Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Toxics ; 11(8)2023 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-37624157

RESUMO

In order to illustrate pollution characterization, source apportionment, and risk assessment of VOCs in Beijing, Baoding, and Shanghai, field observations of CO, NO, NO2, O3, and volatile organic compounds (VOCs) were conducted in 2019. Concentrations of VOCs were the highest in Beijing (105.4 ± 52.1 ppb), followed by Baoding (97.1 ± 47.5 ppb) and Shanghai (91.1 ± 41.3 ppb). Concentrations of VOCs were the highest in winter (120.3 ± 61.5 ppb) among the three seasons tested, followed by summer (98.1 + 50.8 ppb) and autumn (75.5 + 33.4 ppb). Alkenes were the most reactive VOC species in all cities, accounting for 56.0%, 53.7%, and 39.4% of ozone formation potential in Beijing, Baoding, and Shanghai, respectively. Alkenes and aromatics were the reactive species, particularly ethene, propene, 1,3,5-trimethylbenzene, and m/p-xylene. Vehicular exhaust was the principal source in all three cities, accounting for 27.0%, 30.4%, and 23.3% of VOCs in Beijing, Baoding, and Shanghai, respectively. Industrial manufacturing was the second largest source in Baoding (23.6%) and Shanghai (21.3%), and solvent utilization was the second largest source in Beijing (25.1%). The empirical kinetic modeling approach showed that O3 formation was limited by both VOCs and nitric oxides at Fangshan (the suburban site) and by VOCs at Xuhui (the urban site). Acrolein was the only substance with an average hazard quotient greater than 1, indicating significant non-carcinogenic risk. In Beijing, 1,2-dibromoethane had an R-value of 1.1 × 10-4 and posed a definite carcinogenic risk.

2.
Environ Sci Pollut Res Int ; 29(47): 71696-71708, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35604610

RESUMO

To clarify the chemical characteristics, source contributions, and health risks of pollution events associated with high PM2.5 in typical industrial areas of North China, manual sampling and analysis of PM2.5 were conducted in the spring, summer, autumn, and winter of 2019 in Pingyin County, Jinan City, Shandong Province. The results showed that the total concentration of 29 components in PM2.5 was 53.4 ± 43.9 µg·m-3, including OC/EC, water-soluble ions, inorganic elements, and metal elements. The largest contribution was from the NO3- ion, at 14.6 ± 14.2 µg·m-3, followed by organic carbon (OC), SO42-, and NH4+, with concentrations of 9.3 ± 5.5, 9.1 ± 6.4, and 8.1 ± 6.8 µg·m-3, respectively. The concentrations of OC, NO3-, and SO42- were highest in winter and lowest in summer, whereas the NH4+ concentration was highest in winter and lowest in spring. Typical heavy metals had higher concentrations in autumn and winter, and lower concentrations in spring and summer. The annual average sulfur oxidation rate (SOR) and nitrogen oxidation rate (NOR) were 0.30 ± 0.14 and 0.21 ± 0.12, respectively, with the highest SO2 emission and conversion rates in winter, resulting in the SO42- concentration being highest in winter. The average concentration of secondary organic carbon in 2019 was 2.8 ± 1.9 µg·m-3, and it comprised approximately 30% of total OC. The concentrations of 18 elements including Na, Mg, and Al were between 2.3 ± 1.6 and 888.1 ± 415.2 ng·m-3, with Ni having the lowest concentration and K the highest. The health risk assessment for typical heavy metals showed that Pb poses a potential carcinogenic risk for adults, whereas As may pose a carcinogenic risk for adults, children, and adolescents. The non-carcinogenic risk coefficients for all heavy metals were lower than 1.0, indicating that the non-carcinogenic risk was negligible. Positive matrix factorization analysis indicated that coal-burning emissions contributed the largest fraction of PM2.5, accounting for 35.9% of the total. The contribution of automotive emissions is similar to that of coal, at 32.1%. The third-largest contributor was industrial sources, which accounted for 17.2%. The contributions of dust and other emissions sources to PM2.5 were 8.4% and 6.4%, respectively. This study provides reference data for policymakers to improve the air quality in the NCP.


Assuntos
Poluentes Atmosféricos , Metais Pesados , Adolescente , Aerossóis/análise , Poluentes Atmosféricos/análise , Carbono/análise , Criança , Carvão Mineral/análise , Poeira/análise , Monitoramento Ambiental/métodos , Humanos , Íons/análise , Chumbo/análise , Metais Pesados/análise , Nitrogênio/análise , Material Particulado/análise , Medição de Risco , Estações do Ano , Enxofre/análise , Emissões de Veículos/análise , Água/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA