RESUMO
Cardamine violifolia, also called Cardamine hupingshanensis, is an economically important medicinal plant renowned for accumulating selenium (Guo et al., 2022). Selenium is an essential trace element with anti-oxidant, anti-inflammatory, anti-cancer, and immune regulatory functions. In July 2023, an outbreak of powdery mildew was detected, infecting the leaves of numerous C. violifolia plants in Enshi (30°11'5.27''N; 109°48'48.45''E), Hubei Province, China. This disease caused severe damage to plant leaves and stems, starting as individual spots and merging into a large mold that covers the entire leaf. It affected nearly 25% all C. violifolia plants, resulting in significant yield loss, disruption of normal metabolism, and premature aging. The lower leaf blades and underside of the leaves were particularly vulnerable. The affected leaves were collected and subjected to morphological diagnostic analysis (Mori et al., 2000) (Fig. S1). The powdery mildew species aggressively spread throughout the leaves, pedicels, and pods, persisting until present and often covering the entire surface. The conidiophores were upright, cylindrical, composed of 3 to 4 cells, and measured 92.3 ± 12.9 × 9.2 ± 0.6 µm (n = 30). Conidial pedicels had 21.6 ± 3.4 µm (n = 50) long cylindrical podocytes. The monoconidia were columnar or barrel-columnar, 30.60-55.59 × 9.11-20.00 µm in size. Conidia lacked an obvious cellulose body. The bud tubes formed from the end of conidia, and papillary appressoria developed on the epiphytic mycelia. ITS region sequences were amplified using the specific powdery mildew universal primers ITS1 (5'-TCCGTAGGTGAACCTGCGG-3'), PM6 (5'-GYCRCYCTGTCGCGAG-3') for partial sequences of 18S and 28S ribosomal DNA genes (Takamatsu et al., 2001). The sequence was deposited in the GenBank under the accession number OR506156 and aligned with available sequences on NCBI, which were 99.2%(528/532) identical to the E. cruciferarum (MT309701, MF192845, and KY660929) sequences (Fig. S2). The ITS sequence from GenBank was used to conduct maximum likelihood phylogenetic analysis using MEGA 11.0. The analysis results showed both the strain and E. cruciferarum clustered on the same branch. To conï¬rm Koch's postulates, pathogenicity testing was carried out using an illuminating incubator. Infected leaves were attached to healthy leaves of C. violifolia seedlings (n=8). All the plants were incubated under 25â and >80% relative humidity. After one month, all inoculated plants presented the same symptoms as those initially observed in the ï¬eld. Morphological and molecular analysis confirmed the isolated fungi's identity as the same pathogen. Therefore, C. violifolia is a suitable host for E. cruciferarum in China. The growers must be informed of these findings to prevent serious economic losses caused by this pathogenic white powder and to prepare for proper management practices. To our knowledge, this is the first report of E. cruciferarum infecting C. violifolia in China.
RESUMO
BACKGROUND: Treatment of metastatic renal cell carcinoma (mRCC) remains a challenge worldwide. Here, we introduced a phase I trial of autologous RAK cell therapy in patients with mRCC whose cancers progressed after prior systemic therapy. Although RAK cells have been used in clinic for many years, there has been no dose-escalation study to demonstrate its safety and efficacy. METHODS: We conducted a phase I trial with a 3 + 3 dose-escalation design to investigate the dose-related safety and efficacy of RAK cells in patients with mRCC whose cancers have failed to response to systemic therapy (ChiCTR1900021334). RESULTS: Autologous RAK cells, primarily composed of CD8+ T and NKT cells, were infused intravenously to patients at a dose of 5 × 109, 1 × 1010 or 1.5 × 1010 cells every 28 days per cycle. Our study demonstrated general safety of RAK cells in a total of 12 patients. Four patients (33.3%) showed tumor shrinkage, two of them achieved durable partial responses. Peripheral blood analysis showed a significant increase in absolute counts of CD3+ and CD8+ T cells after infusion, with a greater fold change observed in naive CD8+ T cells (CD8+CD45RA+). Higher peak values of IL-2 and IFN-γ were observed in responders after RAK infusion. CONCLUSION: This study suggests that autologous RAK cell immunotherapy is safe and has clinical activity in previously treated mRCC patients. The improvement in peripheral blood immune profiling after RAK cell infusion highlights its potential as a cancer treatment. Further investigation is necessary to understand its clinical utility.
Assuntos
Carcinoma de Células Renais , Neoplasias Renais , Humanos , Neoplasias Renais/patologia , Linfócitos T CD8-Positivos/patologia , Interleucina-2/uso terapêutico , Imunoterapia , Adjuvantes ImunológicosRESUMO
OBJECTIVE: To evaluate the sub-healthy status of community residents and its main relevant factors. METHODS: The proportional stratified random sampling was selected to take the sample of 5000 community residents from two communities in Fujian province. The sub-healthy status and its main influence factors were measured with the method of physical examination and questionnaire. RESULTS: The women, the oldest group (≥60 years old) and the divorce/widowed group were found to have the higher scores of sub-health status than others (P <0. 05). Multivariate analysis showed that female, age, education level and irregular eating were the main risk factors for the three dimensions of sub-health status. Divorced or widowed statue was unfavorable factors for physical and psychological sub-health status. Quit smoking was found to be significant risk factor for psychological and social sub-health status. Body mass index (BMI) was related to physical sub-health status, alone. While physical exercise was the main protective factor for sub-health status. CONCLUSION: Improving behavioral habits, maintaining stable family, maintaining normal BMI may be important to prevent sub-health status among community residents.