Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(2)2024 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-38256231

RESUMO

The pandemic of coronavirus disease 2019 (COVID-19) has been the foremost modern global public health challenge. The airway is the primary target in severe acute respiratory distress syndrome coronavirus 2 (SARS-CoV-2) infection, with substantial cell death and lung injury being signature hallmarks of exposure. The viral factors that contribute to cell death and lung injury remain incompletely understood. Thus, this study investigated the role of open reading frame 7b (Orf7b), an accessory protein of the virus, in causing lung injury. In screening viral proteins, we identified Orf7b as one of the major viral factors that mediates lung epithelial cell death. Overexpression of Orf7b leads to apoptosis and ferroptosis in lung epithelial cells, and inhibitors of apoptosis and ferroptosis ablate Orf7b-induced cell death. Orf7b upregulates the transcription regulator, c-Myc, which is integral in the activation of lung cell death pathways. Depletion of c-Myc alleviates both apoptotic and ferroptotic cell deaths and lung injury in mouse models. Our study suggests a major role of Orf7b in the cell death and lung injury attributable to COVID-19 exposure, supporting it as a potential therapeutic target.


Assuntos
COVID-19 , Ferroptose , Lesão Pulmonar , Proteínas Virais , Animais , Camundongos , Apoptose , Lesão Pulmonar/virologia , Fases de Leitura Aberta , SARS-CoV-2 , Proteínas Virais/genética
2.
JCI Insight ; 9(2)2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38060312

RESUMO

Cigarette smoking is associated with a higher risk of ICU admissions among patients with flu. However, the etiological mechanism by which cigarette smoke (CS) exacerbates flu remains poorly understood. Here, we show that a mild dose of influenza A virus promotes a severe lung injury in mice preexposed to CS but not room air for 4 weeks. Real-time intravital (in vivo) lung imaging revealed that the development of acute severe respiratory dysfunction in CS- and flu-exposed mice was associated with the accumulation of platelet-rich neutrophil-platelet aggregates (NPAs) in the lung microcirculation within 2 days following flu infection. These platelet-rich NPAs formed in situ and grew larger over time to occlude the lung microvasculature, leading to the development of pulmonary ischemia followed by the infiltration of NPAs and vascular leakage into the alveolar air space. These findings suggest, for the first time to our knowledge, that an acute onset of platelet-driven thrombo-inflammatory response in the lung contributes to the development of CS-induced severe flu.


Assuntos
Fumar Cigarros , Neutrófilos , Humanos , Animais , Camundongos , Fumar Cigarros/efeitos adversos , Pulmão , Plaquetas , Produtos do Tabaco
3.
Comb Chem High Throughput Screen ; 26(5): 965-978, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-35619291

RESUMO

BACKGROUND: There exists a lack of effective tools predicting prognosis for cutaneous melanoma patients. Glycolysis plays an essential role in the carcinogenesis process. OBJECTIVE: We intended to construct a new prognosis model for cutaneous melanoma. METHODS: Based on the data from the TCGA database, we conducted a univariate Cox regression analysis and identified prognostic glycolysis-related genes (GRGs). Meanwhile, the GSE15605 dataset was used to identify differentially expressed genes (DEGs). The intersection of prognostic GRGs and DEGs was extracted for the subsequent multivariate Cox regression analysis. RESULTS: A prognostic signature containing ten GRGs was built, and the TCGA cohort was classified into high and low risk subgroups based on the risk score of each patient. K-M analysis manifested that the overall survival of the high-risk group was statistically worse than that of the lowrisk group. Further study indicated that the risk-score could be used as an independent prognostic factor that effectively predicted the clinical prognosis in patients of different ages, genders, and stages. GO and KEGG enrichment analysis showed DEGs between high and low risk groups were enriched in immune-related functions and pathways. In addition, a significant difference existed between high and low risk groups in infiltration pattern of immune cells and expression levels of inhibitory immune checkpoint genes. CONCLUSION: A new glycolysis-related gene signature was established for identifying cutaneous melanoma patients with poor prognoses and formulating individualized treatment.


Assuntos
Melanoma , Neoplasias Cutâneas , Humanos , Feminino , Masculino , Melanoma/diagnóstico , Melanoma/genética , Neoplasias Cutâneas/diagnóstico , Neoplasias Cutâneas/genética , Fatores de Risco , Glicólise/genética , Melanoma Maligno Cutâneo
4.
Front Immunol ; 13: 1014063, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36466905

RESUMO

Purpose: This study aimed to investigate the value of 18F-fluorodeoxyglucose positron emission tomography/computed tomography (18F-FDG PET/CT) in predicting early immunotherapy response of immune checkpoint inhibitors (ICIs) in patients with advanced or metastatic non-small-cell lung cancer (NSCLC). Methods: A comprehensive search of PubMed, Web of science, Embase and the Cochrane library was performed to examine the prognostic value of 18F-FDG PET/CT in predicting early immunotherapy response of ICIs in patients with NSCLC. The main outcomes for evaluation were overall survival (OS) and progression-free survival (PFS). Detailed data from each study were extracted and analyzed using STATA 14.0 software. Results: 13 eligible articles were included in this systematic review. Compared to baseline 18F-FDG PET/CT imaging, the pooled hazard ratios (HR) of maximum and mean standardized uptake values SUVmax, SUVmean, MTV and TLG for OS were 0.88 (95% CI: 0.69-1.12), 0.79 (95% CI: 0.50-1.27), 2.10 (95% CI: 1.57-2.82) and 1.58 (95% CI: 1.03-2.44), respectively. The pooled HR of SUVmax, SUVmean, MTV and TLG for PFS were 1.06 (95% CI: 0.68-1.65), 0.66 (95% CI: 0.48-0.90), 1.50 (95% CI: 1.26-1.79), 1.27 (95% CI: 0.92-1.77), respectively. Subgroup analysis showed that high MTV group had shorter OS than low MTV group in both first line group (HR: 1.97, 95% CI: 1.39-2.79) and undefined line group (HR: 2.11, 95% CI: 1.61-2.77). High MTV group also showed a shorter PFS in first line group (HR: 1.85, 95% CI: 1.28-2.68), and low TLG group had a longer OS in undefined group (HR: 1.37, 95% CI: 1.00-1.86). No significant differences were in other subgroup analysis. Conclusion: Baseline MTV and TLG may have predictive value and should be prospectively studied in clinical trials. Baseline SUVmax and SUVmean may not be appropriate prognostic markers in advanced or metastatic NSCLC patients treated with ICIs. Systematic Review Registration: https://www.crd.york.ac.uk/prospero/display_record.php?RecordID=323906, identifier CRD42022323906.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Fluordesoxiglucose F18 , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Inibidores de Checkpoint Imunológico/uso terapêutico , Carcinoma Pulmonar de Células não Pequenas/diagnóstico por imagem , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Prognóstico , Neoplasias Pulmonares/diagnóstico por imagem , Neoplasias Pulmonares/tratamento farmacológico
5.
EMBO Mol Med ; 14(11): e16109, 2022 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-36094679

RESUMO

Monoclonal antibodies targeting the SARS-CoV-2 spike (S) neutralize infection and are efficacious for the treatment of COVID-19. However, SARS-CoV-2 variants, notably sublineages of B.1.1.529/omicron, have emerged that escape antibodies in clinical use. As an alternative, soluble decoy receptors based on the host entry receptor ACE2 broadly bind and block S from SARS-CoV-2 variants and related betacoronaviruses. The high-affinity and catalytically active decoy sACE22 .v2.4-IgG1 was previously shown to be effective against SARS-CoV-2 variants when administered intravenously. Here, inhalation of aerosolized sACE22 .v2.4-IgG1 increased survival and ameliorated lung injury in K18-hACE2 mice inoculated with P.1/gamma virus. Loss of catalytic activity reduced the decoy's therapeutic efficacy, which was further confirmed by intravenous administration, supporting dual mechanisms of action: direct blocking of S and turnover of ACE2 substrates associated with lung injury and inflammation. Furthermore, sACE22 .v2.4-IgG1 tightly binds and neutralizes BA.1, BA.2, and BA.4/BA.5 omicron and protects K18-hACE2 mice inoculated with a high dose of BA.1 omicron virus. Overall, the therapeutic potential of sACE22 .v2.4-IgG1 is demonstrated by the inhalation route and broad neutralization potency persists against highly divergent SARS-CoV-2 variants.


Assuntos
COVID-19 , Lesão Pulmonar , Camundongos , Animais , Enzima de Conversão de Angiotensina 2 , SARS-CoV-2/genética , Peptidil Dipeptidase A/metabolismo , Imunoglobulina G , Anticorpos Antivirais , Anticorpos Neutralizantes/uso terapêutico
6.
J Oncol ; 2022: 6300329, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35903534

RESUMO

Malignant melanoma is an extremely malignant tumor with a high mortality rate and an increasing incidence with a high mutation load. The frequency of mutations in the TERT promoter exceeds the frequency of any known noncoding mutations in melanoma. A growing number of recent studies suggest that the most common mutations in the TERT promoter (ATG start site -124C>T and -146C>T) are associated with increased TERT mRNA expression, telomerase activity, telomere length, and poor prognosis. Recently, it has been shown that TERT promoter mutations are more correlated with the occurrence, development, invasion, and metastasis of melanoma, as well as emerging approaches such as the therapeutic potential of chemical inhibition of TERT promoter mutations, direct telomerase inhibitors, combined targeted therapy, and immunotherapies. In this review, we describe the latest advances in the role of TERT promoter mutations and telomerase in promoting the occurrence, development, and poor prognosis of melanoma and discuss the clinical significance of the TERT promoter and telomerase in the treatment of melanoma.

7.
Molecules ; 27(12)2022 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-35744849

RESUMO

A series of novel indolone derivatives were synthesized and evaluated for their binding affinities toward MDM2 and MDMX. Some compounds showed potent MDM2 and moderate MDMX activities. Among them, compound A13 exhibited the most potent affinity toward MDM2 and MDMX, with a Ki of 0.031 and 7.24 µM, respectively. A13 was also the most potent agent against HCT116, MCF7, and A549, with IC50 values of 6.17, 11.21, and 12.49 µM, respectively. Western blot analysis confirmed that A13 upregulated the expression of MDM2, MDMX, and p53 by Western blot analysis. These results indicate that A13 is a potent dual p53-MDM2 and p53-MDMX inhibitor and deserves further investigation.


Assuntos
Antineoplásicos , Proteínas Proto-Oncogênicas c-mdm2 , Antineoplásicos/farmacologia , Proteínas de Ciclo Celular/metabolismo , Ligação Proteica , Proteínas Proto-Oncogênicas c-mdm2/metabolismo , Proteína Supressora de Tumor p53/metabolismo
8.
JCI Insight ; 7(11)2022 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-35511435

RESUMO

Studies have demonstrated the phenotypic heterogeneity of vascular endothelial cells (ECs) within a vascular bed; however, little is known about how distinct endothelial subpopulations in a particular organ respond to an inflammatory stimulus. We performed single-cell RNA-Seq of 35,973 lung ECs obtained during baseline as well as postinjury time points after inflammatory lung injury induced by LPS. Seurat clustering and gene expression pathway analysis identified 2 major subpopulations in the lung microvascular endothelium, a subpopulation enriched for expression of immune response genes such as MHC genes (immuneEC) and another defined by increased expression of vascular development genes such as Sox17 (devEC). The presence of immuneEC and devEC subpopulations was also observed in nonhuman primate lungs infected with SARS-CoV-2 and murine lungs infected with H1N1 influenza virus. After the peak of inflammatory injury, we observed the emergence of a proliferative lung EC subpopulation. Overexpression of Sox17 prevented inflammatory activation in ECs. Thus, there appeared to be a "division of labor" within the lung microvascular endothelium in which some ECs showed propensity for inflammatory signaling and others for endothelial regeneration. These results provide underpinnings for the development of targeted therapies to limit inflammatory lung injury and promote regeneration.


Assuntos
COVID-19 , Vírus da Influenza A Subtipo H1N1 , Lesão Pulmonar , Animais , Células Endoteliais/metabolismo , Pulmão/metabolismo , Lesão Pulmonar/metabolismo , Camundongos , SARS-CoV-2 , Transcriptoma
9.
Mol Ther ; 30(10): 3133-3154, 2022 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-35405312

RESUMO

Exosomes have a crucial role in intercellular communication and mediate interactions between tumor cells and tumor-associated macrophages (TAMs). Exosome-encapsulated non-coding RNAs (ncRNAs) are involved in various physiological processes. Tumor-derived exosomal ncRNAs induce M2 macrophage polarization through signaling pathway activation, signal transduction, and transcriptional and post-transcriptional regulation. Conversely, TAM-derived exosomal ncRNAs promote tumor proliferation, metastasis, angiogenesis, chemoresistance, and immunosuppression. MicroRNAs induce gene silencing by directly targeting mRNAs, whereas lncRNAs and circRNAs act as miRNA sponges to indirectly regulate protein expressions. The role of ncRNAs in tumor-host interactions is ubiquitous. Current research is increasingly focused on the tumor microenvironment. On the basis of the "cancer-immunity cycle" hypothesis, we discuss the effects of exosomal ncRNAs on immune cells to induce T cell exhaustion, overexpression of programmed cell death ligands, and create a tumor immunosuppressive microenvironment. Furthermore, we discuss potential applications and prospects of exosomal ncRNAs as clinical biomarkers and drug delivery systems.


Assuntos
Exossomos , MicroRNAs , Neoplasias , RNA Longo não Codificante , Exossomos/genética , Exossomos/metabolismo , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , Neoplasias/patologia , RNA Circular , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , RNA não Traduzido/genética , RNA não Traduzido/metabolismo , Microambiente Tumoral/genética , Macrófagos Associados a Tumor
10.
Nat Chem Biol ; 18(3): 342-351, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35046611

RESUMO

Vaccine hesitancy and emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants of concern (VOCs) escaping vaccine-induced immune responses highlight the urgency for new COVID-19 therapeutics. Engineered angiotensin-converting enzyme 2 (ACE2) proteins with augmented binding affinities for SARS-CoV-2 spike (S) protein may prove to be especially efficacious against multiple variants. Using molecular dynamics simulations and functional assays, we show that three amino acid substitutions in an engineered soluble ACE2 protein markedly augmented the affinity for the S protein of the SARS-CoV-2 WA-1/2020 isolate and multiple VOCs: B.1.1.7 (Alpha), B.1.351 (Beta), P.1 (Gamma) and B.1.617.2 (Delta). In humanized K18-hACE2 mice infected with the SARS-CoV-2 WA-1/2020 or P.1 variant, prophylactic and therapeutic injections of soluble ACE22.v2.4-IgG1 prevented lung vascular injury and edema formation, essential features of CoV-2-induced SARS, and above all improved survival. These studies demonstrate broad efficacy in vivo of an engineered ACE2 decoy against SARS-CoV-2 variants in mice and point to its therapeutic potential.


Assuntos
Enzima de Conversão de Angiotensina 2/química , COVID-19/prevenção & controle , Engenharia de Proteínas , SARS-CoV-2 , Sequência de Aminoácidos , Substituição de Aminoácidos , Animais , Antivirais , Descoberta de Drogas , Humanos , Lesão Pulmonar , Camundongos , Camundongos Transgênicos , Modelos Moleculares , Ligação Proteica , Conformação Proteica , Síndrome do Desconforto Respiratório , Síndrome Respiratória Aguda Grave
11.
Oncogene ; 41(5): 692-703, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34819634

RESUMO

N6-methyladenosine (m6A), the most abundant mRNA modification in mammals, is involved in the metabolism of mRNA. KIAA1429 is regarded as the largest m6A methyltransferase and plays an important role in m6A modification. However, the prognostic value and function of KIAA1429 in colorectal cancer (CRC) are unclear. Quantitative real-time PCR and immunohistochemical assays were performed to evaluate the expression of KIAA1429 in CRC tissues. Kaplan-Meier survival curves and log-rank tests were used to assess the association between KIAA1429 expression and the prognosis of patients with CRC. CCK-8 assays, colony formation assays, cell cycle assays, and xenograft experiments were performed to investigate the effect of KIAA1429 on cell proliferation. RNA immunoprecipitation, methylated RNA immunoprecipitation assays, and RNA stability assays were conducted to explore the underlying mechanism. KIAA1429 was significantly upregulated in CRC tissues compared with adjacent normal tissues. Patients with higher expression of KIAA1429 had shorter overall survival than those with lower expression. Functionally, KIAA1429 promoted CRC cell proliferation in vitro and in vivo. Mechanistically, KIAA1429 negatively regulated the expression of WEE1 by decreasing its stability in an m6A-independent manner by binding to the third segment in the 3'-UTR of WEE1 mRNA. Moreover, butyrate decreased the expression of KIAA1429 by downregulating the level of the transcription factor NFκB1. Our findings indicated that KIAA1429 plays an oncogenic role in CRC cells by inhibiting the expression of WEE1 in an m6A-independent manner and is associated with poor survival in CRC patients. These results suggested that KIAA1429 might be a potential prognostic marker for CRC.


Assuntos
Oncogenes
12.
Nat Commun ; 10(1): 2126, 2019 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-31073164

RESUMO

Repair of the endothelial cell barrier after inflammatory injury is essential for tissue fluid homeostasis and normalizing leukocyte transmigration. However, the mechanisms of endothelial regeneration remain poorly understood. Here we show that the endothelial and hematopoietic developmental transcription factor Sox17 promotes endothelial regeneration in the endotoxemia model of endothelial injury. Genetic lineage tracing studies demonstrate that the native endothelium itself serves as the primary source of endothelial cells repopulating the vessel wall following injury. We identify Sox17 as a key regulator of endothelial cell regeneration using endothelial-specific deletion and overexpression of Sox17. Endotoxemia upregulates Hypoxia inducible factor 1α, which in turn transcriptionally activates Sox17 expression. We observe that Sox17 increases endothelial cell proliferation via upregulation of Cyclin E1. Furthermore, endothelial-specific upregulation of Sox17 in vivo enhances lung endothelial regeneration. We conclude that endotoxemia adaptively activates Sox17 expression to mediate Cyclin E1-dependent endothelial cell regeneration and restore vascular homeostasis.


Assuntos
Ciclina E/genética , Endotélio Vascular/fisiopatologia , Endotoxemia/patologia , Proteínas HMGB/metabolismo , Proteínas Oncogênicas/genética , Regeneração/imunologia , Fatores de Transcrição SOXF/metabolismo , Animais , Diferenciação Celular , Linhagem Celular , Proliferação de Células , Ciclina E/metabolismo , Modelos Animais de Doenças , Células Endoteliais/fisiologia , Endotoxemia/imunologia , Células HEK293 , Proteínas HMGB/genética , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Lipopolissacarídeos/administração & dosagem , Lipopolissacarídeos/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Proteínas Oncogênicas/metabolismo , Regiões Promotoras Genéticas/genética , Fatores de Transcrição SOXF/genética , Transdução de Sinais/fisiologia , Regulação para Cima
13.
Circulation ; 135(25): 2505-2523, 2017 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-28381471

RESUMO

BACKGROUND: The mechanisms underlying the dedifferentiation and lineage conversion of adult human fibroblasts into functional endothelial cells have not yet been fully defined. Furthermore, it is not known whether fibroblast dedifferentiation recapitulates the generation of multipotent progenitors during embryonic development, which give rise to endothelial and hematopoietic cell lineages. Here we established the role of the developmental transcription factor SOX17 in regulating the bilineage conversion of fibroblasts by the generation of intermediate progenitors. METHODS: CD34+ progenitors were generated after the dedifferentiation of human adult dermal fibroblasts by overexpression of pluripotency transcription factors. Sorted CD34+ cells were transdifferentiated into induced endothelial cells and induced erythroblasts using lineage-specific growth factors. The therapeutic potential of the generated cells was assessed in an experimental model of myocardial infarction. RESULTS: Induced endothelial cells expressed specific endothelial cell surface markers and also exhibited the capacity for cell proliferation and neovascularization. Induced erythroblasts expressed erythroid surface markers and formed erythroid colonies. Endothelial lineage conversion was dependent on the upregulation of the developmental transcription factor SOX17, whereas suppression of SOX17 instead directed the cells toward an erythroid fate. Implantation of these human bipotential CD34+ progenitors into nonobese diabetic/severe combined immunodeficiency (NOD-SCID) mice resulted in the formation of microvessels derived from human fibroblasts perfused with mouse and human erythrocytes. Endothelial cells generated from human fibroblasts also showed upregulation of telomerase. Cell implantation markedly improved vascularity and cardiac function after myocardial infarction without any evidence of teratoma formation. CONCLUSIONS: Dedifferentiation of fibroblasts to intermediate CD34+ progenitors gives rise to endothelial cells and erythroblasts in a SOX17-dependent manner. These findings identify the intermediate CD34+ progenitor state as a critical bifurcation point, which can be tuned to generate functional blood vessels or erythrocytes and salvage ischemic tissue.


Assuntos
Antígenos CD34/fisiologia , Desdiferenciação Celular/fisiologia , Células Endoteliais/fisiologia , Eritroblastos/fisiologia , Fibroblastos/fisiologia , Fatores de Transcrição SOXF/fisiologia , Células-Tronco/fisiologia , Animais , Células Cultivadas , Humanos , Recém-Nascido , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID
14.
Cell ; 153(1): 216-27, 2013 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-23540699

RESUMO

Phospholipase Cε (PLCε) is a multifunctional enzyme implicated in cardiovascular, pancreatic, and inflammatory functions. Here we show that conditional deletion of PLCε in mouse cardiac myocytes protects from stress-induced pathological hypertrophy. PLCε small interfering RNA (siRNA) in ventricular myocytes decreases endothelin-1 (ET-1)-dependent elevation of nuclear calcium and activation of nuclear protein kinase D (PKD). PLCε scaffolded to muscle-specific A kinase-anchoring protein (mAKAP), along with PKCε and PKD, localizes these components at or near the nuclear envelope, and this complex is required for nuclear PKD activation. Phosphatidylinositol 4-phosphate (PI4P) is identified as a perinuclear substrate in the Golgi apparatus for mAKAP-scaffolded PLCε. We conclude that perinuclear PLCε, scaffolded to mAKAP in cardiac myocytes, responds to hypertrophic stimuli to generate diacylglycerol (DAG) from PI4P in the Golgi apparatus, in close proximity to the nuclear envelope, to regulate activation of nuclear PKD and hypertrophic signaling pathways.


Assuntos
Cardiomegalia/metabolismo , Cardiomegalia/patologia , Fosfatos de Fosfatidilinositol/metabolismo , Fosfoinositídeo Fosfolipase C/metabolismo , Animais , Aorta/patologia , Subunidades alfa Gq-G11 de Proteínas de Ligação ao GTP/metabolismo , Complexo de Golgi/metabolismo , Coração , Ventrículos do Coração/citologia , Masculino , Camundongos , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Membrana Nuclear/metabolismo , Fosfoinositídeo Fosfolipase C/genética , Ratos , Transdução de Sinais
15.
J Biol Chem ; 286(26): 23012-21, 2011 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-21550986

RESUMO

To define a role for phospholipase Cε (PLCε) signaling in cardiac myocyte hypertrophic growth, PLCε protein was depleted from neonatal rat ventricular myocytes (NRVMs) using siRNA. NRVMs with PLCε depletion were stimulated with endothelin (ET-1), norepinephrine, insulin-like growth factor-1 (IGF-1), or isoproterenol and assessed for development of hypertrophy. PLCε depletion dramatically reduced hypertrophic growth and gene expression induced by all agonists tested. PLCε catalytic activity was required for hypertrophy development, yet PLCε depletion did not reduce global agonist-stimulated inositol phosphate production, suggesting a requirement for localized PLC activity. PLCε was found to be scaffolded to a muscle-specific A kinase anchoring protein (mAKAPß) in heart and NRVMs, and mAKAPß localizes to the nuclear envelope in NRVMs. PLCε-mAKAP interaction domains were defined and overexpressed to disrupt endogenous mAKAPß-PLCε complexes in NRVMs, resulting in significantly reduced ET-1-dependent NRVM hypertrophy. We propose that PLCε integrates multiple upstream signaling pathways to generate local signals at the nucleus that regulate hypertrophy.


Assuntos
Proteínas de Ancoragem à Quinase A/metabolismo , Cardiomegalia/metabolismo , Proteínas Musculares/metabolismo , Miócitos Cardíacos/metabolismo , Membrana Nuclear/metabolismo , Fosfoinositídeo Fosfolipase C/metabolismo , Proteínas de Ancoragem à Quinase A/genética , Animais , Cardiomegalia/genética , Células HEK293 , Humanos , Camundongos , Proteínas Musculares/genética , Especificidade de Órgãos/genética , Fosfoinositídeo Fosfolipase C/genética , Estrutura Terciária de Proteína , Ratos , Ratos Sprague-Dawley , Transdução de Sinais/genética
16.
Zhonghua Xin Xue Guan Bing Za Zhi ; 34(7): 635-8, 2006 Jul.
Artigo em Chinês | MEDLINE | ID: mdl-17081371

RESUMO

OBJECTIVE: To investigate the relationship between endothelin-1 (ET-1) and tumor necrosis factor-alpha and myocardial microcircular dysfunction during coronary microembolization (CME). METHODS: CME was induced in 10 miniswine by selective infusion of microspheres (45 microm) into left anterior descending artery (LAD). We measured (1) coronary sinus level of ET-1, TNF-alpha using radioimmunoassay; (2) CFR, a measure of microvascular integrity, using Doppler flow wire in LAD at baseline and different doses of microspheres. RESULTS: CFR decrease significantly with different doses of microspheres (vs. baseline, P < 0.05). Level of ET-1, TNF-alpha increased significantly with doses of 5 x 10(4) and peaked with 10 x 10(4). Interestingly, ET-1 progressively decrease while TNF-alpha persistently elevated from doses of 12 x 10(4) to 15 x 10(4). There are reverse correlations between ET-1 and CFR (r = -0.31, P < 0.05). CONCLUSIONS: The extent of microvascular injury wasn't linearly related to the extent of ME, where, it closely associated with myocardial ET-1.


Assuntos
Trombose Coronária/fisiopatologia , Endotelina-1/sangue , Microcirculação/fisiopatologia , Fator de Necrose Tumoral alfa/sangue , Animais , Modelos Animais de Doenças , Suínos , Porco Miniatura
17.
J Histochem Cytochem ; 54(5): 515-23, 2006 May.
Artigo em Inglês | MEDLINE | ID: mdl-16344327

RESUMO

Coronary microembolization (CME) is associated with progressive myocardial dysfunction despite restoration of coronary flow reserve (CFR). The potential pathophysiological role of mast cells (MCs) remains unclear. Therefore, we induced CME in 18 miniswines and determined whether MC accumulation occurs and their effects on local cytokine secretion [interleukin (IL)-6, IL-8, tumor necrosis factor-alpha (TNF-alpha)]; cardiomyocyte apoptosis; and collagen formation at day 1 (D1), day 7 (D7), and day 30 (D30) after CME. Four sham-operated animals without CME (controls) and six animals treated with a MC stabilization agent (tranilast) for 30 days after CME were also studied. CFR decreased at D1 but returned to baseline level at D7 and D30. Coronary sinus levels of IL-6, IL-8, and TNF-alpha increased significantly at D1 and D7 (p<0.01 vs baseline). Levels of IL-6 and IL-8 at D30 returned to baseline level, but not those of TNF-alpha. The numbers of total and degranulating MCs, % apoptotic cardiomyocytes, and collagen volume fraction (CVF) over CME myocardium at D1, D7, and D30 were significantly higher than controls (p<0.01). Treatment with tranilast significantly reduced the serum level of TNF-alpha, numbers of total and degranulating MCs, % apoptotic cardiomyocytes, and CVF at D30 (all p<0.05). There was a significant positive correlation between the numbers of MCs with % apoptotic cardiomyocytes (r = 0.77, p<0.001) and CVF (r = 0.75, p<0.001) over the CME myocardium. Despite restoration of CFR, cardiomyocyte apoptosis persisted after CME and was positively correlated with the number of MCs but was prevented with tranilast treatment. These findings suggest that MCs contribute to cardiomyocyte apoptosis after CME.


Assuntos
Apoptose , Vasos Coronários/patologia , Embolia/patologia , Mastócitos/fisiologia , Miócitos Cardíacos/fisiologia , Animais , Colágeno/metabolismo , Circulação Coronária , Vasos Coronários/fisiopatologia , Embolia/fisiopatologia , Feminino , Interleucina-6/metabolismo , Interleucina-8/metabolismo , Masculino , Mastócitos/efeitos dos fármacos , Microscopia Eletrônica de Transmissão , Miocárdio/metabolismo , Miocárdio/patologia , Miocárdio/ultraestrutura , Suínos , Porco Miniatura , Fator de Necrose Tumoral alfa/metabolismo , ortoaminobenzoatos/farmacologia
18.
Zhonghua Yi Xue Za Zhi ; 84(7): 578-82, 2004 Apr 02.
Artigo em Chinês | MEDLINE | ID: mdl-15144594

RESUMO

OBJECTIVE: To assess the microvascular function of coronary artery after intracoronary microembolization using coronary resistance system. METHODS: The left anterior descending coronary artery (LAD) of 10 pigs weighing 21 kg-25 kg were embolized by repetitive injection of microspheres 45 micro m in diameter through a 2.8F Tracker catheter. Intra-vascular ultrasound (IVUS) images, intracoronary Doppler and pressure signals in the middle segment of LAD were acquired by use of intracoronary ultrasound imaging catheter, Doppler flow wire and pressure wire separately. Intracoronary bolus injection of 18 micro g adenosine was administered to maximally vasodilate the coronary arterial bed through the 2.8F Tracker catheter. The resting and hyperemic signals were acquired respectively before microembolization and in different levels of microembolization. Coronary resistance system reflecting the resistance to pulsatile coronary flow was established by a self-made software of PC system. The resting and hyperemic CR parameters included average resting coronary resistance (rCR) and average minimal coronary resistance (min-CR), the first-harmonic rCR and min-CR, the first-harmonic rCR orientation and min-CR orientation, and so on. Factor analysis was performed to extract the best coronary parameter from the coronary resistance parameters. RESULTS: Factor analysis showed that the first-harmonic rCR and first-harmonic min-CR were correlated better with the first component extracted from the resting and hyperemic CR parameters than rCR and min-CR, with the correlation coefficient being 0.913 and 0.950 in the first-harmonic CR and first-harmonic min-CR respectively. No significant difference in min-CR was found between the value at the dosage of 5 x 10(4) microspheres and that before microembolization. The min-CR value increased markedly from 271 mm Hg.ml(-1).s(-1) +/- 99 mm Hg.ml(-1).s(-1) at the dosage of injecting 5 x 10(4) microspheres to 361 mm Hg.ml(-1).s(-1) +/- 158 mm Hg.ml(-1).s(-1) at the dosage of injecting 10 x 10(4) microspheres (P < 0.05). The min-CR value remained almost unchanged from the dosage of 10 x 10(4) to 15 x 10(4) microspheres. There was no significant difference concerning the first-harmonic min-CR between the value at the dosage of 5 x 10(4) microspheres and that before microembolization. Along with the increase of number of microspheres injected the min-CR value increased gradually. The min-CR value was increased significantly than that before microembolization since the number of microspheres injected surpassed 14 x 10(4). CONCLUSION: The first-harmonic min-CR reflected the coronary microvascular dysfunction in different extents of microembolization better than min-CR. The extent of coronary microvascular dysfunction wasn't linearly related to the extent of microembolization.


Assuntos
Vasos Coronários/fisiopatologia , Embolia/patologia , Resistência Vascular , Animais , Vasos Coronários/patologia , Modelos Animais de Doenças , Embolia/etiologia , Feminino , Masculino , Suínos , Ultrassonografia Doppler
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA