Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
1.
Microb Cell Fact ; 23(1): 167, 2024 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-38849849

RESUMO

BACKGROUND: White-rot fungi are known to naturally produce high quantities of laccase, which exhibit commendable stability and catalytic efficiency. However, their laccase production does not meet the demands for industrial-scale applications. To address this limitation, it is crucial to optimize the conditions for laccase production. However, the regulatory mechanisms underlying different conditions remain unclear. This knowledge gap hinders the cost-effective application of laccases. RESULTS: In this study, we utilized transcriptomic and metabolomic data to investigate a promising laccase producer, Cerrena unicolor 87613, cultivated with fructose as the carbon source. Our comprehensive analysis of differentially expressed genes (DEGs) and differentially abundant metabolites (DAMs) aimed to identify changes in cellular processes that could affect laccase production. As a result, we discovered a complex metabolic network primarily involving carbon metabolism and amino acid metabolism, which exhibited contrasting changes between transcription and metabolic patterns. Within this network, we identified five biomarkers, including succinate, serine, methionine, glutamate and reduced glutathione, that played crucial roles in co-determining laccase production levels. CONCLUSIONS: Our study proposed a complex metabolic network and identified key biomarkers that determine the production level of laccase in the commercially promising Cerrena unicolor 87613. These findings not only shed light on the regulatory mechanisms of carbon sources in laccase production, but also provide a theoretical foundation for enhancing laccase production through strategic reprogramming of metabolic pathways, especially related to the citrate cycle and specific amino acid metabolism.


Assuntos
Lacase , Redes e Vias Metabólicas , Lacase/metabolismo , Lacase/genética , Biomarcadores/metabolismo , Carbono/metabolismo , Regulação Fúngica da Expressão Gênica , Transcriptoma , Polyporaceae/enzimologia , Polyporaceae/genética , Polyporaceae/metabolismo , Frutose/metabolismo , Metabolômica , Proteínas Fúngicas/metabolismo , Proteínas Fúngicas/genética
2.
Front Pharmacol ; 15: 1355507, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38720778

RESUMO

Introduction: Solute carrier (SLC) transport proteins play a crucial role in maintaining cellular nutrient and metabolite homeostasis and are implicated in various human diseases, making them potential targets for therapeutic interventions. However, the study of SLCs has been limited due to the lack of suitable tools, particularly cell-based substrate uptake assays, necessary for understanding their biological functions and for drug discovery purposes. Methods: In this study, a cell-based uptake assay was developed using a stable isotope-labeled compound as the substrate for SLCs, with detection facilitated by liquid chromatography-tandem mass spectrometry (LC-MS/MS). This assay aimed to address the limitations of existing assays, such as reliance on hazardous radiolabeled substrates and limited availability of fluorescent biosensors. Results: The developed assay was successfully applied to detect substrate uptakes by two specific SLCs: L-type amino acid transporter 1 (LAT1) and sodium taurocholate co-transporting polypeptide (NTCP). Importantly, the assay demonstrated comparable results to the radioactive method, indicating its reliability and accuracy. Furthermore, the assay was utilized to screen for novel inhibitors of NTCP, leading to the identification of a potential NTCP inhibitor compound. Discussion: The findings highlight the utility of the developed cell-based uptake assay as a rapid, simple, and environmentally friendly tool for investigating SLCs' biological roles and for drug discovery purposes. This assay offers a safer alternative to traditional methods and has the potential to contribute significantly to advancing our understanding of SLC function and identifying therapeutic agents targeting SLC-mediated pathways.

3.
Mol Biol Rep ; 51(1): 339, 2024 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-38393419

RESUMO

BACKGROUND: Age-related macular degeneration (AMD) is a prevalent source of visual impairment among the elderly population, and its incidence has risen in tandem with the increasing longevity of humans. Despite the progress made with anti-VEGF therapy, clinical outcomes have proven to be unsatisfactory. METHOD: We obtained differentially expressed genes (DEGs) of AMD patients and healthy controls from the GEO database. GO and KEGG analyses were used to enrich the DEGs. Weighted gene coexpression network analysis (WGCNA) was used to identify modules related to AMD. SVM, random forest, and least absolute shrinkage and selection operator (LASSO) were employed to screen hub genes. Gene set enrichment analysis (GSEA) was used to explore the pathways in which these hub genes were enriched. CIBERSORT was utilized to analyze the relationship between the hub genes and immune cell infiltration. Finally, Western blotting and RT‒PCR were used to explore the expression of hub genes in AMD mice. RESULTS: We screened 1084 DEGs in GSE29801, of which 496 genes were upregulated. These 1084 DEGs were introduced into the WGCNA, and 94 genes related to AMD were obtained. Seventy-nine overlapping genes were obtained by the Venn plot. These 79 genes were introduced into three machine-learning methods to screen the hub genes, and the genes identified by the three methods were TNC, FAP, SREBF1, and TGF-ß2. We verified their diagnostic function in the GSE29801 and GSE103060 datasets. Then, the hub gene co-enrichment pathways were obtained by GO and KEGG analyses. CIBERSORT analysis showed that these hub genes were associated with immune cell infiltration. Finally, we found increased expression of TNC, FAP, SREBF1, and TGF-ß2 mRNA and protein in the retinas of AMD mice. CONCLUSION: We found that four hub genes, namely, FAP, TGF-ß2, SREBF1, and TNC, have diagnostic significance in patients with AMD and are related to immune cell infiltration. Finally, we determined that the mRNA and protein expression of these hub genes was upregulated in the retinas of AMD mice.


Assuntos
Degeneração Macular , Fator de Crescimento Transformador beta2 , Humanos , Idoso , Animais , Camundongos , Fator de Crescimento Transformador beta2/genética , Degeneração Macular/genética , Retina , Western Blotting , RNA Mensageiro
4.
Microbiol Spectr ; 12(2): e0340523, 2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38230929

RESUMO

The white rot fungus Cerrena unicolor 87613 has been previously shown to be a promising resource in laccase production, an enzyme with significant biotechnological applications. Conventional methods face technical challenges in improving laccase activity. Attempts are still being made to develop novel approaches for further enhancing laccase activity. This study aimed to understand the regulation of laccase activity in C. unicolor 87613 for a better exploration of the novel approach. Transcriptomic and metabolomic analyses were performed to identify key genes and metabolites involved in extracellular laccase activity. The findings indicated a strong correlation between the glutathione metabolism pathway and laccase activity. Subsequently, experimental verifications were conducted by manipulating the pathway using chemical approaches. The additive reduced glutathione (GSH) dose-dependently repressed laccase activity, while the GSH inhibitors (APR-246) and reactive oxygen species (ROS) inducer (H2O2) enhanced laccase activity. Changes in GSH levels could determine the intracellular redox homeostasis in interaction with ROS and partially affect the expression level of laccase genes in C. unicolor 87613 in turn. In addition, GSH synthetase was found to mediate GSH abundance in a feedback loop. This study suggests that laccase activity is negatively influenced by GSH metabolism and provides a theoretical basis for a novel strategy to enhance laccase activity by reprogramming glutathione metabolism at a specific cultivation stage.IMPORTANCEThe production of laccase activity is limited by various conventional approaches, such as heterologous expression, strain screening, and optimization of incubation conditions. There is an urgent need for a new strategy to meet industrial requirements more effectively. In this study, we conducted a comprehensive analysis of the transcriptome and metabolome of Cerrena unicolor 87613. For the first time, we discovered a negative role played by reduced glutathione (GSH) and its metabolic pathway in influencing extracellular laccase activity. Furthermore, we identified a feedback loop involving GSH, GSH synthetase gene, and GSH synthetase within this metabolic pathway. These deductions were confirmed through experimental investigations. These findings not only advanced our understanding of laccase activity regulation in its natural producer but also provide a theoretical foundation for a strategy to enhance laccase activity by reprogramming glutathione metabolism at a specific cultivation stage.


Assuntos
Cebus , Lacase , Polyporales , Transcriptoma , Lacase/genética , Lacase/metabolismo , Espécies Reativas de Oxigênio , Peróxido de Hidrogênio , Perfilação da Expressão Gênica , Glutationa , Ligases/genética , Ligases/metabolismo
5.
Sci Rep ; 13(1): 22804, 2023 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-38129557

RESUMO

The goal of this study was to develop a ferroptosis-based molecular signature that can predict recurrence-free survival (RFS) in patients with prostate cancer (PCa). In this study, we obtained ferroptosis-related genes (FRGs) in FerrDb database and clinical transcriptome data in TCGA database and GEO database. Consensus cluster analysis was used to identify three molecular markers of ferroptosis in PCa with differential expression of 40 FRGs, including PD-L1 expression levels. We conducted a new ferroptosis-related signature for PCa RFS using four FRGs identified through univariate and multivariate Cox regression analyses. The signature was validated in the training, testing, and validation cohorts, and it demonstrated remarkable results in the area under the time-dependent receiver operating characteristic (ROC) curve of 0.757, 0.715, and 0.732, respectively. Additionally, we observed that younger patients, those with stage T III and stage T IV, stage N0, cluster 1, and cluster 2 PCa were more accurately predicted by the signature as independent predictors of RFS. DU-145 and RWPE-1 cells were successfully analyzed by qRT-PCR and Western blot for ASNS, GPT2, RRM2, and NFE2L2. In summary, we developed a novel ferroptosis-based signature for RFS in PC, utilizing four FRGs identified through univariate and multivariate Cox regression analyses. This signature was rigorously validated across training, testing, and validation cohorts, demonstrating exceptional performance as evidenced by its ROC curves. Notably, our findings indicate that this signature is particularly effective as an independent predictor of RFS in younger patients or those with stage T III and T IV, stage N0, and in clusters 1 and 2. Finally, we confirmed the expression of these four FRGs in DU-145 and RWPE-1 cell lines.


Assuntos
Ferroptose , Neoplasias da Próstata , Masculino , Humanos , Ferroptose/genética , Neoplasias da Próstata/diagnóstico , Neoplasias da Próstata/genética , Biomarcadores , Western Blotting , Linhagem Celular
6.
Front Pharmacol ; 14: 1220144, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37305537

RESUMO

[This corrects the article DOI: 10.3389/fphar.2021.717730.].

7.
Fungal Biol ; 127(1-2): 872-880, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36746559

RESUMO

Phenolic compounds are widely distributed in nature and industrial environment, and their detoxification or bioactive enhancement is of great value to environmental protection and industrial development. Laccases are multicopper oxidases that catalyse the oligo- or polymerisation of phenolic compounds. Identifying new laccase producers and investigating their application potential are of great importance. In this study, a white-rot fungus, Trametes hirsuta EZ1, with significantly high laccase productivity was isolated. The optimum conditions were studied for the maximum fermentation of extracellular laccase, which was achieved at 150 U/mL with a medium containing 10% strain EZ1, 7% maltodextrin, 1.5% peptone, and 0.5 mM Cu2+, and incubation at initial pH 6.0, 32 °C, and 180 rpm for nine days. Subsequently, a 70-kDa laccase was purified that showed activity over a wide range of temperature and pH, sensitivity to many metal ions and sodium dodecyl sulphate, and high tolerance to organic solvents. Purified laccase showed a significant unreported effect by catalysing catechol or ferulic acid into dimers, trimers, and tetramers or caffeic acid into dimers, trimers, tetramers, and pentamers. The oligomeric mixtures exhibited increased antioxidative capacity compared to that of each parent monomer, except for caffeic acid derivatives. Our study offers a novel strain source for laccase production and broadens its application in the enhancement of bioactive compounds.


Assuntos
Polyporaceae , Trametes , Lacase
8.
Clin Res Hepatol Gastroenterol ; 46(6): 101897, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35240318

RESUMO

BACKGROUND: Radiotherapy combined with apatinib exhibits synergistic anti-tumor effect, while the application of simultaneous integrated boost intensity modulated radiotherapy (SIB-IMRT) combined with apatinib in HCC patients is scarce. Hence, this study aimed to explore the treatment response, survival, and safety profile of the SIB-IMRT combined with apatinib in unresectable HCC (uHCC) patients. METHODS: A total of 19 uHCC patients with deficient response to transarterial chemoembolization (TACE), who scheduled for SIB-IMRT combined with apatinib treatment were enrolled. The SIB-IMRT was applied at the following dose: 95% planning target volume (PTV) at 30-50 Gy/2-2.5 Gy/15-20f and 90% Boost of 45-72 Gy/3-4.5 Gy/15-20f at 5 times per week with cone beam computerized tomography validation. During and after radiotherapy, the apatinib was administrated orally with the initial dose of 500 mg per day. RESULTS: The complete response, partial response, stable disease, and progressive disease rates were 31.6%, 36.8%, 21.1% and 10.5%, respectively. Consequently, the objective response rate and disease control rate were 68.4% and 89.5%, respectively. During a median follow-up duration of 9.0 months, the median progression-free survival (PFS) was 6.0 (95% confidential interval (CI): 4.9-7.1) months with 1-year PFS rate of 42.1%; the median overall survival (OS) was not reached with 1-year OS rate of 54.6%. The safety profile was acceptable with the most common adverse events including myelosuppression (42.1%), skin reaction (36.8%), and albuminuria (26.3%). CONCLUSION: SIB-IMRT combined with apatinib exhibits a good efficacy and tolerable safety profile, which could be considered as a potential treatment choice for uHCC patients who have deficient response to TACE.


Assuntos
Carcinoma Hepatocelular , Quimioembolização Terapêutica , Neoplasias Hepáticas , Radioterapia de Intensidade Modulada , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/etiologia , Quimioembolização Terapêutica/métodos , Terapia Combinada , Humanos , Neoplasias Hepáticas/patologia , Piridinas , Radioterapia de Intensidade Modulada/efeitos adversos , Radioterapia de Intensidade Modulada/métodos
9.
Dev Neurosci ; 44(2): 67-79, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34959237

RESUMO

N6-methyladenosine (m6A) abundantly exists in the cerebral cortex and is emerging as an essential factor in cortical development and function. As the m6A-binding site appears to be dynamically methylated in different RNA regions at the temporal-specific developing stage, it is of value to distinguish the unique character of region- and temporal-specific m6A. Herein, we analyzed the status of temporal-specific m6A within RNA 5' untranslated region (5'UTR) using m6A-methylated sequencing data and transcriptomic sequencing data from 12.5- to 13-day embryonic cerebral cortices and 14-day postnatal ones. We identified sorts of RNAs that are uniquely m6A-methylated in the 5'UTR and sorted them into specific neurological processes. Compared with 3'UTR-m6A-methylated RNAs, 5'UTR-m6A-methylated RNAs showed unique functions and mechanisms in regulating cortical development, especially through the pathway of mRNA transport and surveillance. Moreover, the 5'UTR-specific m6A was associated with neurological disorders as well. The FoxO signaling pathway was then focused by these pathogenic 5'UTR-m6A-methylated RNAs and explored to be involved in the determination of neurological disorders. Additionally, the 5'UTR-m6A modification patterns and transcriptional patterns play independent but cohesive roles in the developing cortices. Our study emphasizes the importance of 5'UTR-specific m6A in the developing cortex and provides an informative reference for future studies of 5'UTR-specific m6A in normal cortical development and neurological disorders.


Assuntos
Adenosina , Biologia Computacional , Regiões 5' não Traduzidas/genética , Adenosina/metabolismo , Animais , Córtex Cerebral/metabolismo , Camundongos
10.
Am J Physiol Lung Cell Mol Physiol ; 321(5): L900-L911, 2021 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-34585979

RESUMO

Carbon black nanoparticles (CBNPs) are one of the most frequently used nanoparticles. Exposure to CBNPs during pregnancy (PrE to CBNPs) can directly induce inflammation, lung injury, and genotoxicity in dams and results in abnormalities in offspring. However, whether exposure to CBNPs during pregnancy enhances the susceptibility of offspring to environmental stimuli remains unknown. To address this issue, in this study, we intranasally treated pregnant mice with mock or CBNPs from gestational day (GD) 9 to GD18, and F1 and F2 offspring were normally obtained. By intratracheal instillation of mice with lipopolysaccharide (LPS) to trigger a classic animal model for acute lung injury, we intriguingly found that after LPS treatment, F1 and F2 offspring after exposure during pregnancy to CBNPs both exhibited more pronounced lung injury symptoms, including more degenerative histopathological changes, vascular leakage, elevated MPO activity, and activation of inflammation-related signaling transduction, compared with F1 and F2 offspring in the mock group, suggesting PrE to CBNPs would aggravate LPS-induced lung injury in offspring, and this effect was intergenerational. We also observed that PrE to CBNPs upregulated the mRNA expression of DNA methyltransferases (Dnmt) 1/3a/3b and DNA hypermethylation in both F1 and F2 offspring, which might partially account for the intergenerational effect. Together, our study demonstrates for the first time that PrE to CBNPs can enhance sensitivity to LPS in both F1 and F2 offspring, and this intergenerational effect may be related to DNA hypermethylation caused by CBNPs.


Assuntos
Dano ao DNA/efeitos dos fármacos , Lesão Pulmonar/induzido quimicamente , Nanopartículas/toxicidade , Efeitos Tardios da Exposição Pré-Natal/patologia , Animais , Feminino , Inflamação/induzido quimicamente , Inflamação/tratamento farmacológico , Lipopolissacarídeos/farmacologia , Masculino , Camundongos , Gravidez , RNA Mensageiro/efeitos dos fármacos , RNA Mensageiro/metabolismo
11.
Front Pharmacol ; 12: 717730, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34421612

RESUMO

Altered tumor metabolism is a hallmark of cancer and targeting tumor metabolism has been considered as an attractive strategy for cancer therapy. Prostaglandin Reductase 1 (PTGR1) is a rate-limiting enzyme involved in the arachidonic acid metabolism pathway and mainly responsible for the deactivation of some eicosanoids, including prostaglandins and leukotriene B4. A growing evidence suggested that PTGR1 plays a significant role in cancer and has emerged as a novel target for cancer therapeutics. In this review, we summarize the progress made in recent years toward the understanding of PTGR1 function and structure, highlight the roles of PTGR1 in cancer, and describe potential inhibitors of PTGR1. Finally, we provide some thoughts on future directions that might facilitate the PTGR1 research and therapeutics development.

12.
Life Sci ; 233: 116741, 2019 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-31398419

RESUMO

AIMS: Carbon black nanoparticles (CBNPs) are widely used in industrial field. Sensitive stages such as pregnancy are assumed to be more susceptible to stimulus, however whether pregnancy exposure to CBNPs (PrE-to-CBNPs) would cause long-term toxic effects in dams and the underlying mechanisms remain poorly addressed. The present study is aimed to determine the long-term toxic effects of PrE-to-CBNPs in dams. MATERIALS AND METHODS: The pregnant mice were randomly divided into control group, low (21 µg/animal), medium (103 µg/animal) and high (515 µg/animal) CBNPs-treated groups. From gestational day (GD) 9 to GD18, the pregnant mice were intranasal exposed. At 49 days after parturition, lung tissues and bronchoalveolar lavage fluid (BALF) were obtained. Weight change, lung histopathology, lung ultrastructural pathology, cell count in BALF, oxidative stress/inflammatory maker and autophagy/lysosome-related protein expression were determined. KEY FINDINGS: PrE-to-CBNPs caused a dose-dependent persistent lung injury in mice even 49 days after parturition, including the deteriorative lung histopathological changes, elevation of oxidative stress marker Nrf-2, HO-1 and CHOP, infiltration of macrophage and increased mRNA expression of inflammatory cytokines in the lung tissues and elevation of cells in BALF. However, PrE-to-CBNPs did not induce significant neutrophil infiltration and fibrosis. Moreover, we found that CBNPs could deposit in the lysosomes and decrease cathepsin D (an important hydrolase in lysosome), which might be associated with the dysfunction of lysosome and autophagy. SIGNIFICANCE: Our study demonstrated that PrE-to-CBNPs could result in long-term lung injury in dams, and lysosomal dysfunction was probably linked to this process.


Assuntos
Inflamação/complicações , Lesão Pulmonar/etiologia , Lisossomos/patologia , Nanopartículas/efeitos adversos , Estresse Oxidativo , Efeitos Tardios da Exposição Pré-Natal/etiologia , Fuligem/efeitos adversos , Animais , Autofagia , Citocinas/metabolismo , Feminino , Lesão Pulmonar/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Gravidez , Efeitos Tardios da Exposição Pré-Natal/patologia
13.
Sensors (Basel) ; 19(17)2019 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-31438529

RESUMO

In robot control with physical interaction, like robot-assisted surgery and bilateral teleoperation, the availability of reliable interaction force information has proved to be capable of increasing the control precision and of dealing with the surrounding complex environments. Usually, force sensors are mounted between the end effector of the robot manipulator and the tool for measuring the interaction forces on the tooltip. In this case, the force acquired from the force sensor includes not only the interaction force but also the gravity force of the tool. Hence the tool dynamic identification is required for accurate dynamic simulation and model-based control. Although model-based techniques have already been widely used in traditional robotic arms control, their accuracy is limited due to the lack of specific dynamic models. This work proposes a model-free technique for dynamic identification using multi-layer neural networks (MNN). It utilizes two types of MNN architectures based on both feed-forward networks (FF-MNN) and cascade-forward networks (CF-MNN) to model the tool dynamics. Compared with the model-based technique, i.e., curve fitting (CF), the accuracy of the tool identification is improved. After the identification and calibration, a further demonstration of bilateral teleoperation is presented using a serial robot (LWR4+, KUKA, Germany) and a haptic manipulator (SIGMA 7, Force Dimension, Switzerland). Results demonstrate the promising performance of the model-free tool identification technique using MNN, improving the results provided by model-based methods.

14.
Toxicology ; 425: 152244, 2019 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-31302203

RESUMO

Accumulating evidence shows that carbon black nanoparticles (CBNPs) (one of the most used nanoparticles) can induce toxicity via induction of inflammation, oxidative stress and genotoxicity in vitro and in vivo, and epidemiological studies have indicated that the possible correlation between maternal immune activation and risk of developing neuropsychiatric disorder in the offspring. However, whether pregnancy exposure of CBNPs (Pr-CBNPs) enhances the susceptibility to bleomycin (BLM)-induced lung fibrosis in offspring is unknown. Herein, we demonstrated that Pr-CBNPs during gestational day 9-18 via intranasal administration could confer enhanced susceptibility to BLM-induced fibrotic response in offspring, including deteriorative lung pathologic changes and more collagen deposition. Intriguingly, we found that Pr-CBNPs repressed the activation of autophagy (an anti-fibrotic mechanism), which was moderately activated in offspring from mock group. Moreover, Pr-CBNPs was likely to disrupt the LKB1-AMPK-ULK1 axis (a key regulatory pathway for autophagy induction). In summary, this study provides the first evidence that pregnancy exposure to CBNPs can exacerbate BLM-induced lung fibrotic response in offspring probably through disruption of LKB1-AMPK-ULK1 axis-mediated autophagy.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Proteína Homóloga à Proteína-1 Relacionada à Autofagia/metabolismo , Autofagia/efeitos dos fármacos , Bleomicina/toxicidade , Nanopartículas/toxicidade , Efeitos Tardios da Exposição Pré-Natal/induzido quimicamente , Proteínas Serina-Treonina Quinases/metabolismo , Fibrose Pulmonar/induzido quimicamente , Transdução de Sinais/efeitos dos fármacos , Fuligem/toxicidade , Animais , Sinergismo Farmacológico , Feminino , Pulmão/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Gravidez
15.
Toxicology ; 422: 44-52, 2019 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-31022427

RESUMO

Maternal exposure to carbon black nanoparticles (CBNPs) during pregnancy have been well documented to induce harmful outcomes of offspring on brain function. However, it remains largely unknown whether females exposed to CBNPs during sensitive period of pregnancy can cause the neurotoxic effects on their own body after parturition. In this study, our results showed that pregnancy CBNPs exposure induced the persistent pathological changes in the cerebral cortex tissues and impaired cerebrovascular function of mice manifested by significant alterations of endothelin-1, endothelial nitric oxide synthase, vascular endothelial growth factor-A and ATP-binding cassette transporter G1. Intriguingly, we observed that these deleterious effects on brain and cerebrovascular functions in mice could persist for 49 days after delivery of pups. By using in vitro human umbilical vein endothelial cells, we further verified the potential vascular dysfunction after CBNPs exposure. In summary, our results provide the first evidence that pregnancy CBNPs exposure-induced brain pathological changes and cerebrovascular dysfunction can persist for a relative long time. These finding suggest exposure to CBNPs during sensitive stages of pregnancy may not only show the harmful effects on offspring neurodevelopment, but also result in the irreversible brain damage on mother body.


Assuntos
Córtex Cerebral/efeitos dos fármacos , Troca Materno-Fetal , Nanopartículas/toxicidade , Fuligem/toxicidade , Membro 1 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/genética , Animais , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Córtex Cerebral/metabolismo , Córtex Cerebral/patologia , Endotelina-1/genética , Feminino , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Camundongos Endogâmicos C57BL , Óxido Nítrico Sintase Tipo III/genética , Gravidez , Fator A de Crescimento do Endotélio Vascular/genética
16.
Mol Neurobiol ; 56(3): 1596-1606, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29909453

RESUMO

RNA modifications are involved in many aspects of biological functions. N6-methyladenosine (m6A) is one of the most important forms of RNA methylation and plays a vital role in regulating gene expression, protein translation, cell behaviors, and physiological conditions in many species, including humans. The dynamic and reversible modification of m6A is conducted by three elements: methyltransferases ("writers"), such as methyltransferase-like protein 3 (METTL3) and METTL14; m6A-binding proteins ("readers"), such as the YTH domain family proteins (YTHDFs) and YTH domain-containing protein 1 (YTHDC1); and demethylases ("erasers"), such as fat mass and obesity-associated protein (FTO) and AlkB homolog 5 (ALKBH5). In this review, we summarize the current knowledge on mapping mRNA positions of m6A modification and revealing molecular processes of m6A. We further highlight the biological significance of m6A modification in neural cells during development of the nervous system and its association with human diseases. m6A RNA methylation is becoming a new frontier in neuroscience and should help us better understand neural development and neurological diseases from a novel point of view.


Assuntos
Adenosina/análogos & derivados , Doenças do Sistema Nervoso/metabolismo , Neurogênese/fisiologia , Adenosina/genética , Adenosina/metabolismo , Humanos , Metilação , Doenças do Sistema Nervoso/genética
17.
Environ Toxicol ; 34(2): 103-111, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30375170

RESUMO

Intake of arsenic (As) via drinking water has been a serious threat to global public health. Though there are numerous reports of As neurotoxicity, its pathogenesis mechanisms remain vague especially its chronic effects on metabolic network. Hippocampus is a renowned area in relation to learning and memory, whilst recently, cerebellum is argued to be involved with process of cognition. Therefore, the study aimed to explore metabolomics alternations in these two areas after chronic As exposure, with the purpose of further illustrating details of As neurotoxicity. Twelve 3-week-old male C57BL/6J mice were divided into two groups, receiving deionized drinking water (control group) or 50 mg/L of sodium arsenite (via drinking water) for 24 weeks. Learning and memory abilities were tested by Morris water maze (MWM) test. Pathological and morphological changes of hippocampus and cerebellum were captured via transmission electron microscopy (TEM). Metabolic alterations were analyzed by gas chromatography-mass spectrometry (GC-MS). MWM test confirmed impairments of learning and memory abilities of mice after chronic As exposure. Metabolomics identifications indicated that tyrosine increased and aspartic acid (Asp) decreased simultaneously in both hippocampus and cerebellum. Intermediates (succinic acid) and indirect involved components of tricarboxylic acid cycle (proline, cysteine, and alanine) were found declined in cerebellum, indicating disordered energy metabolism. Our findings suggest that these metabolite alterations are related to As-induced disorders of amino acids and energy metabolism, which might therefore, play an important part in mechanisms of As neurotoxicity.


Assuntos
Arsênio/toxicidade , Cerebelo/efeitos dos fármacos , Hipocampo/efeitos dos fármacos , Redes e Vias Metabólicas/efeitos dos fármacos , Poluentes Químicos da Água/toxicidade , Animais , Arsênio/metabolismo , Cerebelo/metabolismo , Cerebelo/ultraestrutura , Cromatografia Gasosa-Espectrometria de Massas , Hipocampo/metabolismo , Hipocampo/ultraestrutura , Masculino , Aprendizagem em Labirinto/efeitos dos fármacos , Memória/efeitos dos fármacos , Metabolômica/métodos , Camundongos , Camundongos Endogâmicos C57BL , Síndromes Neurotóxicas/metabolismo , Síndromes Neurotóxicas/patologia , Ratos , Poluentes Químicos da Água/metabolismo
18.
Molecules ; 23(4)2018 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-29614843

RESUMO

Neurodegeneration is a progressive loss of neuronal cells in certain regions of the brain. Most of the neurodegenerative disorders (NDDs) share the communal characteristic such as damage or reduction of various cell types typically including astrocytes and microglial activity. Several compounds are being trialed to treat NDDs but they possess solitary symptomatic advantages along with copious side effects. The finding of more enthralling and captivating compounds to suspend and standstill the pathology of NDDs will be considered as a hallmark of present times. Phytochemicals possess the potential to alternate the synthetic line of therapy against NDDs. The present review explores the potential efficacy of plant-derived flavonoids against most common NDDs including Alzheimer's disease (AD) and Parkinson's disease (PD). Flavonoids are biologically active phytochemicals which possess potential pharmacological effects, including antiviral, anti-allergic, antiplatelet, anti-inflammatory, anti-tumor, anti-apoptotic and anti-oxidant effects and are able to attenuate the pathology of various NDDs through down-regulating the nitric oxide (NO) production, by reducing the tumor necrosis factor-α (TNF-α), by reducing the excitotoxicity of superoxide as well as acting as tyrosine kinase (TK) and monoamine oxidase (MAO) inhibiting enzyme.


Assuntos
Doença de Alzheimer/tratamento farmacológico , Flavonoides/uso terapêutico , Doença de Parkinson/tratamento farmacológico , Doença de Alzheimer/metabolismo , Animais , Antioxidantes/uso terapêutico , Humanos , Monoaminoxidase/metabolismo , Doença de Parkinson/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
19.
Appl Microbiol Biotechnol ; 100(24): 10363-10374, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27344592

RESUMO

Two thioredoxin (Trx) reductases (Trr1/2) are known to play overlapping roles in the yeast Trx-Trr redox system but are generally unexplored in filamentous fungi, which possess multiple Trx homologues. This study seeks to characterize the functions of Trr1 and Trr2 in Beauveria bassiana, a filamentous fungal insect pathogen, and to probe their Trx partners. Both Trr1 and Trr2 were evidently localized in the cytoplasm of B. bassiana, unlike the two yeast homologues that have been reported to localize in the cytoplasm and mitochondria, respectively. Most of the six trx genes were greatly upregulated at the transcriptional level in the absence of trr1 instead of trr2 in B. bassiana, in which the trr1/2 double deletion failed in many attempts. Deletion of trr1 resulted in increased Trx activity, severe cysteine auxotrophy, and drastically reduced activities of peroxidases and superoxide dismutases under normal or oxidative conditions despite little change in catalase activity. Such changes disappeared in the absence of trr2 and were completely restored by complementation of trr1/2 or overexpression of trx1/6 in the Δtrr1 mutant, but were not restored at all by overexpression of trx2/3/4/5 or trr2 in the same mutant. All of these mutants exhibited similar trends of changes in the antioxidant response, conidiation, germination, thermotolerance, UV-B resistance, and virulence. Taken together, the findings indicate that Trr1 could reduce Trx2-5 and hence dominate the intracellular redox state, profoundly affecting the potential of B. bassiana against arthropod pests. Trr2 could reduce Trx1/6 but function only in the absence of Trr1.


Assuntos
Artrópodes/microbiologia , Beauveria/enzimologia , Beauveria/crescimento & desenvolvimento , Cisteína/biossíntese , Tiorredoxina Redutase 1/metabolismo , Tiorredoxina Redutase 2/metabolismo , Fatores de Virulência/metabolismo , Animais , Beauveria/genética , Citoplasma/enzimologia , Deleção de Genes , Teste de Complementação Genética , Oxirredução , Tiorredoxina Redutase 1/genética , Tiorredoxina Redutase 2/genética , Virulência , Fatores de Virulência/genética
20.
Appl Microbiol Biotechnol ; 100(13): 5907-17, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26969041

RESUMO

Multiple glutaredoxins (Grx) and glutathione reductase (Glr) are vital for the thiol-disulfide redox system in budding yeast but generally unexplored in filamentous fungi. Here we characterized the Beauveria bassiana redox system comprising dithiol Grx1, monothiol Grx2-4, Grx-like Grx5, and Glr orthologue. Each grx or glr deletion was compensated by increased transcripts of some other grx genes in normal cultures. Particularly, grx3 compensated the absence of grx1, grx2, grx5, or glr under oxidative stress while its absence was compensated only by undeletable grx4 under normal conditions but by most of other undeleted grx and glr genes in response to menadione. Consequently, the redox state was disturbed in Δglr more than in Δgrx3 but not in Δgrx1/2/5. Superoxide dismutases were more active in normal Δgrx1-3 cultures but less in Δgrx5 or Δglr response to menadione. Total catalase activity increased differentially in all the mutant cultures stressed with or without H2O2 while total peroxidase activity decreased more in the normal or H2O2-stressed culture of Δglr than of Δgrx3. Among the mutants, Δgrx3 showed slightly increased sensitivity to menadione or H2O2; Δglr exhibited greater sensitivity to thiol-oxidizing diamide than thiol-reducing 1-chloro-2,4-dinitrobenzene as well as increased sensitivity to the two oxidants. Intriguingly, all the mutants grew slower in a Fe(3+)-inclusive medium perhaps due to elevated transcripts of two Fe(3+) transporter genes. More or fewer phenotypes linked with biocontrol potential were altered in four deletion mutants excluding Δgrx5. All the changes were restored by targeted gene complementation. Overall, Grx3 played more critical role than other Grx homologues in the Glr-dependent redox system of the fungal entomopathogen.


Assuntos
Antioxidantes/metabolismo , Beauveria/metabolismo , Proteínas Fúngicas/metabolismo , Glutarredoxinas/metabolismo , Glutationa Redutase/metabolismo , Glutationa/metabolismo , Ferro/metabolismo , Beauveria/enzimologia , Beauveria/genética , Proteínas Fúngicas/genética , Glutarredoxinas/genética , Glutationa Redutase/genética , Homeostase , Mutação , Oxirredução , Superóxido Dismutase/genética , Superóxido Dismutase/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA