progression, and therapy resistance. TME is a hypoxic and acidic environment that includes immune cells, pericytes, fibroblasts, endothelial cells, various cytokines, growth factors, and extracellular matrix components. Targeting TME using targeted drug delivery and nanoparticles is an attractive strategy for the treatment of solid tumors and recently has received significant research attention under precise medicine concept. TME plays a pivotal role in the overall survival and metastasis of a tumor by stimulating cell proliferation, preventing the tumor clearance by the immune cells, enhancing the oncogenic potential of the cancer cells, and promoting tumor invasion. Hepatocellular Carcinoma (HCC) is one of the major causes of cancer-associated deaths affecting millions of individuals worldwide each year. TCM herbs contain several bioactive phytoconstituents with a broad range of biological, physiological, and immunological effects on the system. Several TCM herbs and their monomers have shown inhibitory effects in HCC by controlling the TME. This study reviews the fundamentals and applications of targeting strategies for immunosuppressing TME to treat cancers. This study focuses on TME targeting strategies using TCM herbs and the molecular mechanisms of several TCM herbs and their monomers on controlling TME.


Assuntos
Antineoplásicos/farmacologia , Carcinoma Hepatocelular/tratamento farmacológico , Sistemas de Liberação de Medicamentos , Medicamentos de Ervas Chinesas/farmacologia , Neoplasias Hepáticas/tratamento farmacológico , Medicina Tradicional Chinesa , Nanopartículas/química , Antineoplásicos/química , Carcinoma Hepatocelular/patologia , Proliferação de Células/efeitos dos fármacos , Medicamentos de Ervas Chinesas/química , Humanos , Neoplasias Hepáticas/patologia , Microambiente Tumoral/efeitos dos fármacos
3.
Curr Top Med Chem ; 20(27): 2472-2492, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32962615

RESUMO

Extracellular vesicles (EVs) are membrane vesicles (MVs) playing important roles in various cellular and molecular functions in cell-to-cell signaling and transmitting molecular signals to adjacent as well as distant cells. The preserved cell membrane characteristics in MVs derived from live cells, give them great potential in biological applications. EVs are nanoscale particulates secreted from living cells and play crucial roles in several important cellular functions both in physiological and pathological states. EVs are the main elements in intercellular communication in which they serve as carriers for various endogenous cargo molecules, such as RNAs, proteins, carbohydrates, and lipids. High tissue tropism capacity that can be conveniently mediated by surface molecules, such as integrins and glycans, is a unique feature of EVs that makes them interesting candidates for targeted drug delivery systems. The cell-derived giant MVs have been exploited as vehicles for delivery of various anticancer agents and imaging probes and for implementing combinational phototherapy for targeted cancer treatment. Giant MVs can efficiently encapsulate therapeutic drugs and deliver them to target cells through the membrane fusion process to synergize photodynamic/photothermal treatment under light exposure. EVs can load diagnostic or therapeutic agents using different encapsulation or conjugation methods. Moreover, to prolong the blood circulation and enhance the targeting of the loaded agents, a variety of modification strategies can be exploited. This paper reviews the EVs-based drug delivery strategies in cancer therapy. Biological, pharmacokinetics and physicochemical characteristics, isolation techniques, engineering, and drug loading strategies of EVs are discussed. The recent preclinical and clinical progresses in applications of EVs and oncolytic virus therapy based on EVs, the clinical challenges and perspectives are discussed.


Assuntos
Antineoplásicos/farmacologia , Materiais Biomiméticos/química , Sistemas de Liberação de Medicamentos , Vesículas Extracelulares/química , Neoplasias/tratamento farmacológico , Fármacos Fotossensibilizantes/farmacologia , Antineoplásicos/química , Membrana Celular/química , Sobrevivência Celular/efeitos dos fármacos , Portadores de Fármacos/química , Humanos , Neoplasias/patologia , Fotoquimioterapia , Fármacos Fotossensibilizantes/química
4.
Organogenesis ; 16(4): 113-125, 2020 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-32799735

RESUMO

Bone defects or fractures generally heal in the absence of major interventions due to the high regenerative capacity of bone tissue. However, in situations of severe/large bone defects, these orchestrated regeneration mechanisms are impaired. With advances in modern medicine, natural and synthetic bio-scaffolds from bioceramics and polymers that support bone growth have emerged and gained intense research interest. In particular, scaffolds that recapitulate the molecular cues of extracellular signals, particularly growth factors, offer potential as therapeutic bone biomaterials. The current challenges for these therapies include the ability to engineer materials that mimic the biological and mechanical properties of the real bone tissue matrix, whilst simultaneously supporting bone vascularization. In this review, we discuss the very recent innovative strategies in bone biomaterial technology, including those of endogenous biomaterials and cell/drug delivery systems that promote bone regeneration. We present our understanding of their current value and efficacy, and the future perspectives for bone regenerative medicine.


Assuntos
Materiais Biocompatíveis , Regeneração Óssea , Osso e Ossos/fisiologia , Engenharia Tecidual/métodos , Alicerces Teciduais , Biomimética , Cerâmica/uso terapêutico , Sistemas de Liberação de Medicamentos , Matriz Extracelular , Humanos , Células-Tronco Mesenquimais/fisiologia , Polímeros/uso terapêutico , Medicina Regenerativa
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA