RESUMO
Polypyrimidine tract-binding protein 1 (PTBP1) regulates numerous alternative splicing events during tumor progression and neurogenesis. Previously, PTBP1 downregulation was reported to convert astrocytes into functional neurons; however, how PTBP1 regulates astrocytic physiology remains unclear. In this study, we revealed that PTBP1 modulated glutamate uptake via ATP1a2, a member of Na+/K+-ATPases, and glutamate transporters in astrocytes. Ptbp1 knockdown altered mitochondrial function and energy metabolism, which involved PTBP1 regulating mitochondrial redox homeostasis via the succinate dehydrogenase (SDH)/Nrf2 pathway. The malfunction of glutamate transporters following Ptbp1 knockdown resulted in enhanced excitatory synaptic transmission in the cortex. Notably, we developed a biomimetic cationic triblock polypeptide system, i.e., polyethylene glycol44-polylysine30-polyleucine10 (PEG44-PLL30-PLLeu10) with astrocytic membrane coating to deliver Ptbp1 siRNA in vitro and in vivo, which approach allowed Ptbp1 siRNA to efficiently cross the blood-brain barrier and target astrocytes in the brain. Collectively, our findings suggest a framework whereby PTBP1 serves as a modulator in glutamate transport machinery, and indicate that biomimetic methodology is a promising route for in vivo siRNA delivery.
Assuntos
Astrócitos , Ácido Glutâmico , Ribonucleoproteínas Nucleares Heterogêneas , Homeostase , Fator 2 Relacionado a NF-E2 , Proteína de Ligação a Regiões Ricas em Polipirimidinas , RNA Interferente Pequeno , Animais , Astrócitos/metabolismo , Ácido Glutâmico/metabolismo , Proteína de Ligação a Regiões Ricas em Polipirimidinas/metabolismo , Proteína de Ligação a Regiões Ricas em Polipirimidinas/genética , Fator 2 Relacionado a NF-E2/metabolismo , Ribonucleoproteínas Nucleares Heterogêneas/metabolismo , Ribonucleoproteínas Nucleares Heterogêneas/genética , Camundongos , Transdução de Sinais , Membrana Celular/metabolismo , Camundongos Endogâmicos C57BL , Masculino , Humanos , Mitocôndrias/metabolismoRESUMO
Astrocyte-microglia crosstalk is vital for neuronal survival and clearing aggregate accumulation in neurodegenerative diseases. While interleukin-3 (IL-3) has been reported to exert both protective and detrimental effects in neurodegenerative diseases, however, its role in α-synuclein pathology remains unclear. In this study, it is found that astrocytic IL-3 and microglial IL-3R are positively responsive to α-synuclein pathology in the brains of transgenic A53T Parkinson's disease (PD) mice and in an adeno-associated virus (AAV)-human α-synuclein (AAV-hα-Syn)-injected PD mouse model. Exogenous IL-3 infusion reduces behavioral abnormities and nigrostriatal α-synuclein pathology. Mechanistically, IL-3 induces microglial phagocytosis of pathological α-synuclein while simultaneously stimulating dopaminergic (DA) neurons to clear pathological α-synuclein via induction of autophagy through the IFN-ß/Irgm1 pathway. Due to its limited efficiency in crossing the blood-brain barrier, a precise IL-3 delivery strategy is developed by cross-linking IL-3 and RVG29 with PEG-Linker (RVG-modified IL-3 nanogels-RVG-IL3 NGs). Intravenous administration of RVG-IL3 NGs shows efficient uptake by microglia and DA neurons within the brain. RVG-IL3 NGs ameliorate motor deficits and pathological α-synuclein by improving microglial and neuronal function in the AAV-hα-Syn mouse model of PD. Collectively, IL-3 may represent a feasible therapeutic strategy for PD.
RESUMO
Flavivirus infection capitalizes on cellular lipid metabolism to remodel the cellular intima, creating a specialized lipid environment conducive to viral replication, assembly, and release. The Japanese encephalitis virus (JEV), a member of the Flavivirus genus, is responsible for significant morbidity and mortality in both humans and animals. Currently, there are no effective antiviral drugs available to combat JEV infection. In this study, we embarked on a quest to identify anti-JEV compounds within a lipid compound library. Our research led to the discovery of two novel compounds, isobavachalcone (IBC) and corosolic acid (CA), which exhibit dose-dependent inhibition of JEV proliferation. Time-of-addition assays indicated that IBC and CA predominantly target the late stage of the viral replication cycle. Mechanistically, JEV nonstructural proteins 1 and 2A (NS1 and NS2A) impede 5'-adenosine monophosphate (AMP)-activated protein kinase (AMPK) activation by obstructing the liver kinase B1 (LKB1)-AMPK interaction, resulting in decreased p-AMPK expression and a consequent upsurge in lipid synthesis. In contrast, IBC and CA may stimulate AMPK by binding to its active allosteric site, thereby inhibiting lipid synthesis essential for JEV replication and ultimately curtailing viral infection. Most importantly, in vivo experiments demonstrated that IBC and CA protected mice from JEV-induced mortality, significantly reducing viral loads in the brain and mitigating histopathological alterations. Overall, IBC and CA demonstrate significant potential as effective anti-JEV agents by precisely targeting AMPK-associated signaling pathways. These findings open new therapeutic avenues for addressing infections caused by Flaviviruses. IMPORTANCE: This study is the inaugural utilization of a lipid compound library in antiviral drug screening. Two lipid compounds, isobavachalcone (IBC) and corosolic acid (CA), emerged from the screening, exhibiting substantial inhibitory effects on the Japanese encephalitis virus (JEV) proliferation in vitro. In vivo experiments underscored their efficacy, with IBC and CA reducing viral loads in the brain and mitigating JEV-induced histopathological changes, effectively shielding mice from fatal JEV infection. Intriguingly, IBC and CA may activate 5'-adenosine monophosphate (AMP)-activated protein kinase (AMPK) by binding to its active site, curtailing the synthesis of lipid substances, and thus suppressing JEV proliferation. This indicates AMPK as a potential antiviral target. Remarkably, IBC and CA demonstrated suppression of multiple viruses, including Flaviviruses (JEV and Zika virus), porcine herpesvirus (pseudorabies virus), and coronaviruses (porcine deltacoronavirus and porcine epidemic diarrhea virus), suggesting their potential as broad-spectrum antiviral agents. These findings shed new light on the potential applications of these compounds in antiviral research.
Assuntos
Proteínas Quinases Ativadas por AMP , Antivirais , Vírus da Encefalite Japonesa (Espécie) , Encefalite Japonesa , Metabolismo dos Lipídeos , Replicação Viral , Animais , Metabolismo dos Lipídeos/efeitos dos fármacos , Replicação Viral/efeitos dos fármacos , Vírus da Encefalite Japonesa (Espécie)/efeitos dos fármacos , Vírus da Encefalite Japonesa (Espécie)/fisiologia , Camundongos , Antivirais/farmacologia , Humanos , Encefalite Japonesa/tratamento farmacológico , Encefalite Japonesa/virologia , Proteínas Quinases Ativadas por AMP/metabolismo , Chalconas/farmacologia , Triterpenos/farmacologia , Proteínas não Estruturais Virais/metabolismo , Infecções por Flavivirus/tratamento farmacológico , Infecções por Flavivirus/virologia , Infecções por Flavivirus/metabolismo , Flavivirus/efeitos dos fármacos , Linhagem CelularRESUMO
Ubiquitin-proteasome system dysfunction triggers α-synuclein aggregation, a hallmark of neurodegenerative diseases, such as Parkinson's disease (PD). However, the crosstalk between deubiquitinating enzyme (DUBs) and α-synuclein pathology remains unclear. In this study, we observed a decrease in the level of ubiquitin-specific protease 14 (USP14), a DUB, in the cerebrospinal fluid (CSF) of PD patients, particularly females. Moreover, CSF USP14 exhibited a dual correlation with α-synuclein in male and female PD patients. To investigate the impact of USP14 deficiency, we crossed USP14 heterozygous mouse (USP14+/-) with transgenic A53T PD mouse (A53T-Tg) or injected adeno-associated virus (AAV) carrying human α-synuclein (AAV-hα-Syn) in USP14+/- mice. We found that Usp14 deficiency improved the behavioral abnormities and pathological α-synuclein deposition in female A53T-Tg or AAV-hα-Syn mice. Additionally, Usp14 inactivation attenuates the pro-inflammatory response in female AAV-hα-Syn mice, whereas Usp14 inactivation demonstrated opposite effects in male AAV-hα-Syn mice. Mechanistically, the heterodimeric protein S100A8/A9 may be the downstream target of Usp14 deficiency in female mouse models of α-synucleinopathies. Furthermore, upregulated S100A8/A9 was responsible for α-synuclein degradation by autophagy and the suppression of the pro-inflammatory response in microglia after Usp14 knockdown. Consequently, our study suggests that USP14 could serve as a novel therapeutic target in PD.
Assuntos
Calgranulina A , Calgranulina B , Camundongos Transgênicos , Doença de Parkinson , Ubiquitina Tiolesterase , alfa-Sinucleína , Animais , Feminino , Humanos , Masculino , Camundongos , alfa-Sinucleína/metabolismo , alfa-Sinucleína/genética , Calgranulina A/metabolismo , Calgranulina A/genética , Calgranulina B/metabolismo , Calgranulina B/genética , Modelos Animais de Doenças , Camundongos Endogâmicos C57BL , Doença de Parkinson/metabolismo , Doença de Parkinson/genética , Doença de Parkinson/patologia , Ubiquitina Tiolesterase/metabolismo , Ubiquitina Tiolesterase/genética , Ubiquitina Tiolesterase/deficiênciaRESUMO
[This corrects the article DOI: 10.1021/acsomega.3c04101.].
RESUMO
Supercritical cyclohexane (SC-cyclohexane) shows significant advantages in mild operating conditions and the modulation of product distribution. To gain insights into the upgrading process of heavy oil in SC-cyclohexane, the dissolution process of polycyclic aromatic hydrocarbons (PAHs) contained in heavy oil was simulated based on molecular dynamics with the use of naphthalene, benzopyrene, and mixtures of naphthalene and benzopyrene as the model compounds. As indicated by the radial distribution function results, in SC-cyclohexane exhibiting low density, cyclohexane formed a solvent shell around PAHs such that the local concentration was reduced and the aggregation of PAHs was inhibited. The results of the solvation free energy suggested that van der Waals forces between PAHs and cyclohexane were mainly dominant. As revealed by the dissolution process of the model compounds in SC-cyclohexane, a low density and a suitable temperature contributed to the solubilization of PAHs. An appropriate temperature and a low density can be selected for the upgrading reaction to limit coke formation.
RESUMO
Parkinson's disease (PD) is a progressive movement disorder characterized by dopaminergic (DA) neuron degeneration and the existence of Lewy bodies formed by misfolded α-synuclein. Emerging evidence supports the benefits of dietary interventions in PD due to their safety and practicality. Previously, dietary intake of α-ketoglutarate (AKG) was proved to extend the lifespan of various species and protect mice from frailty. However, the mechanism of dietary AKG's effects in PD remains undetermined. In the present study, we report that an AKG-based diet significantly ameliorated α-synuclein pathology, and rescued DA neuron degeneration and impaired DA synapses in adeno-associated virus (AAV)-loaded human α-synuclein mice and transgenic A53T α-synuclein (A53T α-Syn) mice. Moreover, AKG diet increased nigral docosahexaenoic acid (DHA) levels and DHA supplementation reproduced the anti-α-synuclein effects in the PD mouse model. Our study reveals that AKG and DHA induced microglia to phagocytose and degrade α-synuclein via promoting C1q and suppressed pro-inflammatory reactions. Furthermore, results indicate that modulating gut polyunsaturated fatty acid metabolism and microbiota Lachnospiraceae_NK4A136_group in the gut-brain axis may underlie AKG's benefits in treating α-synucleinopathy in mice. Together, our findings propose that dietary intake of AKG is a feasible and promising therapeutic approach for PD.
Assuntos
Doença de Parkinson , Sinucleinopatias , Camundongos , Animais , Humanos , Doença de Parkinson/patologia , Ácidos Cetoglutáricos/farmacologia , Camundongos Transgênicos , Degeneração Neural/patologia , Dopamina , Ingestão de Alimentos , Modelos Animais de DoençasRESUMO
Parkinson's disease (PD) is the most common progressive neurodegenerative movement disorder, which is characterized by dopaminergic (DA) neuron death and the aggregation of neurotoxic α-synuclein. Cntnap4, a risk gene of autism, has been implicated to participate in PD pathogenesis. Here we showed Cntnap4 lacking exacerbates α-synuclein pathology, nigrostriatal DA neuron degeneration and motor impairment, induced by injection of adeno-associated viral vector (AAV)-mediated human α-synuclein overexpression (AAV-hα-Syn). This scenario was further validated in A53T α-synuclein transgenic mice injected with AAV-Cntnap4 shRNA. Mechanistically, α-synuclein derived from damaged DA neuron stimulates astrocytes to release complement C3, activating microglial C3a receptor (C3aR), which in turn triggers microglia to secrete complement C1q and pro-inflammatory cytokines. Thus, the astrocyte-microglia crosstalk further drives DA neuron death and motor dysfunction in PD. Furthermore, we showed that in vivo depletion of microglia and microglial targeted delivery of a novel C3aR antagonist (SB290157) rescue the aggravated α-synuclein pathology resulting from Cntnap4 lacking. Together, our results indicate that Cntnap4 plays a key role in α-synuclein pathogenesis by regulating glial crosstalk and may be a potential target for PD treatment.
Assuntos
Proteínas de Membrana , Degeneração Neural , Proteínas do Tecido Nervoso , Doença de Parkinson , Camundongos Transgênicos , Animais , Camundongos , Humanos , Masculino , Camundongos Endogâmicos C57BL , alfa-Sinucleína/genética , Proteínas de Membrana/genética , Proteínas do Tecido Nervoso/genética , Complemento C3/metabolismo , Receptores de Complemento/metabolismo , Neurônios Dopaminérgicos/metabolismo , Astrócitos/metabolismo , Degeneração Neural/patologia , Microglia/metabolismo , Doença de Parkinson/fisiopatologia , Ferroptose , Mitocôndrias , InflamaçãoRESUMO
Abstract Background Acute Respiratory Distress syndrome (ARDS) is a common complication of Acute Pancreatitis (AP) and is associated with high mortality. This study used Machine Learning (ML) to predict ARDS in patients with AP at admission. Methods The authors retrospectively analyzed the data from patients with AP from January 2017 to August 2022. Clinical and laboratory parameters with significant differences between patients with and without ARDS were screened by univariate analysis. Then, Support Vector Machine (SVM), Ensembles of Decision Trees (EDTs), Bayesian Classifier (BC), and nomogram models were constructed and optimized after feature screening based on these parameters. Five-fold cross-validation was used to train each model. A test set was used to evaluate the predictive performance of the four models. Results A total of 83 (18.04%) of 460 patients with AP developed ARDS. Thirty-one features with significant differences between the groups with and without ARDS in the training set were used for modeling. The Partial Pressure of Oxygen (PaO2), C-reactive protein, procalcitonin, lactic acid, Ca2+, the neutrophil:lymphocyte ratio, white blood cell count, and amylase were identified as the optimal subset of features. The BC algorithm had the best predictive performance with the highest AUC value (0.891) than SVM (0.870), EDTs (0.813), and the nomogram (0.874) in the test set. The EDT algorithm achieved the highest accuracy (0.891), precision (0.800), and F1 score (0.615), but the lowest FDR (0.200) and the second-highest NPV (0.902). Conclusions A predictive model of ARDS complicated by AP was successfully developed based on ML. Predictive performance was evaluated by a test set, for which BC showed superior predictive performance and EDTs could be a more promising prediction tool for larger samples.
RESUMO
BACKGROUND: Autism spectrum disorder (ASD) is a common neurodevelopmental disease, characterized by deficits in social communication, restricted and repetitive behaviours, and impaired fear memory processing. Severe gastrointestinal dysfunction and altered gut microbiome have been reported in ASD patients and animal models. Contactin associated protein-like 4 (CNTNAP4) has been suggested to be a novel risk gene, though its role in ASD remains unelucidated. METHODS: Cntnap4-/- mice were generated to explore its role in ASD-related behavioural abnormalities. Electrophysiological recording was employed to examine GABAergic transmission in the basolateral amygdala (BLA) and prefrontal cortex. RNA-sequencing was performed to assess underlying mechanisms. 16S rDNA analysis was performed to explore changes in faecal microbial composition. Male Cntnap4-/- mice were fed with Lactobacillus reuteri (L. reuteri) or faecal microbiota to evaluate the effects of microbiota supplementation on the impaired fear conditioning mediated by Cntnap4 deficiency. FINDINGS: Male Cntnap4-/- mice manifested deficiency in social behaviours and tone-cue fear conditioning. Notably, reduced GABAergic transmission and GABA receptor expression were found in the BLA but not the prefrontal cortex. In addition, gut Lactobacillus were less abundant in male Cntnap4-/- mice, and L. reuteri treatment or faecal microbiota transplantation rescued abnormal tone-cued fear memory and improved local GABAergic transmission in the BLA of male Cntnap4-/- mice. INTERPRETATION: Cntnap4 shapes GABAergic transmission of amygdala and fear conditioning, and microbial intervention represents a promising therapy in ASD intervention. FUNDING: National Natural Science Foundation of China, Science and Technology Planning Project of Guangzhou, Guangzhou Medical University, and China Postdoctoral Science Foundation.
Assuntos
Transtorno do Espectro Autista , Limosilactobacillus reuteri , Animais , Masculino , Camundongos , Tonsila do Cerebelo/metabolismo , Transtorno do Espectro Autista/genética , Transtorno do Espectro Autista/microbiologia , Medo/fisiologia , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Camundongos Knockout , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Modelos Animais de Doenças , Transplante de Microbiota Fecal , Memória/fisiologiaRESUMO
Folate receptor (FR) overexpression occurs in a variety of cancers, including pancreatic cancer. In addition, enhanced macropinocytosis exists in K-Ras mutant pancreatic cancer. Furthermore, the occurrence of intensive desmoplasia causes a hypoxic microenvironment in pancreatic cancer. In this study, a novel FR-directed, macropinocytosis-enhanced, and highly cytotoxic bioconjugate folate (F)-human serum albumin (HSA)-apoprotein of lidamycin (LDP)-active enediyne (AE) derived from lidamycin was designed and prepared. F-HSA-LDP-AE consisted of four moieties: F, HSA, LDP, and AE. F-HSA-LDP presented high binding efficiency with the FR and pancreatic cancer cells. Its uptake in wild-type cells was more extensive than in K-Ras mutant-type cells. By in vivo optical imaging, F-HSA-LDP displayed prominent tumor-specific biodistribution in pancreatic cancer xenograft-bearing mice, showing clear and lasting tumor localization for 360 h. In the MTT assay, F-HSA-LDP-AE demonstrated potent cytotoxicity in three types of pancreatic cancer cell lines. It also induced apoptosis and caused G2/M cell cycle arrest. F-HSA-LDP-AE markedly suppressed the tumor growth of AsPc-1 pancreatic cancer xenografts in athymic mice. At well-tolerated doses of 0.5 and 1 mg/kg, (i.v., twice), the inhibition rates were 91.2% and 94.8%, respectively (P<0.01). The results of this study indicate that the F-HSA-LDP multi-functional bioconjugate might be effective for treating K-Ras mutant pancreatic cancer.
RESUMO
Abstract Background and aims: Potassium-Competitive Acid Blockers (P-CABs) have been used in Helicobacter pylori (H. pylori) eradication therapies in recent years. However, the efficacy and safety of P-CABs compared to ProtonPump Inhibitors (PPIs) in this setting remain controversial. Methods: The efficacy and safety of P-CABs and PPIs for H. pylori eradication were compared in a meta-analysis based on a systematic literature search of major electronic databases for relevant Randomized Controlled Trials (RCTs). Results: Seven studies and 1,168 patients were included. The pooled eradication rate determined by Intention-ToTreat (ITT) analysis was 90.2% for P-CAB-based and 75.5% for PPI-based triple therapy (pooled RR [95% CI] = 1.17 [1.08-1.28], p < 0.001). The Per-Protocol (PP) analysis also demonstrated significant superiority of P-CABs (pooled eradication rate = 92.4% vs. 77.8%; pooled RR [95% CI] = 1.14 [1.03-1.26], p < 0.01). In a subgroup evaluation, P-CABs were significantly better than PPIs as a first-line eradication therapy, in both the ITT analysis (pooled eradication rate = 91.8% vs. 76.4%; pooled RR [95% CI] = 1.18 [1.10-1.28], p < 0.0001) and the PP analysis (pooled eradication rate = 93.0% vs. 78.6%; pooled RR [95% CI] = 1.13 [1.02 -1.26], p < 0.05). However, P-CABs were not superior to PPIs when administered as salvage therapy, as determined in the ITT (75.0% vs. 66.0%, pooled RR [95% CI] = 1.11 [0.69-1.78], p = 0.66) and PP (85.7% vs. 70.0%, pooled RR [95% CI] = 1.20 [0.82-1.75], p = 0.34) analyses. In a subgroup analysis limited to Japanese patients, both the ITT analysis (pooled eradication rate = 89.6% vs. 73.9%; RR [95% CI] = 1.21 [1.14 -1.29], p < 0.01) and the PP analysis (pooled eradication rate = 92.0% vs. 75.7%; RR [95% CI] = 1.18 [1.06 -1.32], p < 0.01) showed that P-CABs were significantly superior compared to PPIs as triple eradication therapy. However, in the subgroup analysis of patients from other countries, there was no significant difference in either the ITT analysis (pooled eradication rate = 93.8% vs. 85.2%; RR [95% CI] = 1.10 [0.99-1.22], p = 0.07) or PP analysis (pooled eradication rate = 95.0% vs. 90.8%; RR [95% CI] = 1.05 [0.98-1.14], p = 0.17). The incidence of adverse events associated with the two regimens did not significantly differ (P-CABs vs. PPIs: 33.6% vs. 40.0%; RR [95% CI] = 0.84 [0.71‒1.00], p = 0.05). The incidence of serious adverse events and dropout rate due to adverse events also did not differ (p = 0.44 and p = 0.67, respectively). Conclusions: The efficacy of P-CAB-based triple therapy is superior to that of PPI-based triple therapy as a first-line approach to H. pylori eradication, particularly in Japanese patients. As salvage therapy, the efficacy of the two treatments did not significantly differ. The tolerability of P-CAB-based and PPI-based triple therapy was comparable, as was the incidence of adverse events. HIGHLIGHTS The efficacy of P-CAB-based triple therapy is superior to that of PPI-based triple therapy as a first-line approach to H. pylori eradication, particularly in Japanese patients. P-CABs were not superior to PPIs as a salvage triple eradication therapy. The safety and tolerability of P-CAB are comparable to PPI in H. pylori triple eradication therapies. Further large RCTs conducted in multiple regions and countries are necessary.
RESUMO
Humans benefit from nuclear technologies but consequently experience nuclear disasters or side effects of iatrogenic radiation. Hematopoietic system injury first arises upon radiation exposure. As an intricate new layer of genetic control, the posttranscriptional m6A modification of RNA has recently come under investigation and has been demonstrated to play pivotal roles in multiple physiological and pathological processes. However, how the m6A methylome functions in the hematopoietic system after irradiation remains ambiguous. Here, we uncovered the time-varying epitranscriptome-wide m6A methylome and transcriptome alterations in γ-ray-exposed mouse bone marrow. 4 Gy γ-irradiation rapidly (5 min and 2 h) and severely impaired the mouse hematopoietic system, including spleen and thymus weight, blood components, tissue inflammation and malondialdehyde (MDA) levels. The m6A content and expression of m6A related enzymes were altered. Gamma-irradiation triggered dynamic and reversible m6A modification profiles and altered mRNA expression, where both m6A fold-enrichment and mRNA expression most followed the (5 min_up/2 h_down) pattern. The CDS enrichment region preferentially upregulated m6A peaks at 5 min. Moreover, the main GO and KEGG pathways were closely related to metabolism and the classical radiation response. Finally, m6A modifications correlated with transcriptional regulation of genes in multiple aspects. Blocking the expression of m6A demethylases FTO and ALKBH5 mitigated radiation hematopoietic toxicity. Together, our findings present the comprehensive landscape of mRNA m6A methylation in the mouse hematopoietic system in response to γ-irradiation, shedding light on the significance of m6A modifications in mammalian radiobiology. Regulation of the epitranscriptome may be exploited as a strategy against radiation damage.
Assuntos
Medula Óssea , Sistema Hematopoético , Adenosina/análogos & derivados , Animais , Sistema Hematopoético/metabolismo , Metilação , Camundongos , RNA Mensageiro/metabolismoRESUMO
The interaction between tumor cells and the tumor microenvironment (TME) significantly influences tumorigenesis, so TME-targeted therapy has attracted widespread attention. We have previously demonstrated that the combination of dipyridamole, bestatin, and dexamethasone (DBD mix, DBDx) is effective against heterogeneous human pancreatic cancer and hepatocellular carcinoma in mouse xenograft models. To further expand the therapeutic potential of this drug combination, herein, we investigated the antitumor efficacy and the underlying mechanism of DBDx and the combination of DBDx and gefitinib in different mouse xenograft models of human non-small-cell lung cancer (NSCLC). Three human cancer cell lines H460, PG, and A431 were used to determine the apoptosis and growth inhibition induced by DBDx, gefitinib, and their combinations. Changes in epidermal growth factor receptor (EGFR) signaling pathway-related proteins were analyzed following treatment using western blotting. In vitro, DBDx strongly inhibited the proliferation of tumor cells, whereas the combined treatment exhibited a significant synergistic effect. Compared with DBDx, the combination treatment further induced apoptosis and downregulated the expression of molecules associated with EGFR signaling pathway. In vivo, compared with DBDx alone, the combination treatment distinctly inhibited tumor growth in mouse xenograft models of human NSCLC. Overall, our results indicate that the combination of DBDx and gefitinib in the treatment of human NSCLC is very promising, which warrants further translational studies.
Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Gefitinibe/farmacologia , Neoplasias Pulmonares/dietoterapia , Inibidores de Proteínas Quinases/farmacologia , Animais , Apoptose/efeitos dos fármacos , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Ciclo Celular , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Combinação de Medicamentos , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Sinergismo Farmacológico , Receptores ErbB/metabolismo , Feminino , Humanos , Neoplasias Pulmonares/metabolismo , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos NOD , Camundongos Nus , Camundongos SCID , Transdução de Sinais/efeitos dos fármacosRESUMO
Previous studies have shown that DBDx, a combination consisting of dipyridamole, bestatin and dexamethasone is highly effective against several cancer xenografts in athymic mice. Here the therapeutic effects of DBDx and its combination with gemcitabine or capcitabine against human pancreatic cancer xenografts and the mechanism were studied. In vivo experiments performed in athymic mice showed that the antitumor efficacy of DBDx was much stronger than that of gemcitabine or capecitabine alone. Notably, the combination of DBDx and gemcitabine or capcitabine further enhanced the efficacy. In the case of DBDx (242 mg/kg) plus gemcitabine (100 mg/kg), tumor weight decreased about 97.7%, and tumor sizes were shrinking during the treatment. In the case of DBDx (242 mg/kg) plus capecitabine (718.7 mg/kg), tumor weight decreased about 94.9%. Moreover, DBDx and its combinations obviously prolonged theoverall survival of mice compared with gemcitabine or capcitabine alone. DBDx-based drug combination therapy showed no obvious systematic toxicity. The gene expression profile analysis showed that the genes changed by DBDx were related to immune system and tumor vasculature. The result of protein array showed that the changed proteins in the serum of treated mice were related to immune and inflammation system. These results show that DBDx-based drug combinations, a new strategy which integrates the use of low-cytotoxic drugs and cytotoxic chemotherapeutics, are highly effective regimens against human pancreatic cancer in athymic mice at well tolerated doses. DBDx-based drug combination therapy might provide new options for the treatment of pancreatic cancer.
Assuntos
Antineoplásicos/uso terapêutico , Neoplasias Pancreáticas/tratamento farmacológico , Idoso , Animais , Antineoplásicos/farmacologia , Modelos Animais de Doenças , Combinação de Medicamentos , Humanos , Camundongos , Camundongos Nus , Pessoa de Meia-Idade , Neoplasias Pancreáticas/patologia , Ensaios Antitumorais Modelo de XenoenxertoRESUMO
Gemcitabine (Gem) is currently used as the first-line therapy for liver and pancreatic cancer but has limited efficacy in most cases. Dexamethasone (Dex) have been applied as a chemoprotectant and chemosensitizer in cancer chemotherapy. This study further explored the potential of combination of Gem and Dex and tested the hypothesis that glucocorticoid receptor signaling is essential for the synergistic antitumor activity. In the HepG2 and AsPC-1 xenograft models, the combination treatment showed a significantly synergistic antitumor activity. Immunohistochemistry of post-treatment tumors showed a significant decrease in proliferation and angiogenesis as compared to either of the treatments alone. Dex alone and the combination with Gem inhibited the expression of glucocorticoid receptor. The combination of Dex and Gem showed synergistic cytotoxicity in cell lines in vitro. The antiproliferative synergism is prevented by used glucocorticoid receptor (GR) small interfering RNA, demonstrating that the glucocorticoid receptor is required for the antiproliferative synergism of Gem and Dex. The inhibition of glucocorticoid receptor signaling pathway and induction of apoptosis via activation of caspases 3, 8 and 9, PARP, contributed to the synergistic effect of this combination therapy. These results demonstrate that Dex could potentiate the antitumor efficacy of Gem. The synergistic antitumor activity of the combination of Dex and Gem was through glucocorticoid receptor signaling. Taken together, a combination of Dex and Gem shows a significant synergistic antitumor activity and lesser toxicity both in vitro and in vivo and could be a combination chemotherapy for the treatment of highly expression of glucocorticoid receptor patients.
Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Carcinoma Hepatocelular/tratamento farmacológico , Sinergismo Farmacológico , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Neoplasias Hepáticas/patologia , Neoplasias Pancreáticas/tratamento farmacológico , Receptores de Glucocorticoides/metabolismo , Animais , Apoptose , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patologia , Proliferação de Células , Desoxicitidina/administração & dosagem , Desoxicitidina/análogos & derivados , Dexametasona/administração & dosagem , Feminino , Humanos , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patologia , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto , GencitabinaRESUMO
BACKGROUND: Single disease payment program based on clinical pathway (CP-based SDP) plays an increasingly important role in reducing health expenditure in china and there is a clear need to explore the scheme from different perspectives. This study aimed at evaluating the effect of the scheme in rural county public hospitals within Anhui, a typical province of China,using uterine leiomyoma as an example. METHODS: The study data were extracted from the data platform of the New Rural Cooperative Medical Office of Anhui Province using stratified-random sampling. Means, constituent ratios and coefficients of variations were calculated and/or compared between control versus experiment groups and between different years. RESULTS: The total hospitalization expenditure (per-time) dropped from 919.08 ± 274.92 USD to 834.91 ± 225.29 USD and length of hospital stay reduced from 9.96 ± 2.39 days to 8.83 ± 1.95 days(P < 0.01), after CP-based SDP had implemented. The yearly total hospitalization expenditure manifested an atypical U-shaped trend. Medicine expense, nursing expense, assay cost and treatment cost reduced; while the fee of operation and examination increased (P < 0.05). The expense constituent ratios of medicine, assay and treatment decreased with the medicine expense dropped the most (by 4.4%). The expense constituent ratios of materials, ward, operation, examination and anesthetic increased,with the examination fee elevated the most (by 3.9%).The coefficient of variation(CVs) of treatment cost declined the most (- 0.360); while the CV of materials expense increased the most (0.186). CONCLUSION: There existed huge discrepancies in inpatient care for uterine leiomyoma patients. Implementation of CP-based SDP can help not only in controlling hospitalization costs of uterine leiomyoma in county-level hospitals but also in standardizing the diagnosis and treatment procedures.
Assuntos
Procedimentos Clínicos/economia , Hospitalização/economia , Leiomioma/economia , Sistema de Fonte Pagadora Única/economia , Neoplasias Uterinas/economia , China , Feminino , Custos de Cuidados de Saúde , Gastos em Saúde , Custos Hospitalares , Hospitais , Hospitais de Condado/economia , Humanos , Leiomioma/terapia , Tempo de Internação , Masculino , Pessoa de Meia-Idade , Saúde da População Rural/economia , Neoplasias Uterinas/terapiaRESUMO
Vicagrel, a novel acetate analogue of clopidogrel, exerts more potent antiplatelet effect than clopidogrel in rodents. Relevant evidence indicated that aspirin and vicagrel are the drug substrate for carboxylesterase 2. Accordingly, it is deduced that concomitant use of aspirin could attenuate the bioactivation of and platelet response to vicagrel. To clarify whether there could be such an important drug-drug interaction, the differences in both the formation of vicagrel active metabolite H4 and the inhibition of adenosine diphosphate-induced platelet aggregation by vicagrel were measured and compared between mice treated with vicagrel alone or in combination with aspirin. The plasma H4 concentration was determined by liquid chromatography-tandem mass spectrometry, and the inhibition of platelet aggregation by vicagrel was assessed by whole-blood platelet aggregation. Compared with vicagrel (2.5 mg·kg) alone, concurrent use of aspirin (5, 10, or 20 mg·kg) significantly decreased systemic exposure of H4, an average of 38% and 41% decrease in Cmax and AUC0-∞ in mice when in combination with aspirin at 10 mg·kg, respectively. Furthermore, concomitant use of aspirin (10 mg·kg) and vicagrel (2.5 mg·kg) resulted in an average of 66% reduction in the inhibition of adenosine diphosphate-induced platelet aggregation by vicagrel. We conclude that aspirin significantly attenuates the formation of vicagrel active metabolite H4 and platelet response to vicagrel in mice, and that such an important drug-drug interaction would appear in clinical settings if vicagrel is taken with aspirin concomitantly when marketed in the future.
Assuntos
Aspirina/farmacologia , Plaquetas/efeitos dos fármacos , Fenilacetatos/farmacologia , Inibidores da Agregação Plaquetária/farmacologia , Agregação Plaquetária/efeitos dos fármacos , Tiofenos/farmacologia , Ativação Metabólica , Animais , Aspirina/metabolismo , Plaquetas/metabolismo , Carboxilesterase , Hidrolases de Éster Carboxílico/metabolismo , Cromatografia Líquida , Interações Medicamentosas , Masculino , Camundongos Endogâmicos C57BL , Fenilacetatos/sangue , Fenilacetatos/farmacocinética , Inibidores da Agregação Plaquetária/sangue , Inibidores da Agregação Plaquetária/farmacocinética , Testes de Função Plaquetária , Espectrometria de Massas em Tandem , Tiofenos/sangue , Tiofenos/farmacocinéticaRESUMO
OBJECTIVE: To investigate the potential correlation between miR-223 level in leukocytes and platelet responses to clopidogrel in patients with coronary artery disease.â© Methods: A cohort of 188 outpatients, who conducted percutaneous coronary intervention (PCI) and received dual antiplatelet therapy, were recruited. The patient's electronic health data were collected, and their blood samples were obtained for measurement of adenosine diphosphate (ADP)-induced whole-blood platelet aggregation. Extreme cases of platelet responses to clopidogrel (ultra- vs. non-responder) were measured with miR-223-3p levels in leukocytes.â© Results: Both groups had similar miR-223-3p levels in leukocytes. There were no significant differences in other demographic and clinical data except for metrics of ADP-induced whole-blood platelet aggregation between the 2 group.â© Conclusion: MiR-223-3p in peripheral leukocytes is not associated with the altered platelet responses to clopidogrel in PCI outpatients.
Assuntos
Plaquetas/efeitos dos fármacos , Doença da Artéria Coronariana/tratamento farmacológico , Leucócitos/metabolismo , MicroRNAs/metabolismo , Inibidores da Agregação Plaquetária/uso terapêutico , Agregação Plaquetária/efeitos dos fármacos , Ticlopidina/análogos & derivados , Difosfato de Adenosina/sangue , Clopidogrel , Doença da Artéria Coronariana/sangue , Humanos , Intervenção Coronária Percutânea , Ticlopidina/uso terapêuticoRESUMO
Resistance of the patient to clopidogrel (an inactive prodrug) has been recently reported to be associated with increased messenger RNA expression of ABCC3 that encodes MRP3 (multidrug resistance-associated protein 3). However, there is no evidence showing the effects of MRP3 on altered platelet responses to clopidogrel and their underlying mechanisms. To further clarify whether the presence or absence of Mrp3 could affect the formation of and response to clopidogrel active metabolite (CAM) in Abcc3 knockout (KO) versus wild-type (WT) mice, we determined pharmacokinetic profiles of clopidogrel and CAM and measured inhibition of adenosine diphosphate-induced platelet aggregation by clopidogrel after administration of a single oral dose of clopidogrel to KO and WT mice, respectively. Results indicated that Abcc3 KO mice exhibited increased formation of CAM and greater systemic exposure to clopidogrel and enhanced inhibition of adenosine diphosphate-induced platelet aggregation ex vivo by clopidogrel when compared with well-matched WT mice. We conclude that Abcc3 KO mice have enhanced platelet response to clopidogrel due to increased formation of CAM.