Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 129
Filtrar
1.
Cardiovasc Res ; 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38691671

RESUMO

AIMS: Cardiac energy metabolism is perturbed in ischemic heart failure and is characterized by a shift from mitochondrial oxidative metabolism to glycolysis. Notably, the failing heart relies more on ketones for energy than a healthy heart, an adaptive mechanism that improves the energy-starved status of the failing heart. However, whether this can be implemented therapeutically remains unknown. Therefore, our aim was to determine if increasing ketone delivery to the heart via a ketogenic diet can improve the outcomes of heart failure. METHODS: C57BL/6J male mice underwent either a sham surgery or permanent left anterior descending (LAD) coronary artery ligation surgery to induce heart failure. After 2 weeks, mice were then treated with either a control diet or a ketogenic diet for 3 weeks. Transthoracic echocardiography was then carried out to assess in vivo cardiac function and structure. Finally, isolated working hearts from these mice were perfused with appropriately 3H or 14C labelled glucose (5 mM), palmitate (0.8 mM), and ß-hydroxybutyrate (0.6 mM) to assess mitochondrial oxidative metabolism and glycolysis. RESULTS: Mice with heart failure exhibited a 56% drop in ejection fraction which was not improved with a ketogenic diet feeding. Interestingly, mice fed a ketogenic diet had marked decreases in cardiac glucose oxidation rates. Despite increasing blood ketone levels, cardiac ketone oxidation rates did not increase, probably due to a decreased expression of key ketone oxidation enzymes. Furthermore, in mice on the ketogenic diet no increase in overall cardiac energy production was observed, and instead there was a shift to an increased reliance on fatty acid oxidation as a source of cardiac energy production. This resulted in a decrease in cardiac efficiency in heart failure mice fed a ketogenic diet. CONCLUSIONS: We conclude that the ketogenic diet does not improve heart function in failing hearts, due to ketogenic diet-induced excessive fatty acid oxidation in the ischemic heart and a decrease in insulin-stimulated glucose oxidation.

2.
Curr Microbiol ; 81(7): 182, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38769214

RESUMO

Fusarium proliferatum is the main pathogen that causes Panax notoginseng root rot. The shortcomings of strong volatility and poor water solubility of Illicium verum essential oil (EO) limit its utilization. In this study, we prepared traditional emulsion (BDT) and nanoemulsion (Bneo) of I. verum EO by ultrasonic method with Tween-80 and absolute ethanol as solvents. The chemical components of EO, BDT, and Bneo were identified by gas chromatography-mass spectrometry (GC-MS) and the antifungal activity and mechanism were compared. The results show that Bneo has good stability and its particle size is 34.86 nm. The contents of (-) -anethole and estragole in Bneo were significantly higher than those in BDT. The antifungal activity against F. proliferatum was 5.8-fold higher than BDT. In the presence of I. verum EO, the occurrence of P. notoginseng root rot was significantly reduced. By combining transcriptome and metabolomics analysis, I. verum EO was found to be involved in the mutual transformation of pentose and glucuronic acid, galactose metabolism, streptomycin biosynthesis, carbon metabolism, and other metabolic pathways of F. proliferatum, and it interfered with the normal growth of F. proliferatum to exert antifungal effects. This study provide a theoretical basis for expanding the practical application of Bneo.


Assuntos
Antifúngicos , Emulsões , Fusarium , Illicium , Metabolômica , Óleos Voláteis , Óleos Voláteis/farmacologia , Óleos Voláteis/química , Fusarium/efeitos dos fármacos , Fusarium/genética , Fusarium/metabolismo , Illicium/química , Antifúngicos/farmacologia , Antifúngicos/metabolismo , Antifúngicos/química , Emulsões/química , Transcriptoma , Cromatografia Gasosa-Espectrometria de Massas , Doenças das Plantas/microbiologia , Doenças das Plantas/prevenção & controle , Perfilação da Expressão Gênica
3.
ChemSusChem ; : e202400211, 2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38547358

RESUMO

The reductive amination of 1,6-hexanediol with ammonia is one of the most promising green routes for synthesis of 1,6-hexanediamine. Herein, we developed a phosphorous modified Ni catalyst of Ni-P/Al2O3. It presented satisfactory improved selectivity to 1,6-hexanediamine in the reductive amination of 1,6-hexanediol compared to the Ni/Al2O3 catalyst. The phosphorous tended to interact with Al2O3 to form AlPOx species, induced Ni nanoparticle to be flatter, and the decrease of strong acid sites, the new-formed Ni-AlPOx-Al2O3 interface and the flatter Ni nanoparticle were the key to switch the dominating product from hexamethyleneimine to 1,6-hexanediamine. This work develops an efficient catalyst for production of 1,6-hexanediamine from the reductive amination of 1,6-hexanediol, and provides a point of view about designing selective non-noble metal catalysts for producing primary diamines via reductive amination of diols.

4.
Cell Prolif ; : e13633, 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38528645

RESUMO

Hair cell (HC) damage is a leading cause of sensorineural hearing loss, and in mammals supporting cells (SCs) are unable to divide and regenerate HCs after birth spontaneously. Procollagen C-endopeptidase enhancer 2 (Pcolce2), which encodes a glycoprotein that acts as a functional procollagen C protease enhancer, was screened as a candidate regulator of SC plasticity in our previous study. In the current study, we used adeno-associated virus (AAV)-ie (a newly developed adeno-associated virus that targets SCs) to overexpress Pcolce2 in SCs. AAV-Pcolce2 facilitated SC re-entry into the cell cycle both in cultured cochlear organoids and in the postnatal cochlea. In the neomycin-damaged model, regenerated HCs were detected after overexpression of Pcolce2, and these were derived from SCs that had re-entered the cell cycle. These findings reveal that Pcolce2 may serve as a therapeutic target for the regeneration of HCs to treat hearing loss.

5.
J Ginseng Res ; 48(2): 236-244, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38465211

RESUMO

Background: Fusarium oxysporum (F. oxysporum) is the primary pathogenic fungus that causes Panax notoginseng (P. notoginseng) root rot disease. To control the disease, safe and efficient antifungal pesticides must currently be developed. Methods: In this study, we prepared and characterized a nanoemulsion of Foeniculum vulgare essential oil (Ne-FvEO) using ultrasonic technology and evaluated its stability. Traditional Foeniculum vulgare essential oil (T-FvEO) was prepared simultaneously with 1/1000 Tween-80 and 20/1000 dimethyl sulfoxide (DMSO). The effects and inhibitory mechanism of Ne-FvEO and T-FvEO in F. oxysporum were investigated through combined transcriptome and metabolome analyses. Results: Results showed that the minimum inhibitory concentration (MIC) of Ne-FvEO decreased from 3.65 mg/mL to 0.35 mg/mL, and its bioavailability increased by 10-fold. The results of gas chromatography/mass spectrometry (GC/MS) showed that T-FvEO did not contain a high content of estragole compared to Foeniculum vulgare essential oil (FvEO) and Ne-FvEO. Combined metabolome and transcriptome analysis showed that both emulsions inhibited the growth and development of F. oxysporum through the synthesis of the cell wall and cell membrane, energy metabolism, and genetic information of F. oxysporum mycelium. Ne-FvEO also inhibited the expression of 2-oxoglutarate dehydrogenase and isocitrate dehydrogenase and reduced the content of 2-oxoglutarate, which inhibited the germination of spores. Conclusion: Our findings suggest that Ne-FvEO effectively inhibited the growth of F. oxysporum in P. notoginseng in vivo. The findings contribute to our comprehension of the antifungal mechanism of essential oils (EOs) and lay the groundwork for the creation of plant-derived antifungal medicines.

6.
Metabolism ; 154: 155818, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38369056

RESUMO

BACKGROUND: Cardiac glucose oxidation is decreased in heart failure with reduced ejection fraction (HFrEF), contributing to a decrease in myocardial ATP production. In contrast, circulating ketones and cardiac ketone oxidation are increased in HFrEF. Since ketones compete with glucose as a fuel source, we aimed to determine whether increasing ketone concentration both chronically with the SGLT2 inhibitor, dapagliflozin, or acutely in the perfusate has detrimental effects on cardiac glucose oxidation in HFrEF, and what effect this has on cardiac ATP production. METHODS: 8-week-old male C57BL6/N mice underwent sham or transverse aortic constriction (TAC) surgery to induce HFrEF over 3 weeks, after which TAC mice were randomized to treatment with either vehicle or the SGLT2 inhibitor, dapagliflozin (DAPA), for 4 weeks (raises blood ketones). Cardiac function was assessed by echocardiography. Cardiac energy metabolism was measured in isolated working hearts perfused with 5 mM glucose, 0.8 mM palmitate, and either 0.2 mM or 0.6 mM ß-hydroxybutyrate (ßOHB). RESULTS: TAC hearts had significantly decreased %EF compared to sham hearts, with no effect of DAPA. Glucose oxidation was significantly decreased in TAC hearts compared to sham hearts and did not decrease further in TAC hearts treated with high ßOHB or in TAC DAPA hearts, despite ßOHB oxidation rates increasing in both TAC vehicle and TAC DAPA hearts at high ßOHB concentrations. Rather, increasing ßOHB supply to the heart selectively decreased fatty acid oxidation rates. DAPA significantly increased ATP production at both ßOHB concentrations by increasing the contribution of glucose oxidation to ATP production. CONCLUSION: Therefore, increasing ketone concentration increases energy supply and ATP production in HFrEF without further impairing glucose oxidation.


Assuntos
Compostos Benzidrílicos , Glucosídeos , Insuficiência Cardíaca , Inibidores do Transportador 2 de Sódio-Glicose , Masculino , Camundongos , Animais , Insuficiência Cardíaca/metabolismo , Glucose/metabolismo , Volume Sistólico , Miocárdio/metabolismo , Oxirredução , Trifosfato de Adenosina/metabolismo , Cetonas/farmacologia , Cetonas/metabolismo
7.
Innovation (Camb) ; 5(2): 100561, 2024 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-38379784

RESUMO

Helicobacter pylori infection is associated with the risk of gastrointestinal (GI) cancers; however, its impact on immunotherapy for GI cancers remains uncertain. In this study, we included 10,122 patients who underwent 13C-urea breath tests. Among 636 patients with Epstein-Barr virus-negative microsatellite-stable gastric cancer (GC) who were treated with anti-PD-1/PD-L1 therapy, H. pylori-positive patients exhibited significantly longer immune-related progression-free survival (irPFS) compared with H. pylori-negative patients (6.97 months versus 5.03 months, p < 0.001, hazard ratio [HR] 0.76, 95% confidence interval [CI] 0.62-0.95, p = 0.015). Moreover, the H. pylori-positive group demonstrated a trend of 4 months longer median immune-related overall survival (irOS) than the H. pylori-negative group. H. pylori-positive GC displayed higher densities of PD-L1+ cells and nonexhausted CD8+ T cells, indicative of a "hot" tumor microenvironment. Transcriptomic analysis revealed that H. pylori-positive GC shared molecular characteristics similar to those of immunotherapy-sensitive GC. However, H. pylori-positive patients with DNA mismatch repair-deficient (dMMR)/microsatellite instability-high (MSI-H) colorectal adenocarcinoma and esophageal squamous cell carcinoma (ESCC) had shorter irPFS compared with H. pylori-negative patients (16.13 months versus not reached, p = 0.042, HR 2.26, 95% CI 1.13-4.50, p = 0.021 and 5.57 months versus 6.97 months, p = 0.029, HR 1.59, 95% CI 1.14-2.23, p = 0.006, respectively). The difference in irOS between H. pylori-positive and -negative patients had the same trend as that between dMMR/MSI-H colorectal adenocarcinoma and ESCC patients. We also identified a trend of shorter irPFS and irOS in H. pylori-positive liver cancer and pancreatic cancer patients. In summary, our findings supported that H. pylori infection is a beneficial factor for GC immunotherapy by shaping hot tumor microenvironments. However, in dMMR/MSI-H colorectal adenocarcinoma and ESCC patients, H. pylori adversely affects the efficacy of immunotherapy.

8.
J Med Internet Res ; 26: e49312, 2024 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-38407951

RESUMO

BACKGROUND: Virtual reality-based exercise rehabilitation (VRER) is a promising intervention for patients with cancer-related dysfunctions (CRDs). However, studies focusing on VRER for CRDs are lacking, and the results are inconsistent. OBJECTIVE: We aimed to review the application of VRER in patients with CRDs. METHODS: This scoping review was conducted following the PRISMA-ScR (Preferred Reporting Items for Systematic Reviews and Meta-Analyses extension for Scoping Reviews) checklist framework. Publications were included from the time of database establishment to October 14, 2023. The databases were PubMed, Embase, Scopus, Cochrane, Web of Science, ProQuest, arXiv, IEEE Xplore, MedRxiv, CNKI, Wanfang Data, VIP, and SinoMed. The population included patients with cancer. A virtual reality (VR) system or device was required to be provided in exercise rehabilitation as an intervention. Eligible studies focused on VRER used for CRDs. Study selection and data extraction were performed by 2 reviewers independently. Extracted data included authors, year, country, study type, groups, sample size, participant age, cancer type, existing or potential CRDs, VR models and devices, intervention programs and durations, effectiveness, compliance, satisfaction, and safety. RESULTS: We identified 25 articles, and among these, 12 (48%) were randomized clinical trials, 11 (44%) were other experimental studies, and 2 (8%) were observational studies. The total sample size was 1174 (range 6-136). Among the 25 studies, 22 (88%), 2 (8%), and 1 (4%) included nonimmersive VR, immersive VR, and augmented reality, respectively, which are models of VRER. Commercial game programs (17/25, 68%) were the most popular interventions of VRER, and their duration ranged from 3 to 12 weeks. Using these models and devices, VRER was mostly applied in patients with breast cancer (14/25, 56%), leukemia (8/25, 32%), and lung cancer (3/25, 12%). Furthermore, 6 CRDs were intervened by VRER, and among these, postmastectomy syndromes were the most common (10/25, 40%). Overall, 74% (17/23) of studies reported positive results, including significant improvements in limb function, joint range of motion, edema rates, cognition, respiratory disturbance index, apnea, activities of daily living, and quality of life. The compliance rate ranged from 56% to 100%. Overall, 32% (8/25) of studies reported on patient satisfaction, and of these, 88% (7/8) reported satisfaction with VRER. Moreover, 13% (1/8) reported mild sickness as an adverse event. CONCLUSIONS: We found that around half of the studies reported using VRER in patients with breast cancer and postmastectomy dysfunctions through nonimmersive models and commercial game programs having durations of 3-12 weeks. In addition, most studies showed that VRER was effective owing to virtualization and interaction. Therefore, VRER may be an alternate intervention for patients with CRDs. However, as the conclusions were drawn from data with acknowledged inconsistencies and limited satisfaction reports, studies with larger sample sizes and more outcome indictors are required.


Assuntos
Neoplasias da Mama , Medicina , Humanos , Feminino , Atividades Cotidianas , Qualidade de Vida , Mastectomia
9.
Cardiovasc Res ; 120(4): 360-371, 2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38193548

RESUMO

AIMS: Heart failure with preserved ejection fraction (HFpEF) is a prevalent disease worldwide. While it is well established that alterations of cardiac energy metabolism contribute to cardiovascular pathology, the precise source of fuel used by the heart in HFpEF remains unclear. The objective of this study was to define the energy metabolic profile of the heart in HFpEF. METHODS AND RESULTS: Eight-week-old C57BL/6 male mice were subjected to a '2-Hit' HFpEF protocol [60% high-fat diet (HFD) + 0.5 g/L of Nω-nitro-L-arginine methyl ester]. Echocardiography and pressure-volume loop analysis were used for assessing cardiac function and cardiac haemodynamics, respectively. Isolated working hearts were perfused with radiolabelled energy substrates to directly measure rates of fatty acid oxidation, glucose oxidation, ketone oxidation, and glycolysis. HFpEF mice exhibited increased body weight, glucose intolerance, elevated blood pressure, diastolic dysfunction, and cardiac hypertrophy. In HFpEF hearts, insulin stimulation of glucose oxidation was significantly suppressed. This was paralleled by an increase in fatty acid oxidation rates, while cardiac ketone oxidation and glycolysis rates were comparable with healthy control hearts. The balance between glucose and fatty acid oxidation contributing to overall adenosine triphosphate (ATP) production was disrupted, where HFpEF hearts were more reliant on fatty acid as the major source of fuel for ATP production, compensating for the decrease of ATP originating from glucose oxidation. Additionally, phosphorylated pyruvate dehydrogenase levels decreased in both HFpEF mice and human patient's heart samples. CONCLUSION: In HFpEF, fatty acid oxidation dominates as the major source of cardiac ATP production at the expense of insulin-stimulated glucose oxidation.


Assuntos
Insuficiência Cardíaca , Masculino , Humanos , Animais , Camundongos , Trifosfato de Adenosina/metabolismo , Miocárdio/metabolismo , Volume Sistólico , Camundongos Endogâmicos C57BL , Ácidos Graxos/metabolismo , Glucose/metabolismo , Insulina/metabolismo , Cetonas
10.
Adv Sci (Weinh) ; 11(11): e2306788, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38189623

RESUMO

Mutations in OTOFERLIN (OTOF) lead to the autosomal recessive deafness 9 (DFNB9). The efficacy of adeno-associated virus (AAV)-mediated OTOF gene replacement therapy is extensively validated in Otof-deficient mice. However, the clinical safety and efficacy of AAV-OTOF is not reported. Here, AAV-OTOF is generated using good manufacturing practice and validated its efficacy and safety in mouse and non-human primates in order to determine the optimal injection dose, volume, and administration route for clinical trials. Subsequently, AAV-OTOF is delivered into one cochlea of a 5-year-old deaf patient and into the bilateral cochleae of an 8-year-old deaf patient with OTOF mutations. Obvious hearing improvement is detected by the auditory brainstem response (ABR) and the pure-tone audiometry (PTA) in these two patients. Hearing in the injected ear of the 5-year-old patient can be restored to the normal range at 1 month after AAV-OTOF injection, while the 8-year-old patient can hear the conversational sounds. Most importantly, the 5-year-old patient can hear and recognize speech only through the AAV-OTOF-injected ear. This study is the first to demonstrate the safety and efficacy of AAV-OTOF in patients, expands and optimizes current OTOF-related gene therapy and provides valuable information for further application of gene therapies for deafness.


Assuntos
Surdez , Perda Auditiva Neurossensorial , Humanos , Animais , Camundongos , Dependovirus/genética , Perda Auditiva Neurossensorial/genética , Perda Auditiva Neurossensorial/terapia , Audição , Surdez/genética , Surdez/terapia , Terapia Genética
11.
Angew Chem Int Ed Engl ; 63(5): e202316425, 2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38061013

RESUMO

Photoactivated chemotherapy (PACT) is a promising cancer treatment modality that kills cancer cells via photochemical uncaging of a cytotoxic drug. Most ruthenium-based photocages used for PACT are activated with blue or green light, which penetrates sub-optimally into tumor tissues. Here, we report amide functionalization as a tool to fine-tune the toxicity and excited states of a terpyridine-based ruthenium photocage. Due to conjugation of the amide group with the terpyridine π system in the excited state, the absorption of red light (630 nm) increased 8-fold, and the photosubstitution rate rose 5-fold. In vitro, red light activation triggered inhibition of tubulin polymerization, which led to apoptotic cell death both in normoxic (21 % O2 ) and hypoxic (1 % O2 ) cancer cells. In vivo, red light irradiation of tumor-bearing mice demonstrated significant tumor volume reduction (45 %) with improved biosafety, thereby demonstrating the clinical potential of this compound.


Assuntos
Antineoplásicos , Neoplasias , Rutênio , Animais , Camundongos , Rutênio/farmacologia , Rutênio/química , Polimerização , Antineoplásicos/farmacologia , Antineoplásicos/química , Moduladores de Tubulina/farmacologia , Moduladores de Tubulina/uso terapêutico , Microtúbulos
12.
Mol Ther ; 32(1): 204-217, 2024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-37952086

RESUMO

Inner ear hair cells detect sound vibration through the deflection of mechanosensory stereocilia. Cytoplasmic protein TPRN has been shown to localize at the taper region of the stereocilia, and mutations in TPRN cause hereditary hearing loss through an unknown mechanism. Here, using biochemistry and dual stimulated emission depletion microscopy imaging, we show that the TPRN, together with its binding proteins CLIC5 and PTPRQ, forms concentric rings in the taper region of stereocilia. The disruption of TPRN rings, triggered by the competitive inhibition of the interaction of TPRN and CLIC5 or exogenous TPRN overexpression, leads to stereocilia degeneration and severe hearing loss. Most importantly, restoration of the TPRN rings can rescue the damaged auditory function of Tprn knockout mice by exogenously expressing TPRN at an appropriate level in HCs via promoter recombinant adeno-associated virus (AAV). In summary, our results reveal highly structured TPRN rings near the taper region of stereocilia that are crucial for stereocilia function and hearing. Also, TPRN ring restoration in stereocilia by AAV-Tprn effectively repairs damaged hearing, which lays the foundation for the clinical application of AAV-mediated gene therapy in patients with TPRN mutation.


Assuntos
Surdez , Perda Auditiva , Animais , Humanos , Camundongos , Surdez/genética , Audição/genética , Perda Auditiva/genética , Perda Auditiva/terapia , Camundongos Knockout , Proteínas/metabolismo , Proteínas Tirosina Fosfatases Classe 3 Semelhantes a Receptores/metabolismo , Estereocílios/metabolismo
13.
J Xray Sci Technol ; 32(1): 157-171, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-37424493

RESUMO

BACKGROUND: Early diagnosis of breast cancer is crucial to perform effective therapy. Many medical imaging modalities including MRI, CT, and ultrasound are used to diagnose cancer. OBJECTIVE: This study aims to investigate feasibility of applying transfer learning techniques to train convoluted neural networks (CNNs) to automatically diagnose breast cancer via ultrasound images. METHODS: Transfer learning techniques helped CNNs recognise breast cancer in ultrasound images. Each model's training and validation accuracies were assessed using the ultrasound image dataset. Ultrasound images educated and tested the models. RESULTS: MobileNet had the greatest accuracy during training and DenseNet121 during validation. Transfer learning algorithms can detect breast cancer in ultrasound images. CONCLUSIONS: Based on the results, transfer learning models may be useful for automated breast cancer diagnosis in ultrasound images. However, only a trained medical professional should diagnose cancer, and computational approaches should only be used to help make quick decisions.


Assuntos
Neoplasias da Mama , Aprendizado Profundo , Humanos , Feminino , Detecção Precoce de Câncer , Redes Neurais de Computação , Neoplasias da Mama/diagnóstico por imagem , Neoplasias da Mama/patologia , Tecnologia
14.
JNCI Cancer Spectr ; 7(6)2023 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-37941434

RESUMO

BACKGROUND: This study aimed to construct an effective nomogram based on the clinical and laboratory characteristics to predict the prognosis of stage I lung adenocarcinoma with EGFR alteration. METHODS: A retrospective study was performed of 913 eligible patients with EGFR alteration after surgery at Shanghai Pulmonary Hospital. The peripheral blood indicators were included in the nomogram. Calibration plots, concordance index, decision curve analysis, and X-tile software were used in this study. Recurrence-free survival (RFS) and overall survival were estimated by the Kaplan-Meier method and compared using the log-rank test. RESULTS: Neutrophil to lymphocyte ratio and platelet to lymphocyte ratio were independent risk factors for RFS. The calibration curves for RFS probabilities showed good agreement between the nomogram prediction and actual observation. Furthermore, the nomogram, including neutrophil to lymphocyte ratio and platelet to lymphocyte ratio had a higher concordance index (0.732, 95% confidence interval = 0.706 to 0.758) than that without neutrophil to lymphocyte ratio or platelet to lymphocyte ratio (0.713, 95% confidence interval = 0.686 to 0.740), and decision curve analysis plots showed that the nomogram with neutrophil to lymphocyte ratio and platelet to lymphocyte ratio had better clinical practicability. Additionally, the patients were divided into 2 groups according to cutoff values of risk points, and statistically significant differences in RFS and overall survival were observed between the high-risk and low-risk groups (P < .001). CONCLUSIONS: High pretreatment levels of neutrophil to lymphocyte ratio and platelet to lymphocyte ratio were strongly associated with a worse prognosis in stage I EGFR-altered lung adenocarcinomas. Besides, the proposed nomogram with neutrophil to lymphocyte ratio and platelet to lymphocyte ratio presented a better prediction ability for the survival of those patients.


Assuntos
Adenocarcinoma de Pulmão , Neoplasias Pulmonares , Humanos , Prognóstico , Estudos Retrospectivos , China/epidemiologia , Adenocarcinoma de Pulmão/cirurgia , Fatores de Risco , Neoplasias Pulmonares/tratamento farmacológico , Receptores ErbB/uso terapêutico
15.
Bioorg Med Chem ; 93: 117454, 2023 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-37659218

RESUMO

Bacterial infection, which is still one of the leading causes of death in humans, poses an enormous threat to the worldwide public health system. Antibiotics are the primary medications used to treat bacterial diseases. Currently, the discovery of antibiotics has reached an impasse, and due to the abuse of antibiotics resulting in bacterial antibiotic resistance, researchers have a critical desire to develop new antibacterial agents in order to combat the deteriorating antibacterial situation. Natural chalcones, the flavonoids consisting of two phenolic rings and a three-carbon α, ß-unsaturated carbonyl system, possess a variety of biological and pharmacological properties, including anti-cancer, anti-inflammatory, antibacterial, and so on. Due to their potent antibacterial properties, natural chalcones possess the potential to become a new treatment for infectious diseases that circumvents existing antibiotic resistance. Currently, the majority of research on natural chalcones focuses on their synthesis, biological and pharmacological activities, etc. A few studies have been conducted on their antibacterial activity and mechanism. Therefore, this review focuses on the antibacterial activity and mechanisms of seventeen natural chalcones. Firstly, seventeen natural chalcones have been classified based on differences in antibacterial mechanisms. Secondly, a summary of the isolation and biological activity of seventeen natural chalcones was provided, with a focus on their antibacterial activity. Thirdly, the antibacterial mechanisms of natural chalcones were summarized, including those that act on bacterial cell membranes, biological macromolecules, biofilms, and quorum sensing systems. This review aims to lay the groundwork for the discovery of novel antibacterial agents based on chalcones.


Assuntos
Chalconas , Humanos , Chalconas/farmacologia , Flavonoides , Antibacterianos/farmacologia , Biofilmes , Carbono
16.
Clin Respir J ; 17(10): 998-1005, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37584411

RESUMO

BACKGROUND: Transbronchial lung cryobiopsy (TBLB) is routinely used to diagnose the interstitial lung disease (ILD). These results are consistent with those of surgical lung biopsy. Fluoroscopy is also used to confirm the final position of the cryoprobe; however, it can increase radiation exposure for both patients and medical care personnel. Probe-based confocal laser endomicroscopy (pCLE) is a novel optical imaging technique that allows real-time imaging at the cellular level in vivo. pCLE technology can also be used to identify malignancy, acute rejection in lung transplantation, amiodarone lung, and pulmonary alveolar proteinosis and visualize elastin fibres in the alveolar compartment. OBJECTIVES: The aim of this study is to investigate the ability of pCLE to distinguish fibrotic pulmonary issues from normal lung disease and the safety and feasibility of CLE-guided bronchoscopy and transbronchial lung cryobiopsy (TBLC) in patients with interstitial lung disease (ILD). METHODS: pCLE images from 17 ILD patients were obtained during TBLB. These images were then compared with histology results to assess the correspondence rate. RESULTS: pCLE imaging of the alveolar structures was performed. Key characteristics were visible, which could potentially influence the diagnostic rate (fibrotic areas) and the complication rate (blood vessel and pleura). CONCLUSION: pCLE may reduce complications and increase the diagnostic yield. It is a potential guidance tool for cryobiopsy in the patients with ILD without fluoroscopy.


Assuntos
Doenças Pulmonares Intersticiais , Transplante de Pulmão , Humanos , Doenças Pulmonares Intersticiais/diagnóstico por imagem , Doenças Pulmonares Intersticiais/etiologia , Pulmão/diagnóstico por imagem , Pulmão/patologia , Broncoscopia/efeitos adversos , Broncoscopia/métodos , Biópsia/métodos , Lasers
17.
J Am Chem Soc ; 145(27): 14963-14980, 2023 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-37379365

RESUMO

To investigate the potential of tumor-targeting photoactivated chemotherapy, a chiral ruthenium-based anticancer warhead, Λ/Δ-[Ru(Ph2phen)2(OH2)2]2+, was conjugated to the RGD-containing Ac-MRGDH-NH2 peptide by direct coordination of the M and H residues to the metal. This design afforded two diastereoisomers of a cyclic metallopeptide, Λ-[1]Cl2 and Δ-[1]Cl2. In the dark, the ruthenium-chelating peptide had a triple action. First, it prevented other biomolecules from coordinating with the metal center. Second, its hydrophilicity made [1]Cl2 amphiphilic so that it self-assembled in culture medium into nanoparticles. Third, it acted as a tumor-targeting motif by strongly binding to the integrin (Kd = 0.061 µM for the binding of Λ-[1]Cl2 to αIIbß3), which resulted in the receptor-mediated uptake of the conjugate in vitro. Phototoxicity studies in two-dimensional (2D) monolayers of A549, U87MG, and PC-3 human cancer cell lines and U87MG three-dimensional (3D) tumor spheroids showed that the two isomers of [1]Cl2 were strongly phototoxic, with photoindexes up to 17. Mechanistic studies indicated that such phototoxicity was due to a combination of photodynamic therapy (PDT) and photoactivated chemotherapy (PACT) effects, resulting from both reactive oxygen species generation and peptide photosubstitution. Finally, in vivo studies in a subcutaneous U87MG glioblastoma mice model showed that [1]Cl2 efficiently accumulated in the tumor 12 h after injection, where green light irradiation generated a stronger tumoricidal effect than a nontargeted analogue ruthenium complex [2]Cl2. Considering the absence of systemic toxicity for the treated mice, these results demonstrate the high potential of light-sensitive integrin-targeted ruthenium-based anticancer compounds for the treatment of brain cancer in vivo.


Assuntos
Antineoplásicos , Neoplasias Encefálicas , Complexos de Coordenação , Pró-Fármacos , Rutênio , Animais , Humanos , Camundongos , Rutênio/farmacologia , Rutênio/química , Pró-Fármacos/farmacologia , Pró-Fármacos/uso terapêutico , Pró-Fármacos/química , Integrinas , Peptídeos Cíclicos , Peptídeos , Neoplasias Encefálicas/tratamento farmacológico , Linhagem Celular Tumoral , Complexos de Coordenação/química , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Antineoplásicos/química
18.
Exp Biol Med (Maywood) ; 248(8): 732-745, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-37354086

RESUMO

Prevascularization is crucial for the survival of tissue-engineered bone and further bone repair/regeneration. Since epicatechin gallate (ECG), the most abundant flavanol in green tea, shows potential beneficial effects on endothelial cells and bone cells, we decided to investigate whether it promotes vascularization/angiogenesis and osteogenesis using a co-culture system containing human primary osteoblasts (POBs) and outgrowth endothelial cells (OECs). We found that treatment with ECG (1) significantly enhanced microvessel formation in co-culture of POB and OECs, (2) improved cell viability/proliferation and the angiogenic/osteogenic capacities of OEC/POBs, (3) significantly increased the levels of E-selectin, IL-6, TNF-α, IFN-γ, VEGF, and PDGF-BB in co-cultures of POB and OEC, and (4) upregulated HIF-1α, HIF-2α, NF-κB, iNOS, GLUT1, VEGF, and Ang1/2 but downregulated PHD1 in monocultures of OEC or POB. Our findings demonstrate that ECG promotes angiogenesis and osteogenesis (probably via HIF signaling) in co-cultures of OECs and POBs. ECG thus has potential applications in the promotion of angiogenesis/vascularization in many tissue constructs including those of bone.


Assuntos
Células Endoteliais , Fator A de Crescimento do Endotélio Vascular , Humanos , Técnicas de Cocultura , Neovascularização Fisiológica , Osteoblastos , Neovascularização Patológica , Osteogênese
19.
Nat Chem ; 15(7): 980-987, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37169984

RESUMO

Self-assembling molecular drugs combine the easy preparation typical of small-molecule chemotherapy and the tumour-targeting properties of drug-nanoparticle conjugates. However, they require a supramolecular interaction that survives the complex environment of a living animal. Here we report that the metallophilic interaction between cyclometalated palladium complexes generates supramolecular nanostructures in living mice that have a long circulation time (over 12 h) and efficient tumour accumulation rate (up to 10.2% of the injected dose per gram) in a skin melanoma tumour model. Green light activation leads to efficient tumour destruction due to the type I photodynamic effect generated by the self-assembled palladium complexes, as demonstrated in vitro by an up to 96-fold cytotoxicity increase upon irradiation. This work demonstrates that metallophilic interactions are well suited to generating stable supramolecular nanotherapeutics in vivo with exceptional tumour-targeting properties.


Assuntos
Antineoplásicos , Nanopartículas , Nanoestruturas , Neoplasias Cutâneas , Animais , Camundongos , Paládio , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Nanopartículas/química
20.
Artigo em Inglês | MEDLINE | ID: mdl-37254544

RESUMO

BACKGROUND: Ubiquitin ligases (E3s) play an important role in multiple cancers. METHODS: The open-accessed expression profile and clinical information was downloaded from the TARGET database. The analysis was performed using R software. RESULTS: In this study, we comprehensively investigated the role of E3s in osteosarcomas (OS). We found that among all these E3s, UBR5 is a risk factor for OS. Considering that UBR5 has not been reported in previous studies focused on OS, we selected it for further analysis. Interestingly, we found that UBR5 had no significant effect on immune cell infiltration but a remarkable effect on immune function. Moreover, we divided the patients into "immune activation" and "immune exhaustion" types. KM survival curves indicated that the patients in the "immune exhaustion" types had a worse survival performance. Further, we identified the molecules involved in immune function and significantly correlated with UBR5. The biological enrichment analysis and prognosis model were then conducted based on these genes. Results indicated that the patients in the high-risk group had a worse survival performance, and underlying biological differences between high and low-risk patients were also explored. Ultimately, the effect pattern of UBR5 in pan-cancer was also explored. CONCLUSION: In summary, our study comprehensively explored the role of UBR5 in OS, as well as its effect on the immune microenvironment, which might be an underlying therapy target.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA