RESUMO
In the original publication [...].
RESUMO
Xanthone-chromanone homo- or heterodimers are regarded as a novel class of topoisomerase (Topo) inhibitors; however, limited information about these compounds is currently available. Here, 14 new (1-14) and 6 known tetrahydroxanthone chromanone homo- and heterodimers (15-20) are reported as isolated from Penicillium chrysogenum C-7-2-1. Their structures and absolute configurations were unambiguously demonstrated by a combination of spectroscopic data, single-crystal X-ray diffraction, modified Mosher's method, and electronic circular dichroism analyses. Plausible biosynthetic pathways are proposed. For the first time, it was discovered that tetrahydroxanthones can convert to chromanones in water, whereas chromone dimerization does not show this property. Among them, compounds 5, 7, 8, and 16 exhibited significant cytotoxicity against H23 cell line with IC50 values of 6.9, 6.4, 3.9, and 2.6 µM, respectively.
Assuntos
Antineoplásicos , Cromonas , Penicillium chrysogenum , Penicillium , Xantonas , Estrutura Molecular , Antineoplásicos/farmacologia , Antineoplásicos/química , Inibidores da Topoisomerase , Xantonas/farmacologia , Xantonas/química , Penicillium/químicaRESUMO
The phytochemical investigation of the pericarps of Caesalpinia bonduc led to the isolation and identification of five new cassane-type alkaloids: caesalminines C - G (1-5) and six new diterpenoids: caesalbonducin K - P (6-11), along with seven known compounds (12-18). Compounds 1-5 were identified as a group of rare alkaloids possessing a tetracyclic cassane-type diterpenoid skeleton with a lactam D-ring instead of a typical furan or lactone moiety. The structures of 1-11 were elucidated on the basis of 1D and 2D NMR including HSQC, HMBC, COSY and NOESY, and other spectroscopic analyses. The cytotoxic activities of the isolated compounds were evaluated in the A431, A549 and U87MG cancer cell lines.
Assuntos
Alcaloides , Caesalpinia , Diterpenos , Caesalpinia/química , Estrutura Molecular , Alcaloides/análise , Espectroscopia de Ressonância Magnética , Diterpenos/química , Sementes/químicaRESUMO
[This corrects the article DOI: 10.7150/thno.28538.].
RESUMO
Gelsegansymines A (1) and B (2), two new indole alkaloids along with six known analogues (3-8) were isolated from the aerial parts of Gelsemium elegans. Their structures were elucidated by means of spectroscopic techniques. Structurally, compounds 1 and 2 possessed the rare cage-like gelsedine skeleton hybrid with bicyclic monoterpenoid. The anti-inflammatory activities of isolated compounds (1-3) were tested on LPS induced RAW264.7â cells. Under the treated concentration without toxicity for cells, the cytokines levels of nitric oxide (NO), tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6) were evaluated by Griess method and enzyme-linked immunosorbent assay (ELISA). The results showed that compounds 1-3 exhibited anti-inflammatory activities with dose-dependent manner range from 12.5 to 50â µmol/L. Furthermore, the inhibitory activities of compounds 1 and 2 on receptor activator of NF-κB ligand (RANKL) induced osteoclast formation were tested inâ vitro. Compounds 1 and 2 at 5â µmol/L exhibited the significant inhibitory effect on the osteoclastogenesis induced by RANKL. This work reported the anti-inflammatory and osteoclast inhibitory activities of new monoterpenoid indole hybrids, which may inspire the further light on the related traditional application research of G. elegans.
Assuntos
Gelsemium , Osteoclastos , Animais , Camundongos , Gelsemium/química , Alcaloides Indólicos/farmacologia , Alcaloides Indólicos/química , Anti-Inflamatórios/farmacologia , Células RAW 264.7 , Fator de Necrose Tumoral alfaRESUMO
BACKGROUND: The use of ethnic medicinal plants has revitalized wide popularity in Africa, Asia, and most of the world because of the energy consumption barriers increase of synthetic drugs. Gelsemium is a traditional genus of plants with famous cultural and medicinal significance in Southeast Asia and North America. Three species are reported from the genus Gelsemium, including Gelsemium elegans (Gardn. & Camp.) Benth., Gelsemium sempervirens (L.) J.St.-Hil., and Gelsemium rankinii Small. Among them, G. elegans is well known for its toxicity and is used as a traditional remedy for skin problems, neuralgia, fractures, and cancer. The first record of the toxic medicine G. elegans is the Chinese herbal medicine classically known as Shen-Nong Ben-Cao Jing. In the legend, the Shennong emperor was poisoned by G. elegans, hence, it is also wellknown as Duan Chang Cao in China. In addition, G. sempervirens tincture is also used in the treatment of inflammation of the spinalcolumn, and diminishes blood to the cerebrospinal centers. INTRODUCTION: This review aims to provide up-to-date information on Gelsemium and its endophytic fungi on their traditional uses, phytochemistry, pharmacology, and toxicology. Mechanism studies regarding the detoxification profile of Gelsemium are also reviewed. METHODS: For this updated review, the literature survey and search were performed on the scientific databases PubMed, ScienceDirect, Wiley, China CNKI, Web of Science, SciFinder, and Google Scholar using the relevant keywords. RESULTS: The plants of the genus Gelsemium are all reported as rich sources of monoterpene indole alkaloids. Previous phytochemical studies published more than 200 alkaloids from Gelsemium and its endophytic fungi, which have attracted considerable attention from pharmaceutists and phytochemists due to their diverse and complex structures. The bioactivities of Gelsemium phytoconstituents studied using various chemical methods are summarized and described herein. Considering the huge influence of Gelsemium regarding its traditional applications, the activities of isolated compounds were focused on the anti-tumor, anti-inflammatory, analgesic and antianxiety, immunostimulatory, and immunosuppressive properties, which provide evidence supporting the ethnopharmacological effectiveness of the genus Gelsemium. Unlike all previous reviews of genus Gelsemium, to the best of our knowledge, the recently reported natural products from its endophytic fungi are first time summarized in this review. CONCLUSION: It is clearly suggested from the literature information that the structures and biological activities of Gelsemium have a wide range of attraction from folk to the community of scholars. However, as a highly toxic genus, the work on the detoxification mechanism and toxicology of Gelsemium is urgently needed before entering clinical research. It is noteworthy that the discussion about the relationship between structural and biological activities are a valuable topic of expectation, while the structural modification for active or toxic components may shed light on toxicological breakthrough. Besides the compounds from the plants of genus Gelsemium, the recently reported natural products from its endophytic fungi may provide a supplement for its ethnomedicinal uses and ethnological validity.
Assuntos
Gelsemium , Plantas Medicinais , Fitoterapia/métodos , Extratos Vegetais/química , Etnofarmacologia , Plantas Medicinais/química , Compostos Fitoquímicos/farmacologia , Anti-Inflamatórios não EsteroidesRESUMO
Formaldehyde (FA) has neurotoxic characteristics and causes neurodegenerative disease. Our previous study demonstrated the neuroprotective effects of hydrogen sulfide (H2S) on FA-induced neurotoxicity in HT22 cells. Emerging evidence have supported that ferroptosis is involved in FA-induced neurotoxicity. To understand the mechanism of the protection of H2S against FA-induced neurotoxicity, this study explored the regulatory effect of H2S on FA-induced ferroptosis and the underlying mechanisms. The researcher found that H2S (100, 200, and 400 µM, 30 min) reverses the ferroptosis induced by FA (100 µM, 24 h) in HT22 cells (a cell line of mouse hippocampal neurons), including decreases in free iron, reactive oxygen species (ROS), 4-hydroxy-2-trans-nominal (4-HNE), and malondialdehyde (MDA) contents, as well as an increase in glutathione (GSH) content. H2S (100, 200, and 400 µM, 30 min) also inhibited ferritinaphagy in FA-exposed HT22 cells, as evidenced by the downregulation of the ferritinophagy receptor nuclear receptor coactivator 4 (NCOA4) and microtubule-associated protein 1 light chain-3B (LC3B) as well as the upregulation of the main iron storage protein ferritin heavy chain 1 (FTH1) and p62. H2S (100, 200, and 400 µM, 30 min) also up-regulated the expression of growth differentiation factor-11 (GDF11) in FA-exposed HT22 cells. Furthermore, knockdown of GDF11 in HT22 cells cancelled the beneficial effects of H2S in FA-induced ferroptosis and ferritinaphagy. These data indicated that the protective mechanism underlying H2S-prevented neurotoxicity of FA is involved in alleviating FA-induced ferroptosis via inhibiting ferritinaphagy by upregulation of GDF11.
Assuntos
Ferroptose , Sulfeto de Hidrogênio , Doenças Neurodegenerativas , Síndromes Neurotóxicas , Camundongos , Animais , Sulfeto de Hidrogênio/farmacologia , Sulfeto de Hidrogênio/metabolismo , Regulação para Cima , Ferro/metabolismo , Formaldeído/toxicidade , Fatores de Diferenciação de Crescimento/metabolismo , Proteínas Morfogenéticas Ósseas/metabolismoRESUMO
Two new monoterpenoid indole alkaloids, gelselegandines F (1) and G (2), were isolated from the aerial parts of Gelsemium elegans. Their structures were elucidated by means of spectroscopic techniques and quantum chemical calculations. The ECD calculations were conducted at the B3LYP/6-311G(d,p) level and NMR calculations were carried out using the Gauge-Including Atomic Orbitals (GIAO) method. Structurally, the two new compounds possessed rare, cage-like, monoterpenoid indole skeletons. All isolated compounds and the total alkaloids extract were tested for cytotoxicity against four different tumor cell lines. The total alkaloids extract of G. elegans exhibited significant antitumor activity with IC50 values ranging from 32.63 to 82.24 ug/mL. In order to discover anticancer leads from the active extraction, both new indole compounds (1-2) were then screened for cytotoxicity. Interestingly, compound 2 showed moderate cytotoxicity against K562 leukemia cells with an IC50 value of 57.02 uM.
Assuntos
Antineoplásicos , Gelsemium , Alcaloides de Triptamina e Secologanina , Estrutura Molecular , Gelsemium/química , Indóis , Alcaloides de Triptamina e Secologanina/farmacologia , Alcaloides de Triptamina e Secologanina/química , Antineoplásicos/farmacologia , Extratos Vegetais/farmacologia , Alcaloides Indólicos/químicaRESUMO
RATIONALE: Tau hyperphosphorylation and aggregation is considered as a main pathological mechanism underlying Alzheimer's disease (AD). Rose Bengal (RB) is a synthetic dye used for disease diagnosis, which was reported to inhibit tau toxicity via inhibiting tau aggregation in Drosophila. However, it was unknown if RB could produce anti-AD effects in rodents. OBJECTIVES: The research aimed to investigate if and how RB could prevent ß-amyloid (Aß) oligomers-induced tau hyperphosphorylation in rodents. METHODS AND RESULTS: RB was tested in vitro (0.3-1 µM) and prevented Aß oligomers-induced tau hyperphosphorylation in PC12 cells. Moreover, RB (10-30 mg/kg, i.p.) effectively attenuated cognitive impairments induced by Aß oligomers in mice. Western blotting analysis demonstrated that RB significantly increased the expression of pSer473-Akt, pSer9-glycogen synthase kinase-3ß (GSK3ß) and reduced the expression of cyclin-dependent kinase 5 (CDK5) both in vitro and in vivo. Molecular docking analysis suggested that RB might directly interact with GSK3ß and CDK5 by acting on ATP binding sites. Gene Ontology enrichment analysis indicated that RB might act on protein phosphorylation pathways to inhibit tau hyperphosphorylation. CONCLUSIONS: RB was shown to inhibit tau neurotoxicity at least partially via inhibiting the activity of GSK3ß and CDK5, which is a novel neuroprotective mechanism besides the inhibition of tau aggregation. As tau hyperphosphorylation is an important target for AD therapy, this study also provided support for investigating the drug repurposing of RB as an anti-AD drug candidate.
Assuntos
Doença de Alzheimer , Peptídeos beta-Amiloides , Ratos , Camundongos , Animais , Peptídeos beta-Amiloides/toxicidade , Peptídeos beta-Amiloides/metabolismo , Quinase 5 Dependente de Ciclina/metabolismo , Proteínas tau/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Rosa Bengala/uso terapêutico , Glicogênio Sintase Quinase 3 beta/metabolismo , Simulação de Acoplamento Molecular , Doença de Alzheimer/tratamento farmacológico , Fosforilação , Trifosfato de Adenosina/metabolismo , Trifosfato de Adenosina/uso terapêuticoRESUMO
The roots of Sophora tonkinensis Gagnep., a traditional Chinese medicine, is known as Shan Dou Gen in the Miao ethnopharmacy. A large number of previous studies have suggested the usage of S. tonkinensis in the folk treatment of lung, stomach, and throat diseases, and the roots of S. tonkinensis have been produced as Chinese patent medicines to treat related diseases. Existing phytochemical works reported more than 300 compounds from different parts and the endophytic fungi of S. tonkinensis. Some of the isolated extracts and monomer compounds from S. tonkinensis have been proved to exhibit diverse biological activities, including anti-tumor, anti-inflammatory, antibacterial, antiviral, and so on. The research progress on the phytochemistry and pharmacological activities of S. tonkinensis have been systematically summarized, which may be useful for its further research.
Assuntos
Sophora , Anti-Inflamatórios/análise , Anti-Inflamatórios/farmacologia , Fungos , Medicina Tradicional Chinesa , Compostos Fitoquímicos/análise , Raízes de Plantas/química , Sophora/químicaAssuntos
Dermatomiosite , Doenças Pulmonares Intersticiais , Autoanticorpos , Dermatomiosite/tratamento farmacológico , Dermatomiosite/genética , Humanos , Imunoglobulinas Intravenosas/uso terapêutico , Helicase IFIH1 Induzida por Interferon/genética , Doenças Pulmonares Intersticiais/tratamento farmacológico , Doenças Pulmonares Intersticiais/genéticaRESUMO
OBJECTIVE: Rapidly progressive interstitial lung disease (RP-ILD) in DM patients positive for anti-melanoma differentiation-associated gene 5 (anti-MDA5) autoantibody (MDA5-DM) often have a poor prognosis, frequently fatal. As there is a scarcity of data regarding the effect of intravenous immunoglobulin (IVIG) on RP-ILD in MDA5-DM patients (MDA5-RPILD), we conducted this study to determine the efficacy of a IVIG add-on initial treatment. METHODS: Patients with newly-onset MDA5-RPILD from September 2018 to June 2020 were retrospectively reviewed for 6 months in the First Affiliated Hospital of Zhengzhou University. They were divided into two groups: IVIG and non-IVIG groups. The major measurement of treatment outcome was the difference in the mortality in 3-month and 6-month between two group patients. Other relevant indicators were also recorded, including the incidence of infection, the dosages of GCs, the remission rate and the variables in laboratory data. RESULTS: The IVIG group (n = 31) showed significantly lower 6-month mortality rate than the non-IVIG group (n = 17) (22.6% vs 52.9%; P =0.033). The IVIG group patients had a higher remission rate at 3 months (71.0% vs 41.2%; P =0.044). Gradual reduction was observed in the first 3 months with regard to the titre of anti-MDA5 autoantibody, the serum level of ferritin and the ground glass opacification GGO scores. CONCLUSION: IVIG adjunct therapy is a very effective first-line treatment for patients with MDA5-RPILD. IVIG may increase the survival and remission rate by lowering ferritin concentration, anti-MDA5 titre and GGO score.
Assuntos
Dermatomiosite , Doenças Pulmonares Intersticiais , Autoanticorpos , Dermatomiosite/complicações , Ferritinas , Humanos , Imunoglobulinas Intravenosas/uso terapêutico , Prognóstico , Estudos RetrospectivosRESUMO
The families of copper-containing membrane-bound monooxygenases (CuMMOs) and soluble di-iron monooxygenases (SDIMOs) are involved not only in methane oxidation but also in short-chain alkane oxidation. Here, we describe Rhodococcus sp. strain ZPP, a bacterium able to grow with ethane or propane as the sole carbon and energy source, and report on the horizontal gene transfer (HGT) of actinobacterial hydrocarbon monooxygenases (HMOs) of the CuMMO family and the sMMO (soluble methane monooxygenase)-like SDIMO in the genus Rhodococcus. The key function of HMO in strain ZPP for propane oxidation was verified by allylthiourea inhibition. The HMO genes (designated hmoCAB) and those encoding sMMO-like SDIMO (designated smoXYB1C1Z) are located on a linear megaplasmid (pRZP1) of strain ZPP. Comparative genomic analysis of similar plasmids indicated the mobility of these plasmids within the genus Rhodococcus. The plasmid pRZP1 in strain ZPP could be conjugatively transferred to a recipient Rhodococcus erythropolis strain in a mating experiment and showed similar ethane- and propane-consuming activities. Finally, our findings demonstrate that the horizontal transfer of plasmid-based CuMMO and SDIMO genes confers the ability to use ethane and propane on the recipient. IMPORTANCE CuMMOs and SDIMOs initiate the aerobic oxidation of alkanes in bacteria. Here, the supposition that horizontally transferred plasmid-based CuMMO and SDIMO genes confer on the recipient similar abilities to use ethane and propane was proposed and confirmed in Rhodococcus. This study is a living example of HGT of CuMMOs and SDIMOs and outlines the plasmid-borne properties responsible for gaseous alkane degradation. Our results indicate that plasmids can support the rapid evolution of enzyme-mediated biogeochemical processes.
Assuntos
Proteínas de Bactérias/genética , Oxigenases de Função Mista/genética , Rhodococcus/genética , Etano/metabolismo , Transferência Genética Horizontal , Genes Bacterianos , Oxirredução , Plasmídeos , Propano/metabolismo , Rhodococcus/metabolismoRESUMO
BACKGROUND Accumulated evidence has suggested that hydrogen sulfide (H2S) has a role in bone formation and bone tissue regeneration. However, it is unknown whether the H2S content is associated with bone mineral density (BMD) in patients with osteopenia/osteoporosis. MATERIAL AND METHODS In the present study, we aimed to explore the changes of serum H2S in osteopenia and osteoporosis patients. We analyzed femur expression of cystathionine ß synthase (CBS), cystathionine γ lyase (CSE), and 3-mercaptopyruvate sulfurtransferase (3-MST), which are key enzymes for generating H2S. RESULTS Sixteen (16%) patients had osteopenia, 9 (9%) had osteoporosis, and 75 (75%) had normal BMD. In comparison with patients with normal BMD (controls), the serum levels of H2S were unexpectedly increased in patients with osteopenia and osteoporosis. This increase was much higher in patients with osteoporosis than in those with osteopenia. Serum H2S levels were negatively correlated with femoral BMD, but not lumbar BMD. Interestingly, the expression of CBS and CSE were downregulated in femur tissues in patients with osteoporosis, whereas the expression of 3-MST remained unchanged. Serum phosphorus levels, alkaline phosphatase, hemoglobin, and triglycerides were found to be closely associated with CBS and CSE scores in femur tissues. CONCLUSIONS Serum H2S levels and femur CBS and CSE expression may be involved in osteoporosis pathogenesis.
Assuntos
Fêmur/metabolismo , Sulfeto de Hidrogênio/análise , Osteoporose/metabolismo , Idoso , Idoso de 80 Anos ou mais , Densidade Óssea/efeitos dos fármacos , Densidade Óssea/fisiologia , Doenças Ósseas Metabólicas/sangue , Doenças Ósseas Metabólicas/metabolismo , China , Cistationina beta-Sintase/análise , Cistationina gama-Liase/análise , Feminino , Fêmur/fisiologia , Humanos , Sulfeto de Hidrogênio/sangue , Masculino , Pessoa de Meia-Idade , Osteoporose/sangue , Sulfurtransferases/análiseRESUMO
BACKGROUND: Epigenetic regulation plays an important role in the development and progression of nasopharyngeal carcinoma (NPC). However, the epigenetic mechanisms underlying NPC metastasis remains poorly understood. We aimed to find functional genes which regulate the metastasis of NPC and identify therapeutic targets for NPC treatment. METHODS: Bisulfite pyrosequencing was used to analyze zinc finger protein 582 (ZNF582) methylation in NPC tissues and cell lines. Quantitative reverse transcription-polymerase chain reaction (qRT-PCR) and Western blotting were used to determine the expression of ZNF582. In vitro and in vivo experiments were performed to evaluate the biological function of ZNF582 in NPC. ZNF582-targeting genes were identified by chromatin immunoprecipitation sequencing (ChIP-seq) and were confirmed by ChIP-qPCR and luciferase assay. RESULTS: ZNF582 promoter was hypermethylated in NPC, and both the mRNA and protein levels of ZNF582 were down-regulated in NPC tissues and cell lines. The restoration of ZNF582 inhibited NPC migration, invasion, and metastasis, while the knockdown of ZNF582 promoted NPC migration, invasion, and metastasis in vitro and in vivo. ZNF582 directly regulated the transcription and expression of adhesion molecules Nectin-3 and NRXN3. Both Nectin-3 and NRXN3 were identified as functional targets of ZNF582, and the restoration or abrogation of these genes reversed the tumor suppressor effect of ZNF582 in NPC metastasis. CONCLUSIONS: ZNF582 acts as a tumor suppressor gene in NPC by regulating the transcription and expression of adhesion molecules Nectin-3 and NRXN3, which may provide novel therapeutic targets for NPC treatment.
Assuntos
Metilação de DNA , Fatores de Transcrição Kruppel-Like/genética , Carcinoma Nasofaríngeo , Neoplasias Nasofaríngeas , Nectinas/genética , Proteínas do Tecido Nervoso/genética , Linhagem Celular Tumoral , Epigênese Genética , Células HEK293 , Humanos , Carcinoma Nasofaríngeo/genética , Neoplasias Nasofaríngeas/genética , Regiões Promotoras GenéticasRESUMO
OBJECTIVE: This study investigates the effect of the standardized management of cancer pain on patients with bone metastasis of lung cancer in China. PATIENTS AND METHODS: A total of 123 patients with bone metastasis of lung cancer were selected from the Respiratory Department of the Affiliated Hospital of North China University of Science and Technology. Among these patients, 62 patients who had not received standardized management of cancer pain from March 12, 2018, to September 11, 2018, were selected as the control group. In contrast, 61 patients who had received the standardized management of cancer pain from September 12, 2018, to March 11, 2019, were selected as the observation group. The former cohort accepted the conventional management of cancer pain, while the latter accepted the strict, standardized management of cancer pain. The demographic statistics, disease characteristics, and painkiller application of patients in these two groups were analyzed. Then, the analgesic effect and level of satisfaction were compared between these two groups. RESULTS: No significant differences were noticed between these two groups in terms of age, gender, smoking status, type of pathology, education level, previous treatment, and the Eastern Cooperative Oncology Group score, as well as other demographic and disease characteristics. As for the use of painkillers, opioid analgesics accounted for a higher proportion in the observation group than in the control group. Compared with the control group, pain improvement and patient satisfaction after analgesic treatment were significantly higher in the observation group (p < 0.05). CONCLUSION: The standardized management of cancer pain can considerably alleviate the pain of patients with bone metastasis of lung cancer and improve their quality of life. Furthermore, this type of management can increase satisfaction.