Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 104
Filtrar
1.
Am J Cancer Res ; 14(4): 1446-1465, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38726269

RESUMO

Liver cancer ranks as the third leading cause of cancer-related mortality worldwide, predominantly in the form of hepatocellular carcinoma (HCC). Conventional detection and treatment approaches have proven inadequate for addressing the elevated incidence and mortality rates associated with HCC. However, a significant body of research suggests that combating HCC through the induction of ferroptosis is possible. Ferroptosis is a regulated cell death process characterized by elevated levels of reactive oxygen species (ROS) and lipid peroxide accumulation, both of which are dependent on iron levels. In recent years, there has been an increasing focus on investigating ferroptosis, revealing its potential as an inhibitory mechanism against various diseases, including tumors. Therefore, ferroptosis induction holds great promise for treating multiple types of cancers, including HCC. This article provides a review of the key mechanisms involved in ferroptosis and explores the potential application of multiple targets and pathways associated with ferroptosis in HCC treatment to improve therapeutic outcomes.

2.
Nat Commun ; 15(1): 3669, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38693119

RESUMO

Oncolytic viruses (OVs) show promise as a cancer treatment by selectively replicating in tumor cells and promoting antitumor immunity. However, the current immunogenicity induced by OVs for tumor treatment is relatively weak, necessitating a thorough investigation of the mechanisms underlying its induction of antitumor immunity. Here, we show that HSV-1-based OVs (oHSVs) trigger ZBP1-mediated PANoptosis (a unique innate immune inflammatory cell death modality), resulting in augmented antitumor immune effects. Mechanistically, oHSV enhances the expression of interferon-stimulated genes, leading to the accumulation of endogenous Z-RNA and subsequent activation of ZBP1. To further enhance the antitumor potential of oHSV, we conduct a screening and identify Fusobacterium nucleatum outer membrane vesicle (Fn-OMV) that can increase the expression of PANoptosis execution proteins. The combination of Fn-OMV and oHSV demonstrates potent antitumor immunogenicity. Taken together, our study provides a deeper understanding of oHSV-induced antitumor immunity, and demonstrates a promising strategy that combines oHSV with Fn-OMV.


Assuntos
Fusobacterium nucleatum , Herpesvirus Humano 1 , Terapia Viral Oncolítica , Vírus Oncolíticos , Proteínas de Ligação a RNA , Herpesvirus Humano 1/imunologia , Herpesvirus Humano 1/genética , Vírus Oncolíticos/genética , Vírus Oncolíticos/imunologia , Animais , Humanos , Terapia Viral Oncolítica/métodos , Camundongos , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Proteínas de Ligação a RNA/imunologia , Linhagem Celular Tumoral , Fusobacterium nucleatum/imunologia , Neoplasias/terapia , Neoplasias/imunologia , Feminino , Imunidade Inata , Camundongos Endogâmicos BALB C
3.
Cell Death Discov ; 10(1): 208, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38693111

RESUMO

La-related proteins (LARPs) regulate gene expression by binding to RNAs and exhibit critical effects on disease progression, including tumors. However, the role of LARP4B and its underlying mechanisms in the progression of hepatocellular carcinoma (HCC) remain largely unclear. In this study, we found that LARP4B expression is upregulated and correlates with poor prognosis in patients with HCC. Gain- and loss-of-function assays showed that LARP4B promotes stemness, proliferation, metastasis, and angiogenesis in vitro and in vivo. Furthermore, LARP4B inhibition enhances the antitumor effects of sorafenib and blocks the metastasis-enhancing effects of low sorafenib concentrations in HCC. Mechanistically, LARP4B expression is upregulated by METTL3-mediated N6-methyladenosine (m6A)-IGF2BP3-dependent modification in HCC. RNA- and RNA immunoprecipitation (RIP)- sequencing uncovered that LARP4B upregulates SPINK1 by binding to SPINK1 mRNA via the La motif and maintaining mRNA stability. LARP4B activates the SPINK1-mediated EGFR signaling pathway, which supports stemness, progression and sorafenib resistance in HCC. Additionally, a positive feedback loop with the LARP4B/SPINK1/p-AKT/C/EBP-ß axis is responsible for the sorafenib-therapeutic benefit of LARP4B depletion. Overall, this study demonstrated that LARP4B facilitates HCC progression, and LARP4B inhibition provides benefits to sorafenib treatment in HCC, suggesting that LARP4B might be a potential therapeutic target for HCC.

4.
ACS Chem Biol ; 19(5): 1040-1044, 2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38620022

RESUMO

Cysteine conjugation is widely used to constrain phage displayed peptides for the selection of cyclic peptides against specific targets. In this study, the nontoxic Bi3+ ion was used as a cysteine conjugation reagent to cross-link peptide libraries without compromising phage infectivity. We constructed a randomized 3-cysteine peptide library and cyclized it with Bi3+, followed by a selection against the maltose-binding protein as a model target. Next-generation sequencing of selection samples revealed the enrichment of peptides containing clear consensus sequences. Chemically synthesized linear and Bi3+ cyclized peptides were used for affinity validation. The cyclized peptide showed a hundred-fold better affinity (0.31 ± 0.04 µM) than the linear form (39 ± 6 µM). Overall, our study proved the feasibility of developing Bi3+ constrained bicyclic peptides against a specific target using phage display, which would potentially accelerate the development of new peptide-bismuth bicycles for therapeutic or diagnostic applications.


Assuntos
Biblioteca de Peptídeos , Peptídeos Cíclicos , Peptídeos Cíclicos/química , Cisteína/química , Proteínas Ligantes de Maltose/metabolismo , Proteínas Ligantes de Maltose/química , Proteínas Ligantes de Maltose/genética , Ciclização , Peptídeos/química , Sequência de Aminoácidos
5.
Adv Mater ; : e2400228, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38477852

RESUMO

The integration of nanomedicine and immunotherapy has presented a promising opportunity for the treatment of cancer and diverse diseases. However, achieving spatiotemporal controllable immunotherapy with excellent efficacy and safety performances remains a significant challenge. This study develops a biodegradable near-infrared II (NIR-II) photothermal response polymer nanoparticle (PTEQ) system. This platform exhibits intrinsic immunostimulatory properties while concurrently delivering siRNA for Programmed Death-Ligand 1 (siPD-L1), leveraging enhanced immune responses and immune checkpoint blockade for safe and effective cancer therapy. In the CT26 tumor-bearing mouse model, PTEQ, as an immune stimulant, significantly boosts the infiltration of CD4+ and CD8+ T cells within the tumor microenvironment (TME). The PTEQ/siPD-L1+laser group not only initiates NIR-II photothermal therapy but also promotes the activation and infiltration of T cells, M1 macrophage polarization, and maturation of dendritic cells in the TME, resulting in the complete elimination of tumors in 7/10 cases, achieving a 100% survival rate. In another in vivo vaccine experiment, all tumors on the right side are completely eliminated in the PTEQ/siPD-L1+laser group, reaching a 100% tumor eradication rate. These findings underscore the potential of this strategy to overcome the current immunotherapeutic limitations and achieve immune therapy normalization.

6.
Int Immunopharmacol ; 132: 111929, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38555817

RESUMO

Increased expression of CXCL10 and its receptor CXCR3 represents an inflammatory response in cells and tissues. Macrophage polarization and autophagy are major functions in inflammatory macrophages; however, the cellular functions of the CXCL10-CXCR3 axis in macrophages are not well understood. Here, we examined the role of CXCL10-CXCR3-axis-regulated autophagy in macrophage polarization. First, in non-inflammatory macrophages, whereas CXCL10 promotes M2 polarization and inhibits M1 polarization, CXCR3 antagonist AMG487 induces the opposite macrophage polarization. Next, CXCL10 promotes the expression of autophagy proteins (Atg5-Atg12 complex, p62, LC3-II, and LAMP1) and AMG487 inhibits their expression. Knockdown of LAMP1 by short interfering RNA switches the CXCL10-induced polarization from M2 to M1 in non-inflammatory macrophages. Furthermore, in inflammatory macrophages stimulated by poly(I:C), CXCL10 induces M1 polarization and AMG487 induces M2 polarization in association with a decrease in LAMP1. Finally, AMG487 alleviates lung injury after poly(I:C) treatment in mice. In conclusion, CXCL10-CXCR3 axis differentially directs macrophage polarization in inflammatory and non-inflammatory states, and autophagy protein LAMP1 acts as the switch controlling the direction of macrophage polarization by CXCL10-CXCR3.


Assuntos
Acetamidas , Autofagia , Quimiocina CXCL10 , Inflamação , Macrófagos , Camundongos Endogâmicos C57BL , Pirimidinonas , Receptores CXCR3 , Animais , Receptores CXCR3/metabolismo , Receptores CXCR3/genética , Quimiocina CXCL10/metabolismo , Quimiocina CXCL10/genética , Macrófagos/imunologia , Macrófagos/metabolismo , Camundongos , Autofagia/imunologia , Inflamação/imunologia , Inflamação/metabolismo , Poli I-C/farmacologia , Proteínas de Membrana Lisossomal/metabolismo , Proteínas de Membrana Lisossomal/genética , Masculino , Transdução de Sinais , Humanos , Ativação de Macrófagos
7.
Circulation ; 149(16): 1268-1284, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38362779

RESUMO

BACKGROUND: Hypertrophic cardiomyopathy (HCM) is a common heritable heart disease. Although HCM has been reported to be associated with many variants of genes involved in sarcomeric protein biomechanics, pathogenic genes have not been identified in patients with partial HCM. FARS2 (the mitochondrial phenylalanyl-tRNA synthetase), a type of mitochondrial aminoacyl-tRNA synthetase, plays a role in the mitochondrial translation machinery. Several variants of FARS2 have been suggested to cause neurological disorders; however, FARS2-associated diseases involving other organs have not been reported. We identified FARS2 as a potential novel pathogenic gene in cardiomyopathy and investigated its effects on mitochondrial homeostasis and the cardiomyopathy phenotype. METHODS: FARS2 variants in patients with HCM were identified using whole-exome sequencing, Sanger sequencing, molecular docking analyses, and cell model investigation. Fars2 conditional mutant (p.R415L) or knockout mice, fars2-knockdown zebrafish, and Fars2-knockdown neonatal rat ventricular myocytes were engineered to construct FARS2 deficiency models both in vivo and in vitro. The effects of FARS2 and its role in mitochondrial homeostasis were subsequently evaluated using RNA sequencing and mitochondrial functional analyses. Myocardial tissues from patients were used for further verification. RESULTS: We identified 7 unreported FARS2 variants in patients with HCM. Heart-specific Fars2-deficient mice presented cardiac hypertrophy, left ventricular dilation, progressive heart failure accompanied by myocardial and mitochondrial dysfunction, and a short life span. Heterozygous cardiac-specific Fars2R415L mice displayed a tendency to cardiac hypertrophy at age 4 weeks, accompanied by myocardial dysfunction. In addition, fars2-knockdown zebrafish presented pericardial edema and heart failure. FARS2 deficiency impaired mitochondrial homeostasis by directly blocking the aminoacylation of mt-tRNAPhe and inhibiting the synthesis of mitochondrial proteins, ultimately contributing to an imbalanced mitochondrial quality control system by accelerating mitochondrial hyperfragmentation and disrupting mitochondrion-related autophagy. Interfering with the mitochondrial quality control system using adeno-associated virus 9 or specific inhibitors mitigated the cardiac and mitochondrial dysfunction triggered by FARS2 deficiency by restoring mitochondrial homeostasis. CONCLUSIONS: Our findings unveil the previously unrecognized role of FARS2 in heart and mitochondrial homeostasis. This study may provide new insights into the molecular diagnosis and prevention of heritable cardiomyopathy as well as therapeutic options for FARS2-associated cardiomyopathy.


Assuntos
Cardiomiopatia Hipertrófica , Insuficiência Cardíaca , Doenças Mitocondriais , Fenilalanina-tRNA Ligase , Animais , Humanos , Recém-Nascido , Camundongos , Ratos , Cardiomiopatia Hipertrófica/patologia , Insuficiência Cardíaca/patologia , Homeostase , Mitocôndrias/genética , Mitocôndrias/metabolismo , Doenças Mitocondriais/genética , Doenças Mitocondriais/metabolismo , Doenças Mitocondriais/patologia , Proteínas Mitocondriais/metabolismo , Simulação de Acoplamento Molecular , Fenilalanina-tRNA Ligase/genética , Fenilalanina-tRNA Ligase/metabolismo , Peixe-Zebra/genética , Mutação
8.
Oncol Lett ; 27(3): 106, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38298427

RESUMO

Microwave ablation (MWA) is a key alternative therapy to conventional surgery for the treatment of lung cancer. In addition to eliminating local tumors, MWA may promote antitumor immunological responses, such as abscopal effects in distant lesions. However, the intensity of MWA is limited and the underlying mechanisms are not well-defined. The present study assessed the impact of MWA on immune cell subsets and cytokines in patients with lung cancer. A total of 45 patients with lung cancer who underwent percutaneous lung tumor MWA were enrolled. Peripheral blood samples were collected before and 24 h after MWA and changes in immune cell subsets [lymphocytes, CD3+, CD4+ and CD8+ T cells, B cells and natural killer (NK) cells] and serum cytokine levels (IL-1ß, IL-2, IL-4-6, IL-8, IL-10, IL-12p70, IL-17A and F, IL-22, TNF-α, TNF-ß and IFN-γ) were assessed by flow cytometry and ELISA. The number of total lymphocytes, CD4+ T and NK cells in the peripheral blood significantly decreased 24 h after MWA, while number of CD8+ T cells remained stable, leading to a higher proportion of CD8+ T cells. In addition, the serum levels of IL-2, IL-1ß, IL-6, IL-12p70, IL-22, TNF-α and IFN-γ were significantly increased 24 h after MWA, indicating a T helper 1 type immune response. The immune response in patients with advanced stage disease was comparable with patients in the early stage group; however, the number of total lymphocytes and CD3+ T cells significantly decreased and the ratio of CD4/CD8 and IL-2 levels significantly increased. The early immune response after MWA may contribute to systemic antitumor immunity in patients with both early and advanced disease. Thus, MWA may exhibit potential as a local therapy and trigger abscopal effects in distant lesions in patients with lung cancer.

9.
Sci Rep ; 14(1): 4384, 2024 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-38388535

RESUMO

To investigate the frequency of monocytic myeloid-derived suppressor cells (M-MDSCs) in type 2 diabetes mellitus (T2DM) patients and explore the potential associations between M-MDSCs, glycemic control, and the occurrence of infections and tumor. 102 healthy and 77 T2DM individuals were enrolled. We assessed the M-MDSCs frequency, levels of fasting plasma glucose (FPG), haemoglobin A1c (HbA1c), and other relevant indicators. Each patient underwent a follow-up of at least 6 months after M-MDSCs detection. The M-MDSCs frequency was significantly higher in patients with poor glycemic control (PGC) compared to the healthy population (P < 0.001), whereas there was no significant difference between patients with good glycemic control and the healthy (P > 0.05). There was a positive correlation between the M-MDSCs frequency and FPG, HbA1c (R = 0.517 and 0.315, P < 0.001, respectively). T2DM patients with abnormally increased M-MDSCs have a higher incidence of infection and tumor (48.57% and 11.43% respectively). Our results shed new light on the pathogenesis of T2DM, help to understand why T2DM patients are susceptible to infection and tumor and providing novel insights for future prevention and treatment of T2DM.


Assuntos
Diabetes Mellitus Tipo 2 , Células Supressoras Mieloides , Neoplasias , Humanos , Diabetes Mellitus Tipo 2/complicações , Hemoglobinas Glicadas , Fatores de Risco
10.
Sensors (Basel) ; 24(4)2024 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-38400485

RESUMO

Gas imaging has become one of the research hotspots in the field of gas detection due to its significant advantages, such as high efficiency, large range, and dynamic visualization. It is widely used in industries such as natural gas transportation, chemical, and electric power industries. With the development of infrared detector technology, uncooled thermal imagers are undergoing a developmental stage of technological advancement and widespread application. This article introduces a gas imaging principle and radiation transfer model, focusing on passive imaging technology and active imaging technology. Combined with the actual analysis, the application scenarios using uncooled thermal imaging cameras for gas imaging measurement are analyzed. Finally, the limitations and challenges of the development of gas imaging technology are analyzed.

11.
Mol Ther ; 32(2): 284-312, 2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38204162

RESUMO

Five small interfering RNA (siRNA)-based therapeutics have been approved by the Food and Drug Administration (FDA), namely patisiran, givosiran, lumasiran, inclisiran, and vutrisiran. Besides, siRNA delivery to the target site without toxicity is a big challenge for researchers, and naked-siRNA delivery possesses several challenges, including membrane impermeability, enzymatic degradation, mononuclear phagocyte system (MPS) entrapment, fast renal excretion, endosomal escape, and off-target effects. The siRNA therapeutics can silence any disease-specific gene, but their intracellular and extracellular barriers limit their clinical applications. For this purpose, several modifications have been employed to siRNA for better transfection efficiency. Still, there is a quest for better delivery systems for siRNA delivery to the target site. In recent years, nanoparticles have shown promising results in siRNA delivery with minimum toxicity and off-target effects. Patisiran is a lipid nanoparticle (LNP)-based siRNA formulation for treating hereditary transthyretin-mediated amyloidosis that ultimately warrants the use of nanoparticles from different classes, especially lipid-based nanoparticles. These nanoparticles may belong to different categories, including lipid-based, polymer-based, and inorganic nanoparticles. This review briefly discusses the lipid, polymer, and inorganic nanoparticles and their sub-types for siRNA delivery. Finally, several clinical trials related to siRNA therapeutics are addressed, followed by the future prospects and conclusions.


Assuntos
Neuropatias Amiloides Familiares , Nanopartículas , Polímeros , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Transfecção , Lipídeos
12.
Int J Surg ; 110(3): 1463-1474, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38270619

RESUMO

BACKGROUND: Trigeminal neuralgia (TN) is the most common neuropathic disorder in the maxillofacial region. The etiology and pathogenesis of TN have not been clearly determined to date, although there are many hypotheses. OBJECTIVE: The goal of this study was to investigate the interactions between different types of cells in TN, particularly the impact and intrinsic mechanism of demyelination on the trigeminal ganglion, and to identify new important target genes and regulatory pathways in TN. METHODS: TN rat models were prepared by trigeminal root compression, and trigeminal nerve tissues were isolated for spatial transcriptome sequencing. The gene expression matrix was reduced dimensionally by PCA and presented by UMAP. Gene function annotation was analyzed by Metascape. The progression of certain clusters and the developmental pseudotime were analyzed using the Monocle package. Modules of the gene coexpression network between different groups were analyzed based on weighted gene coexpression network analysis and assigned AddModuleScore values. The intercellular communication of genes in these networks via ligand-receptor interactions was analyzed using CellPhoneDB analysis. RESULTS: The results suggested that the trigeminal ganglion could affect Schwann cell demyelination and remyelination responses through many ligand-receptor interactions, while the effect of Schwann cells on the trigeminal ganglion was much weaker. Additionally, ferroptosis may be involved in the demyelination of Schwann cells. CONCLUSIONS: This study provides spatial transcriptomics sequencing data on TN, reveals new markers, and redefines the relationship between the ganglion and myelin sheath, providing a theoretical basis and supporting data for future mechanistic research and drug development.


Assuntos
Doenças Desmielinizantes , Neuralgia do Trigêmeo , Ratos , Animais , Neuralgia do Trigêmeo/genética , Ligantes , Transcriptoma , Nervo Trigêmeo , Doenças Desmielinizantes/complicações , Doenças Desmielinizantes/metabolismo , Doenças Desmielinizantes/patologia
13.
Trends Mol Med ; 30(1): 13-24, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37951790

RESUMO

siRNA therapeutics have gained extensive attention, and to date six siRNAs are approved for clinical use. Despite being investigated for the treatment of metabolic, cardiovascular, infectious, and rare genetic diseases, cancer, and central nervous system (CNS) disorders, there exist several druggability challenges. Here, we provide insightful discussions concerning these challenges, comprising targeted accumulation and cellular uptake ('entry'), endolysosomal escape ('escape'), and in vivo pharmaceutical performance ('efficacy') - the three 'E' challenges - while also shedding light on siRNA drug development. Moreover, we propose several promising strategies that hold great potential in facilitating the clinical translation of siRNA therapeutics, including the exploration of diverse ligand-siRNA conjugates, expansion of potential disease targets, and excavation of novel modification geometries, as well as the development of combination therapies.


Assuntos
Neoplasias , Humanos , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/uso terapêutico , RNA Interferente Pequeno/metabolismo , Neoplasias/tratamento farmacológico , Neoplasias/genética
14.
Curr Probl Cardiol ; 49(2): 102226, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38040207

RESUMO

Scavenger Receptor Class B Type 1 (SR-B1), a receptor protein expressed on the cell membrane, plays a crucial role in the metabolism and transport of cholesterol and other lipids, contributing significantly to the homeostasis of lipid levels within the body. Bibliometric analysis involves the application of mathematical and statistical methods to quantitatively analyze different types of documents. It involves the analysis of structural and temporal trends in scholarly articles, coupled with the identification of subject emphasis and variations. Through a bibliometric analysis, this study examines the historical background, current research trends, and future directions in the exploration of SR-B1. By offering insights into the research status and development of SR-B1, this paper aims to assist researchers in identifying novel pathways and areas of investigation in this field of study. Following the screening process, it can be concluded that research on SR-B1 has consistently remained a topic of significant interest over the past 17 years. Interestingly, SR-B1 has recently garnered attention in areas beyond its traditional research focus, including the field of cancer. The primary objective of this review is to provide a concise and accessible overview of the development process of SR-B1 that can help readers who are not well-versed in SR-B1 research quickly grasp its key aspects. Furthermore, this review aims to offer insights and suggestions to researchers regarding potential future research directions and areas of emphasis relating to SR-B1.


Assuntos
Colesterol , Humanos , Colesterol/metabolismo , Receptores Depuradores Classe B/metabolismo
15.
Am J Cancer Res ; 13(10): 4888-4902, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37970340

RESUMO

Based on its absence in normal tissues and its role in tumorigenesis and tumor progression, insulin-like growth factor 2 mRNA-binding protein 3 (IGF2BP3), a reader of N6-methyladenosine (M6A) on RNA, represents a putative valuable and specific target for some cancer therapy. In this study, we performed bioinformatic analysis and immunohistochemistry (IHC) to find that IGF2BP3 was highly expressed in tumor epithelial cells and fibroblasts of ovarian cancer (OC), and was associated with poor prognosis, metastasis, and chemosensitivity in OC patients. In particular, we discovered that knockdown IGF2BP3 expression inhibited the malignant phenotype of OC cell lines by decreasing the protein levels of c-MYC, VEGF, CDK2, CDK6, and STAT1. To explore the feasibility of IGF2BP3 as a therapeutic target for OC, a small molecular AE-848 was designed and screened by molecular operating environment (MOE), which not only could duplicate the above results of knockdown assay but also reduced the expression of c-MYC in M2 macrophages and tumor-associated macrophages and promoted the cytokine IFN-γ and TNF-α secretion. The pharmacodynamic models of two kinds of OC bearing animals were suggested that systemic therapy with AE-848 significantly inhibited tumor growth by reducing the expression of tumor-associated antigen (c-MYC/VEGF/Ki67/CDK2) and improving the anti-tumor effect of macrophages. These results suggest that AE-848 can inhibit the growth and progression of OC cells by disrupting the stability of the targeted mRNAs of IGF2BP3 and may be a targeted drug for OC treatment.

16.
Front Pediatr ; 11: 1149646, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37920791

RESUMO

The fifth edition of the World Health Organization Classification of Tumors of the Central Nervous System (WHO CNS5) has identified a new classification system for tumors of the brain and spinal cord, highlighting the pivotal role of molecular diagnosis in accurately categorizing neoplasms. In addition to previous classifications, one of the key distinctions lies in categorizing pediatric-type diffuse low-grade gliomas (pDLGGs) and pediatric-type diffuse high-grade gliomas (pDHGGs) as distinct tumor types. Although similar in histology and morphology, pediatric diffuse gliomas are completely different from the adult type with respect to the molecular genetic characteristics, prognosis, and treatment strategies. pDLGG includes four tumor types, namely, diffuse astrocytoma, MYB- or MYBL1-altered; angiocentric glioma; polymorphous low-grade neuroepithelial tumor of the young (PLNTY); and diffuse low-grade glioma, MAPK pathway-altered, three types of which are newly recognized tumor types. Herein, we review the clinical characteristics, histopathological and molecular genetic characteristics, neuroimaging features, and prognosis of pDLGG and summarize the neuroimaging key points in diagnosing different tumor types. This review aims to evaluate and update the relevant pDLGG features and advances in neuroimaging that may assist in differential diagnosis, surgery planning, and prognostic determination of these tumor types and provide accurate diagnostic information for clinical colleagues.

17.
BMC Urol ; 23(1): 161, 2023 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-37828507

RESUMO

BACKGROUND: To summarize the efficacy of combined robot-assisted laparoscopy and ureteroscopy in treating complex ureteral strictures. METHODS: Eleven patients underwent combined robot-assisted laparoscopy and ureteroscopy for ureteral strictures between January 2020 and August 2022. Preoperative B-ultrasound, glomerular filtration rate measurement, and intravenous pyelography showed different degrees of hydronephrosis in the affected kidney and moderate to severe stenosis in the corresponding part of the ureter. During the operation, stricture segment resection and end-to-end anastomosis were performed using the da Vinci robot to find the stricture point under the guidance of a ureteroscopic light source in the lateral or supine lithotomy position. RESULTS: All the patients underwent robot-assisted laparoscopy and ureteroscopy combined with end-to-end ureterostenosis. There were no conversions to open surgery or intraoperative complications. Significant ureteral stricture segments were found in all patients intraoperatively; however, stricture length was not significantly different from the imaging findings. Patients were followed up for 3-27 months. Two months postoperatively, the double-J stent was removed, a ureteroscopy was performed, the ureteral mucosa at the end-to-end anastomosis grew well, and the lumen was patent in all patients. Furthermore, imaging examination showed that hydronephrosis was significantly improved in all patients, with grade I hydronephrosis in three cases and grade 0 hydronephrosis in eight cases. No recurrence of ureteral stricture was observed in patients followed up for > 1 year. CONCLUSION: Robot-assisted laparoscopy combined with ureteroscopy is an effective method for treating complex ureteral strictures and can achieve accurate localization of the structured segment.


Assuntos
Hidronefrose , Laparoscopia , Robótica , Ureter , Obstrução Ureteral , Humanos , Ureteroscopia/métodos , Constrição Patológica/cirurgia , Obstrução Ureteral/diagnóstico por imagem , Obstrução Ureteral/cirurgia , Ureter/cirurgia , Laparoscopia/métodos , Hidronefrose/cirurgia , Hidronefrose/complicações , Estudos Retrospectivos
18.
J Am Chem Soc ; 145(32): 17689-17699, 2023 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-37550880

RESUMO

Covalent organic frameworks (COFs) have emerged as a promising class of crystalline porous materials for cancer phototherapy, due to their exceptional characteristics, including light absorption, biocompatibility, and photostability. However, the aggregation-caused quenching effect and apoptosis resistance often limit their therapeutic efficacy. Herein, we demonstrated for the first time that linking luminogens with aggregation-induced emission effect (AIEgens) into COF networks via vinyl linkages was an effective strategy to construct nonmetallic pyroptosis inducers for boosting antitumor immunity. Mechanistic investigations revealed that the formation of the vinyl linkage in the AIE COF endowed it with not only high brightness but also strong light absorption ability, long lifetime, and high quantum yield to favor the generation of reactive oxygen species for eliciting pyroptosis. In addition, the synergized system of the AIE COF and αPD-1 not only effectively eradicated primary and distant tumors but also inhibited tumor recurrence and metastasis in a bilateral 4T1 tumor model.


Assuntos
Estruturas Metalorgânicas , Fotoquimioterapia , Piroptose , Apoptose , Carbono , Cloreto de Polivinila
19.
Cancer Lett ; 568: 216293, 2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-37392991

RESUMO

Tertiary lymphoid structures (TLSs) are organized aggregates of lymphocytes and antigen-presenting cells that develop in non-lymphoid tissues during chronic inflammation, resembling the structure and features of secondary lymphoid organs. Numerous studies have shown that TLSs may be an important source of antitumor immunity within solid tumors, facilitating T cell and B cell differentiation and the subsequent production of antitumor antibodies, which are beneficial for cancer prognosis and responses to immunotherapy. The formation of TLSs relies on the cytokine signaling network between heterogeneous cell populations, such as stromal cells, lymphocytes and cancer cells. The coordinated action of various cytokines drives the complex process of TLSs development. In this review, we will comprehensively describe the mechanisms by which various cytokines regulate TLS formation and function, and the recent advancements and therapeutic potential of exploiting these mechanisms to induce intratumoral TLSs as an emerging immunotherapeutic approach or to enhance existing immunotherapy.


Assuntos
Neoplasias , Estruturas Linfoides Terciárias , Humanos , Citocinas , Estruturas Linfoides Terciárias/patologia , Neoplasias/patologia , Imunoterapia , Anticorpos , Prognóstico , Microambiente Tumoral
20.
Head Neck ; 45(9): 2161-2172, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37466293

RESUMO

BACKGROUND: Cysteine-rich protein 2 (CSRP2) is discovered as oncogene. The study aims to investigate the clinical significance and potential mechanism of CSRP2 in head and neck squamous cell carcinoma (HNSCC). METHODS: CSRP2 expression was explored by immunohistochemistry tissue microarrays and Western blotting in HNSCC. The effect of CSRP2 on the cancer stemness and epithelial-to-mesenchymal transition (EMT) of HNSCC cells was investigated by sphere formation, wound healing, and transwell assays. The vitro and vivo experiments revealed that CSRP2 modulated cancer stemness and EMT phenotypes in HNSCC. RESULTS: CSRP2 was overexpressed in HNSCC patients and presented poor prognosis. CSRP2 knockdown inhibited the migration and invasion ability of the HNSCC cells. And CSRP2 expression was closely associated with CSCs markers, EMT-transcription factor, new oncoprotein, and immune checkpoint. CONCLUSION: The overexpression of CSRP2 indicates poor prognosis and plays a key role in maintaining the cancer cell stemness and EMT.


Assuntos
Carcinoma de Células Escamosas , Neoplasias de Cabeça e Pescoço , Humanos , Carcinoma de Células Escamosas de Cabeça e Pescoço/genética , Carcinoma de Células Escamosas/patologia , Neoplasias de Cabeça e Pescoço/genética , Fatores de Transcrição/genética , Fenótipo , Linhagem Celular Tumoral , Transição Epitelial-Mesenquimal , Regulação Neoplásica da Expressão Gênica , Movimento Celular , Proteínas Musculares/genética , Proteínas Musculares/metabolismo , Proteínas Musculares/farmacologia , Proteínas Nucleares/genética , Proteínas com Domínio LIM/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA