RESUMO
Immune dysfunction is one of the leading causes of death of sepsis. How to regulate host immune functions to improve prognoses of septic patients has always been a clinical focus. Here we elaborate on the efficacy and potential mechanism of a classical drug, thymopentin (TP5). TP5 could decrease peritoneal bacterial load, and reduce inflammatory cytokine levels both in the peritoneal lavage fluid (PLF) and serum, alleviate pathological injuries in tissue and organ, coaxed by cecal ligation and perforation (CLP) in mice, ultimately improve the prognosis of septic mice. Regarding the mechanism, using RNA-seq and flow cytometry, we found that TP5 induced peptidoglycan recognition protein 1 (PGLYRP1) expression, increased phagocytosis and restored TNF-α expression of small peritoneal macrophage (SPM) in the septic mice. This may be increased SPM's ability to clear peritoneal bacteria, thereby attenuates the inflammatory response both in the peritoneal cavity and the serum. It was shown that TP5 plays a key role in restoring the function of peritoneal macrophages to alleviate the sepsis process. We reckon that this is closely relevant to SPM phagocytosis, which might involve increased PGLYRP1 expression and restored TNF-α secretion.
Assuntos
Sepse , Timopentina , Humanos , Camundongos , Animais , Fator de Necrose Tumoral alfa/metabolismo , Macrófagos/metabolismo , Citocinas/metabolismoRESUMO
Four-photon absorption (4PA) multimodal therapeutic agent applied to tumor ferroptosis process tracking is rarely reported. In this paper, two functionalized terpyridine iron complexes (TD-FeCl3, TD-Fe-TD) with four-photon absorption properties were designed and synthesized. The four-photon absorption cross sections of TD-FeCl3 reached 6.87 × 10-74cm8·s3·photon-3. Due to its strong near-infrared absorption, TD-FeCl3 has excellent photoacoustic imaging (PAI) capability for accurate PA imaging. TD-FeCl3 has an efficient longitudinal electron relaxation rate (r1 = 2.26 mM-1 s-1) and high spatial resolution, which can be applied as T1-weighted magnetic resonance imaging (MRI) contrast agent for tumor imaging in vivo. In addition, Fe3+ as a natural ferroptosis tracer, TD-FeCl3, is able to deplete glutathione (GSH) effectively, which can further enhance the ferroptosis process. We found that the series of cheap transition metal complexes has four-photon absorption activity and can be used as multimodal (MRI/PAI) diagnostic agents for tumor tracing processes.
Assuntos
Ferroptose , Nanopartículas , Neoplasias , Humanos , Nanopartículas/uso terapêutico , Imageamento por Ressonância Magnética/métodos , Espectroscopia de Ressonância Magnética , Meios de Contraste , FerroRESUMO
BACKGROUND: Gut-resident macrophages (gMacs) supplemented by monocytes-to-gMacs differentiation play a critical role in maintaining intestinal homeostasis. Activating transcription factor 4 (ATF4) is involved in immune cell differentiation. We therefore set out to investigate the role of ATF4-regulated monocytes-to-gMacs differentiation in sepsis-induced intestinal injury. METHODS: Sepsis was induced in C57BL/6 wild type (WT) mice and Atf4- knockdown ( Atf4+/ - ) mice by cecal ligation and puncture or administration of lipopolysaccharide (LPS). Colon, peripheral blood mononuclear cells, sera, lung, liver, and mesenteric lymph nodes were collected for flow cytometry, hematoxylin and eosin staining, immunohistochemistry, quantitative reverse transcription polymerase chain reaction, and enzyme-linked immunosorbent assay, respectively. RESULTS: CD64, CD11b, Ly6C, major histocompatibility complex-II (MHC-II), CX3CR1, Ly6G, and SSC were identified as optimal primary markers for detecting the process of monocytes-to-gMacs differentiation in the colon of WT mice. Monocytes-to-gMacs differentiation was impaired in the colon during sepsis and was associated with decreased expression of ATF4 in P1 (Ly6C hi monocytes), the precursor cells of gMacs. Atf4 knockdown exacerbated the impairment of monocytes-to-gMacs differentiation in response to LPS, resulting in a significant reduction of gMacs in the colon. Furthermore, compared with WT mice, Atf4+/- mice exhibited higher pathology scores, increased expression of inflammatory factor genes ( TNF-α, IL-1ß ), suppressed expression of CD31 and vascular endothelial-cadherin in the colon, and increased translocation of intestinal bacteria to lymph nodes and lungs following exposure to LPS. However, the aggravation of sepsis-induced intestinal injury resulting from Atf4 knockdown was not caused by the enhanced inflammatory effect of Ly6C hi monocytes and gMacs. CONCLUSION: ATF4, as a novel regulator of monocytes-to-gMacs differentiation, plays a critical role in protecting mice against sepsis-induced intestinal injury, suggesting that ATF4 might be a potential therapeutic target for sepsis treatment.
Assuntos
Leucócitos Mononucleares , Sepse , Animais , Camundongos , Leucócitos Mononucleares/metabolismo , Fator 4 Ativador da Transcrição/genética , Fator 4 Ativador da Transcrição/metabolismo , Lipopolissacarídeos/farmacologia , Camundongos Endogâmicos C57BL , Macrófagos/metabolismo , Diferenciação CelularRESUMO
BACKGROUND: Advances in organoid culture technology have provided a greater understanding of disease pathogenesis, which has been rarely studied in sepsis before. We aim to establish a suitable organoids-based intestinal injury model for sepsis. METHODS: Stable passaged organoids were constructed and pre-treated with lipopolysaccharide (LPS) to mimic sepsis-induced intestinal injury. The LPS-induced sepsis model was used as a reference. We used quantitative real-time polymerase chain reaction to evaluate the RNA levels of inflammatory factors and antimicrobial peptides. Enzyme-linked immunosorbent assay was used to evaluate the protein levels, hematoxylin and eosin staining was used to evaluate the pathology of the small intestine of mice, and immunohistochemistry and immunofluorescence were used to evaluate the intestinal epithelial barrier function. Perkin Elmer Operetta™ was used to obtain high-resolution images of three-dimensional organoids. RESULTS: An LPS concentration >150 µg/mL after 24 h was identified to cause organoid growth restriction. The fluorescence intensity of zonula occludens-1 and occludins at LPS concentrations >100 µg/mL decreased significantly after 24 h. After LPS stimulation for 8 h, the RNA expression levels of interleukin (IL)-1α, tumor necrosis factor alpha, granulocyte-macrophage colony-stimulating factor, IL-6, and regenerating islet-derived protein 3 alpha, beta, and gamma increased. These results resembled those of intestinal epithelial layer alterations in a mouse sepsis model. For IL-10, the RNA expression level increased only when the LPS level >200 µg/mL for 24 h. CONCLUSIONS: This study provides the primary intestinal in vitro model to study the effects of LPS-induced intestinal injury resembling sepsis. This model provides a platform for immune associated mechanism exploration and effective drug screening.
Assuntos
Enteropatias , Sepse , Camundongos , Animais , Lipopolissacarídeos/toxicidade , Fator de Necrose Tumoral alfa , Modelos Animais de Doenças , Organoides , RNARESUMO
BACKGROUND: Secondary hemophagocytic lymphohistiocytosis (sHLH) is a life-threatening hyperinflammatory event and a fatal complication of viral infections. Whether sHLH may also be observed in patients with a cytokine storm induced by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection is still uncertain. We aimed to determine the incidence of sHLH in severe COVID-19 patients and evaluate the underlying risk factors. METHOD: Four hundred fifteen severe COVID-19 adult patients were retrospectively assessed for hemophagocytosis score (HScore). A subset of 7 patients were unable to be conclusively scored due to insufficient patient data. RESULTS: In 408 patients, 41 (10.04%) had an HScore ≥169 and were characterized as "suspected sHLH positive". Compared with patients below a HScore threshold of 98, the suspected sHLH positive group had higher D-dimer, total bilirubin, alanine aminotransferase, aspartate aminotransferase, blood urea nitrogen, serum creatinine, triglycerides, ferritin, interleukin-6, C-reactive protein, procalcitonin, lactate dehydrogenase, creatine kinase isoenzyme, troponin, Sequential Organ Failure Assessment (SOFA) score, while leukocyte, hemoglobin, platelets, lymphocyte, fibrinogen, pre-albumin, albumin levels were significantly lower (all P < 0.05). Multivariable logistic regression revealed that high ferritin (>1922.58 ng/mL), low platelets (<101 × 109/L) and high triglycerides (>2.28 mmol/L) were independent risk factors for suspected sHLH in COVID-19 patients. Importantly, COVID-19 patients that were suspected sHLH positive had significantly more multi-organ failure. Additionally, a high HScore (>98) was an independent predictor for mortality in COVID-19. CONCLUSIONS: HScore should be measured as a prognostic biomarker in COVID-19 patients. In particular, it is important that HScore is assessed in patients with high ferritin, triglycerides and low platelets to improve the detection of suspected sHLH.
Assuntos
COVID-19/complicações , Linfo-Histiocitose Hemofagocítica/etiologia , Adulto , Idoso , Aspartato Aminotransferases/sangue , COVID-19/epidemiologia , COVID-19/terapia , China/epidemiologia , Comorbidade , Síndrome da Liberação de Citocina/complicações , Síndrome da Liberação de Citocina/virologia , Feminino , Ferritinas/sangue , Humanos , Incidência , Contagem de Linfócitos , Linfo-Histiocitose Hemofagocítica/epidemiologia , Linfo-Histiocitose Hemofagocítica/mortalidade , Masculino , Pessoa de Meia-Idade , Mortalidade , Estudos Retrospectivos , Fatores de RiscoRESUMO
BACKGROUND: It is important to modulate the expression of glucocorticoids receptor (GR) in tress and maintain the immunity homeostasis in sepsis process. Rhubarb have been shown to have potential effects on anti-inflammatory and immune modulation. The present study was designed to investigate the effects of rhubarb on the expression of GR and cellular immunity in burn-induced septic rats. METHODS: Sixty-six healthy male Sprague Dawley (SD) rats were randomized into sepsis group (nâ=â24), rhubarb group (nâ=â24), and control group (nâ=â18); each group were further randomized into 12, 24, and 72 h subgroups according to different time points. During onset of the sepsis model, the rats in the rhubarb group were infused with 50 mg/kg rhubarb powder dissolved into 1 mL saline through gastric tube, while sepsis and control groups were treated with saline. The binding activity of GR in liver cytosol and binding capacity of GR in peripheral blood leucocyte were analyzed by radiation ligands binding assay. The percentages of CD4,CD8,CD4CD25T cells, CD19B cells as well as natural killer (NK) cells in the lymphocytes in peripheral blood were detected by flow cytometer. For assessing the differences among groups, one-way analysis of variance (ANOVA) with Scheffe multi-comparison techniques were employed. Comparisons between time-based measurements within each group were performed with ANOVA repeated measurement. RESULTS: The binding activity of GR in liver cytosol and binding capacity of GR in peripheral blood leucocyte were significantly decreased in a time-dependent manner in sepsis group (tâ=â23.045, Pâ<â0.01; tâ=â24.395, Pâ<â0.05, respectively), which were increased in a time-dependent manner after rhubarb administration (tâ=â19.965, Pâ<â0.05; tâ=â17.140, Pâ<â0.05, respectively). Twelve hours after sepsis, the percentages of CD4 T cells, CD4/CD25 T cell ratio, and CD19 B cells in the peripheral blood were significantly increased in the sepsis group (tâ=â-3.395, Pâ<â0.01; tâ=â2.568, Pâ<â0.05; tâ=â2.993, Pâ<â0.05, vs. control mice, respectively). However, the percentage of NK cells in the peripheral blood were significantly decreased in the sepsis group (tâ=â-2.022, Pâ<â0.05, vs. control mice). Twelve hours after sepsis, the percentage of CD8 T cells were significantly decreased in the peripheral blood in the sepsis group (tâ=â-2.191, Pâ<â0.05, vs. control mice) and were significantly increased in the rhubarb group (tâ=â2.953, Pâ<â0.05, vs. sepsis mice). Seventy-two hours after sepsis, the ratio of CD4/CD25 T cell in peripheral blood were significantly increased in the sepsis group (tâ=â2.508, Pâ<â0.05, vs. control mice) while were significantly decreased in the rhubarb group (tâ=â3.378, Pâ<â0.05, vs. control mice). Furthermore, the percentages of CD19 B cell in peripheral blood were significantly decreased at 72 h in the rhubarb group (tâ=â2.041, Pâ<â0.05 vs. sepsis group). CONCLUSIONS: Rhubarb might play potential anti-inflammatory and immunomodulatory roles in the sepsis processes.
Assuntos
Queimaduras/tratamento farmacológico , Queimaduras/metabolismo , Imunidade Celular/efeitos dos fármacos , Extratos Vegetais/uso terapêutico , Receptores de Glucocorticoides/metabolismo , Rheum/química , Sepse/tratamento farmacológico , Sepse/metabolismo , Análise de Variância , Animais , Anti-Inflamatórios/uso terapêutico , Linfócitos B/metabolismo , Queimaduras/imunologia , Antígenos CD4/metabolismo , Citometria de Fluxo , Subunidade alfa de Receptor de Interleucina-2/metabolismo , Células Matadoras Naturais/metabolismo , Masculino , Ratos , Ratos Sprague-Dawley , Sepse/imunologia , Linfócitos T/metabolismo , Linfócitos T Reguladores/metabolismoRESUMO
Cyclin D1 and cyclin E1, as vital regulatory factors of G1-S phase cell cycle progression, are frequently constitutive expressed and associated with pathogenesis and tumorigenesis in most human cancers and they have been regarded as promising targets for cancer therapy. In this study, we established NVP-BEZ235, a potent dual kinase inhibitor, could induce neuroblastoma cells proliferation inhibition without apoptosis activation. Moreover, we showed NVP-BEZ235 could induce neuroblastoma cells arrested at G0/G1 phase accompanied with significant reduction of the cyclin D1 and E1 proteins in a dose dependent manner at nanomole concentration. Additionally we found that GSK3ß was dephosphorylated and activated by NVP-BEZ235 and then triggered cyclin D1 and cyclin E1 degradation through ubiquitination proteasome pathway, based on the evidences that NVP-BEZ235 induced downregulation of cyclin D1 and cyclin E1 were obviously recovered by proteasome inhibitor and the blockade of GSK3ß contributed to remarkable rescue of cyclin D1 and cyclin E1. Analogous results about its anti-proliferation effects and molecular mechanism were observed on neuroblastoma xenograft mouse model in vivo. Therefore, these results indicate that NVP-BEZ235-induced cyclin D1 and cyclin E1 degradation, which happened through activating GSK3ß, and GSK3ß-dependent down-regulation of cyclin D1 and cyclin E1 should be available for anticancer therapeutics.
Assuntos
Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Ciclina D1/metabolismo , Ciclina E/metabolismo , Glicogênio Sintase Quinase 3 beta/metabolismo , Imidazóis/farmacologia , Neuroblastoma/tratamento farmacológico , Proteínas Oncogênicas/metabolismo , Proteólise/efeitos dos fármacos , Quinolinas/farmacologia , Animais , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Regulação para Baixo/efeitos dos fármacos , Feminino , Fase G1/efeitos dos fármacos , Humanos , Camundongos , Camundongos Nus , Neuroblastoma/metabolismo , Fosforilação/efeitos dos fármacos , Complexo de Endopeptidases do Proteassoma/efeitos dos fármacos , Inibidores de Proteassoma/farmacologia , Inibidores de Proteínas Quinases/farmacologia , Fase de Repouso do Ciclo Celular/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Ubiquitinação/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto/métodosRESUMO
The aberrant activation of PI3K/Akt/mTOR signaling pathway plays an important role in the oncogenesis, prognosis and chemotherapy resistance of neuroblastoma. However, NVP-BEZ235, a potent dual PI3K and mTOR inhibitor have not shown beneficial effects on neuroblastoma especially in terms of apoptosis induction as a single agent. We therefore attempted to explore an effective combination regimen to enhance the anticancer activity of NVP-BEZ235. Interestingly, we found that oridonin, a natural biologically active compound extracted from the Chinese medicinal herb Rabdosia rubescens, combined with NVP-BEZ235 markedly induced apoptosis of neuroblastoma cells. Notably, the synergistic activation of the apoptotic pathway was accompanied with enhanced autophagy as evidenced by significant decreased p62 expression as well as upregulated conversion of LC3-II. Suppression of the Beclin-1, a core component of the autophagy machinery, by means of shRNA resulted in diminished synergistic antitumor effect. Furthermore, the co-treatment with oridonin and NVP-BEZ235 was also much more effective than either agent alone in inhibiting the growth of neuroblastoma xenografts and in inducing tumor cells apoptosis. Taken together, our results suggest that the combination of NVP-BEZ235 and oridonin is a novel and potential strategy for neuroblastoma therapy.
Assuntos
Autofagia/efeitos dos fármacos , Diterpenos do Tipo Caurano/administração & dosagem , Imidazóis/administração & dosagem , Neuroblastoma/tratamento farmacológico , Quinolinas/administração & dosagem , Animais , Protocolos de Quimioterapia Combinada Antineoplásica , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/genética , Humanos , Camundongos , Neuroblastoma/genética , Neuroblastoma/patologia , Inibidores de Fosfoinositídeo-3 Quinase , Serina-Treonina Quinases TOR/antagonistas & inibidores , Ensaios Antitumorais Modelo de XenoenxertoRESUMO
Gastric cancer cell are not particularly sensitive to Ara-C, a deoxycytidine analog that affects DNA synthesis. In the present study, AGS and MKN-45 gastric cancer cell lines were treated with Ara-C to determine its role in cell prolife-ration and apoptosis. The antiproliferative effect of Ara-C was assessed using the Cell Counting kit-8. Gelatinase zymography was utilized to detect the activity of MMP-2 and MMP-9, and an in vitro invasion assay was performed. Using RT-PCR, CD-147, MMP-2 and MPP-9 mRNA levels were assessed in AGS cells with various doses of Ara-C treatment. CD-147, MMP-2 and MMP-9 protein levels were analysed in Ara-Ctreated AGS and MKN-45 cells. AGS cells were treated with or without U-0126 or siRNA-CD147 and/or Ara-C for 24 h, and an in vitro invasion assay was performed. Although low-dose Ara-C had no obvious effect on cell proliferation, it upregulated the expression of MMP-2, MMP-9 and CD-147 and ERK activation. Low-dose Ara-C increased gastric cancer cell invasion. U-0126 and siRNA-CD-147 inhibited the induction of Ara-C in gastric cancer cell invasion. Therefore, Ara-C enhances the invasiveness of gastric cancer cells by expression of CD-147 /MMP-2 and MMP-9 via the ERK signaling pathway. The results are therefore useful in the prevention of Ara-C collateral damage associated with standard, conventional protocols of chemotherapy administration.