RESUMO
Hexavalent chromium and its compounds are prevalent pollutants, especially in the work environment, pose a significant risk for multisystem toxicity and cancers. While it is known that chromium accumulation in the liver can cause damage, the dose-response relationship between blood chromium (Cr) and liver injury, as well as the possible potential toxic mechanisms involved, remains poorly understood. To address this, we conducted a follow-up study of 590 visits from 305 participants to investigate the associations of blood Cr with biomarkers for liver injury, including serum alanine aminotransferase (ALT), aspartate aminotransferase (AST), total bilirubin (TBIL), and direct bilirubin (DBIL), and to evaluate the mediating effects of systemic inflammation. Platelet (PLT) and the platelet-to-lymphocyte ratio (PLR) were utilized as biomarkers of systemic inflammation. In the linear mixed-effects analyses, each 1-unit increase in blood Cr level was associated with estimated effect percentage increases of 0.82% (0.11%, 1.53%) in TBIL, 1.67% (0.06%, 3.28%) in DBIL, 0.73% (0.04%, 1.43%) in ALT and 2.08% (0.29%, 3.87%) in AST, respectively. Furthermore, PLT mediated 10.04%, 11.35%, and 10.77% increases in TBIL, DBIL, and ALT levels induced by chromate, respectively. In addition, PLR mediated 8.26% and 15.58% of the association between blood Cr and TBIL or ALT. These findings shed light on the mechanisms underlying blood Cr-induced liver injury, which is partly due to worsening systemic inflammation.
Assuntos
Cromatos , Cromo , Inflamação , Humanos , Cromo/toxicidade , Cromo/sangue , Inflamação/sangue , Masculino , Cromatos/toxicidade , Cromatos/sangue , Adulto , Feminino , Pessoa de Meia-Idade , Biomarcadores/sangue , Exposição Ocupacional/efeitos adversos , Alanina Transaminase/sangue , Doença Hepática Induzida por Substâncias e Drogas/sangue , Aspartato Aminotransferases/sangue , Poluentes Ambientais/sangue , Poluentes Ambientais/toxicidadeRESUMO
Exposure to hexavalent chromium damages genetic materials like DNA and chromosomes, further elevating cancer risk, yet research rarely focuses on related immunological mechanisms, which play an important role in the occurrence and development of cancer. We investigated the association between blood chromium (Cr) levels and genetic damage biomarkers as well as the immune regulatory mechanism involved, such as costimulatory molecules, in 120 workers exposed to chromates. Higher blood Cr levels were linearly correlated with higher genetic damage, reflected by urinary 8-hydroxy-2'-deoxyguanosine (8-OHdG) and blood micronucleus frequency (MNF). Exploratory factor analysis revealed that both positive and negative immune regulation patterns were positively associated with blood Cr. Specifically, higher levels of programmed cell death protein 1 (PD-1; mediated proportion: 4.12%), programmed cell death ligand 1 (PD-L1; 5.22%), lymphocyte activation gene 3 (LAG-3; 2.11%), and their constitutive positive immune regulation pattern (5.86%) indirectly positively influenced the relationship between blood Cr and urinary 8-OHdG. NOD-like receptor family pyrin domain containing 3 (NLRP3) positively affected the association between blood Cr levels and inflammatory immunity. This study, using machine learning, investigated immune regulation and its potential role in chromate-induced genetic damage, providing insights into complex relationships and emphasizing the need for further research.
Assuntos
Cromatos , Aprendizado de Máquina , Humanos , Estudos Transversais , Poluentes Ambientais , Masculino , Dano ao DNA , Adulto , Feminino , Pessoa de Meia-Idade , BiomarcadoresRESUMO
Hexavalent chromium [Cr(VI)], known as "Top Hazardous Substances", poses a significant threat to the respiratory system. Nevertheless, the potential mechanisms of toxicity and the lung's repair ability after injury remain incompletely understood. In this study, Cr(VI) aerosol whole-body dynamic exposure system simulating real exposure scenarios of chromate workers was constructed to evaluate the lung injury and repair effects. Subsequently, miRNA sequencing, mRNA sequencing and metabolomics analyses on lung tissue were performed to explore the underlying mechanisms. Our results revealed that Cr(VI) exposure led to an increase in lactic dehydrogenase activity and a time-dependent decline in lung function. Notably, after 13 w of Cr(VI) exposure, alveolar hemorrhage, thickening of alveolar walls, emphysema-like changes, mitochondrial damage of alveolar epithelial cells and macrophage polarization changes were observed. Remarkably, a two-week repair intervention effectively ameliorated lung function decline and pulmonary injury. Furthermore, significant disruptions in the expressions of miRNAs and mRNAs involved in oxidative phosphorylation, glycerophospholipid metabolism and inflammatory signaling pathways were found. The two-week repair period resulted in the reversal of expression of oxidative phosphorylation related genes, and inhibited the inflammatory signaling pathways. This study concluded that the inhibition of the mitochondrial oxidative phosphorylation pathway and the subsequent enhancement of inflammatory response might be key mechanisms underlying Cr(VI) pulmonary toxicity, and timely cessation of exposure could effectively alleviate the pulmonary injury. These findings shed light on the potential mechanisms of Cr(VI) toxicity and provide crucial insights into the health protection for occupational populations exposed to Cr(VI).
Assuntos
Lesão Pulmonar , Humanos , Lesão Pulmonar/induzido quimicamente , Aerossóis e Gotículas Respiratórios , Cromo/toxicidade , PulmãoRESUMO
Hexavalent chromium [Cr(VI)] compounds, known as "Group I Human Carcinogen" and "Category I Respiratory Sensitizer", posed great challenges to the respiratory system. A cross-sectional study was undertaken among chromate workers. Serum club cell protein 16 (CC16) and soluble urokinase-type plasminogen activator receptor (suPAR) were measured using ELISA. Thirteen macrophage-related mediators were tested using cytometric bead array. After controlling for sex, age, smoking status, drinking status and BMI, each increase of one-unit of Ln-transformed blood Cr was related to the increase of IL-1beta [Beta (95% CI), 7.22(1.14, 13.29)%, P = 0.021], IL-23 [8.5(1.15, 15.85)%, P = 0.021], IFN-gamma [3.14(0.15, 6.13)%, P = 0.040], and suPAR [9.31(2.5, 16.12) %, P = 0.008], as well as the increase of CC16 by 3.88(0.42, 7.34) % (P = 0.029). Moreover, these inflammatory mediators played an mediation role in the rise of CC16 caused by Cr(VI). The exposure-response curve analysis revealed a substantial nonlinear association of IFN-gamma and suPAR with CC16, thus the mediation effect of INF-gamma and suPAR required cautious interpretation. The positive connection between macrophage-related mediators was stronger in the high exposure group than in the low exposure group, suggesting that high concentration of chromate might promote a complex interplay within the immune system.
Assuntos
Cromatos , Lesão Pulmonar , Humanos , Cromatos/toxicidade , Lesão Pulmonar/induzido quimicamente , Receptores de Ativador de Plasminogênio Tipo Uroquinase , Estudos Transversais , Inflamação/induzido quimicamente , BiomarcadoresRESUMO
Hexavalent chromium [Cr(VI)] has been identified as a "Group I human carcinogen" with multisystem and multiorgan toxicity. A dynamic inhalation exposure model in male mice, coupled with the hepatic metabolome and gut microbiome, was used to explore hepatotoxicity, and hepatic metabolic and gut microbial changes under the exposure scenarios in the workspace and general environment. The present study set up an exposure group (EXP) that inhaled 150 µg Cr/m3 for 13 weeks, a control group (CONT) that inhaled purified air, as well as a two-week repair group (REXP) after 13 weeks of exposure and the corresponding control group (RCONT). Cr(VI) induced elevation of hepatic Cr accumulation, the ratio of ALT and AST, and folate in serum. Inflammatory infiltration in the liver and abnormal mitochondria in hepatocytes were also induced by Cr(VI). Glutathione, ascorbate, folic acid, pantetheine, 3'-dephospho-CoA and citraconic acid were the key metabolites affected by Cr(VI) that were associated with significant pathways such as pantothenate and CoA biosynthesis, hypoxia-inducible factor-1 signaling pathway, antifolate resistance, alpha-linolenic acid metabolism and one carbon pool by folate. g_Allobaculum was identified as a sensitive biomarker of Cr(VI) exposure because g_Allobaculum decreased under Cr(VI) exposure but increased after repair. The gut microbiota might be involved in the compensation of hepatotoxicity by increasing short-chain fatty acid-producing bacteria, including g_Lachnospiraceae_NK4A136_group, g_Blautia, and f_Muribaculaceae. After the two-week repair, the differential metabolites between the exposed and control groups were reduced from 73 to 29, and the KEGG enrichment pathways and differential microbiota also decreased. The mechanism for repair was associated with reversion of lipid peroxidation and energy metabolism, as well as activation of protective metabolic pathways, such as the AMPK signaling pathway, longevity regulating pathway, and oxidative phosphorylation. These findings might have theoretical and practical implications for better health risk assessment and management.
Assuntos
Doença Hepática Induzida por Substâncias e Drogas , Microbioma Gastrointestinal , Camundongos , Masculino , Humanos , Animais , Exposição por Inalação , Cromo/toxicidade , Ácido FólicoRESUMO
Ambient air pollution was classified as carcinogenic to humans (Group 1) for lung cancer. DNA damage was an important first step in the process of carcinogenesis, and could also be induced by air pollution. In this study, intratracheal instillation and real-time air exposure system were combined to establish SHP (short-term high-level PM2.5) and LLPO (long-term low-level PM2.5 and O3) exposure patterns, respectively. Hierarchical levels of genetic biomarkers were analyzed to explore DNA damage effects in rats. Representative DNA repair genes from different repair pathways were selected to explore the relative expression levels. The methylation level of differentially expressed repair genes were also determined. Besides, miRNA sequencing and non-targeted metabolomic analysis were performed in rat lungs. KEGG and multi-omics analysis were used to explore the potential mechanism of genetic damage under different air pollution patterns. We found that LLPO exposure induced DSBs and chromosome damage. SHP exposure could induce DSBs and DNA oxidative damage, and the effects of genetic damage under this pollution pattern could be repaired by natural repair. Repair genes involved in two pattern were different. SHP exposure could induce higher methylation levels of RAD51, which might be a potential epigenetic mechanism for high-level PM2.5 induced down-regulated expression of RAD51 and DSBs. Besides, 29 overlapped alterations in metabolic pathways were identified by metabolomic and miRNA sequencing, including purine metabolism and pyrimidine metabolism after LLPO exposure. Differential miRNAs expression in lung tissue were associated with apoptosis, DNA damage and damage repair. We concluded that under different air pollution patterns, DNA damage biomarkers and activated targets of DNA damage repair network were both different. The genetic damage effects caused by high-level short-term PM2.5 can be alleviated by natural repair. We provided possible mechanisms by multi-omics which could explain the increased carcinogenic risk caused by air pollution.
Assuntos
Poluição do Ar , Carcinogênese , Quebras de DNA de Cadeia Dupla , Enzimas Reparadoras do DNA , Exposição Ambiental , MicroRNAs , Material Particulado , Animais , Humanos , Ratos , Metabolômica , MicroRNAs/genética , Multiômica , Pulmão , Enzimas Reparadoras do DNA/genéticaRESUMO
Outdoor air pollution has been classified as carcinogenic to humans (Group 1) for lung cancer, but the underlying mechanism and key toxic components remain incompletely understood. Since DNA damage and metabolite alterations are associated with cancer progression, exploring potential mechanisms linking air pollution and cancer might be meaningful. In this study, a real-time ambient air exposure system was established to simulate the real-world environment of adult male SD rats in Beijing from June 13th, 2018, to October 8th, 2018. 8-OHdG in the urine, γ-H2AX in the lungs and mtDNA copy number in the peripheral blood were analyzed to explore DNA damage at different levels. Serum non-targeted metabolomics analysis was performed. Pair-wise spearman was used to explore the correlation between DNA damage biomarkers and serum differential metabolites. Carcinogenic risks of heavy metals and PAHs via inhalation were assessed according to US EPA guidelines. Results showed that PM2.5 and O3 were the major air pollutants in the exposure group and not detected in the control group. Compared with control group, higher levels of 8-OHdG, mtDNA copy number, γ-H2AX and PCNA-positive nuclei cells were observed in the exposure group. Histopathological evaluation suggested ambient air induced alveolar wall thickening and inflammatory cell infiltration in lungs. Perturbed metabolic pathways identified included glycolysis/gluconeogenesis metabolism, purine and pyrimidine metabolism, etc. γ-H2AX was positively correlated with serum ADP, 3-phospho-D-glyceroyl phosphate and N-acetyl-D-glucosamine. The BaPeq was 0.120 ng/m3. Risks of Cr(VI), As, V, BaP, BaA and BbF were above 1 × 10-6. We concluded that low-level air pollution was associated with DNA damage and serum metabolomic alterations in rats. Cr(VI) and BaP were identified as key carcinogenic components in PM2.5. Our results provided experimental evidence for hazard identification and risk assessment of low-level air pollution.
Assuntos
Poluentes Atmosféricos , Poluição do Ar , Poluentes Atmosféricos/análise , Poluentes Atmosféricos/toxicidade , Poluição do Ar/análise , Animais , Carcinógenos , Dano ao DNA , Monitoramento Ambiental , Masculino , Metabolômica , Material Particulado/análise , Ratos , Ratos Sprague-DawleyRESUMO
Both genetic damage and inappropriate immune function are relevant to cancer of hexavalent chromium [Cr(VI)]. However, its associations with immune response and genetic damage development are poorly understood. To explore their associations and mediating effects, 1249 participants were included from the Occupational Chromate Exposure Dynamic Cohort, and their blood Cr concentrations were measured as internal exposure. A set of biomarkers including urinary 8-hydroxy-2' - deoxyguanosine (8-OHdG), micronucleus frequency (MNF) and mitochondrial DNA copy number (mtCN) was developed to evaluate the landscape of genetic damage of Cr(VI). Serum C-reactive protein (CRP) and first component of complement q (C1q) were measured to reflect immune inflammation. Multivariate linear regression and mediation analyses were applied to assess the potential associations and mediation effects. It was found that blood Cr level showed significant dose-dependent relationships with increasing of MNF and urinary 8-OHdG, while negative association with CRP and C1q. Furthermore, a 1-unit increase in CRP was associated with decreases of - 0.765 to - 0.254 in MNF, - 0.400 to - 0.051 in urinary 8-OHdG. 4.97% of the association between blood Cr level and the increased MNF was mediated by CRP. 11.58% of the relationship between concentration of blood Cr and urinary 8-OHdG was mediated by C1q. These findings suggested that Cr(VI) exposures might prompt genetic damage, possibly partial via worsening immune inflammation.
Assuntos
Cromatos , Exposição Ocupacional , 8-Hidroxi-2'-Desoxiguanosina , Cromatos/toxicidade , Cromo/toxicidade , Dano ao DNA , Humanos , Inflamação/genética , Exposição Ocupacional/análise , Exposição Ocupacional/estatística & dados numéricosRESUMO
Selenium (Se) was involved in many physiological processes in humans and animals. microRNAs (miRNAs) also played important roles in lung diseases. However, the regulatory mechanism of miRNA in chicken lungs and the mechanism of lipopolysaccharide (LPS)-induced pneumonia remained unclear. To further study these mechanisms, we established a supplement of selenomethionine (SeMet) and/or LPS-treated chicken model and a cell model of LPS and/or high and low expression of miR-15a in chicken hepatocellular carcinoma (LMH) cells. We detected the expression of some selenoproteins, p-c-Jun N-terminal kinase (JNK), nod-like receptor protein 3 (NLRP3), caspase1, receptor-interacting serine-threonine kinase 1 (RIPK1), receptor-interacting serine-threonine kinase 3 (RIPK3), mixed lineage kinase domain-like pseudokinase (MLKL), miR-15a, and oxidative stress kits. Additionally, we observed the morphology of lungs by H.E. staining in vitro. The results indicated that necroptosis occurred in LPS-treated chicken and LMH cells. Moreover, LPS stimulation inhibited miR-15a, and increased the expression of JNK, NLRP3, caspase1, RIPK1, RIPK3, and MLKL. We also found that LPS treatment not only increased the content of H2O2 and MDA in the lungs but also increased the activities of iNOS and CAT and the content of GSH decreased. Conclusion: SeMet could reduce the oxidative damage and activate NLRP3 inflammasome reaction by stimulating miR-15a/JNK, thus reduced the pulmonary necroptosis induced by LPS.
Assuntos
Lipopolissacarídeos/toxicidade , Lesão Pulmonar/tratamento farmacológico , MAP Quinase Quinase 4/metabolismo , MicroRNAs/genética , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Necroptose , Selenometionina/farmacologia , Animais , Antioxidantes/farmacologia , Galinhas , Inflamassomos , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia , Lesão Pulmonar/induzido quimicamente , Lesão Pulmonar/metabolismo , Lesão Pulmonar/patologia , MAP Quinase Quinase 4/genética , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Estresse OxidativoRESUMO
Selenomethionine is able to relieve the effect of inflammation in various tissues and organs. However, there are few studies about the influences of organic selenium resisting inflammation induced by LPS in chicken trachea. Therefore, the purpose of this experiment is to explore the organic selenium (selenomethionine) can raise immune function and relieve the LPS-induced inflammation of chicken trachea via inhibiting the NF-κB pathway. To investigate the mechanism of organic selenium on chicken trachea, the supplement of selenomethionine and/or LPS-induced chicken models were established. One hundred 46-week-old isa chickens were randomly divided into four groups (n = 25). The four groups were the control group, the selenomethionine group (Se group), the LPS-induced group (LPS group), and the Se and LPS interaction group (Se + LPS group). Then, the expressions of inflammatory factors (including induced nitric oxide synthase (iNOS), nuclear factor-kappa B(NF-κB), tumor necrosis factor (TNF-α), cyclooxygenase-2 (COX-2), and prostaglandin E (PTGEs) synthase), inflammation-related cytokines (including interleukin (IL-2, IL-6, IL-8, IL-17) and immunoglobulin (IgA, IgM, IgY)), the marker of immune function (avian ß-defensins (AvBD6, AvBD7)), heat shock proteins (including HSP60, HSP90), and selenoproteins (including Selo, Sels, Selm, Selh, Selu, Seli, SPS2, GPx1, GPx2, Dio1, Sepx1, Sep15, Sepp1, Txnrd1) were detected in our experiment. The above genes were significantly changed in different groups (p < 0.05). We can conclude that organic selenium can increase the function of immunity and the expression of selenoproteins, and mitigate the inflammation induced by LPS via suppression of the NF-κB pathway.
Assuntos
Galinhas , Selenometionina , Animais , Galinhas/metabolismo , Ciclo-Oxigenase 2/metabolismo , Inflamação/induzido quimicamente , Inflamação/tratamento farmacológico , Lipopolissacarídeos/toxicidade , NF-kappa B/metabolismo , Óxido Nítrico Sintase Tipo II/metabolismo , RNA Mensageiro , Selenometionina/farmacologia , Traqueia/metabolismoRESUMO
Excessive residual avermectin (AVM) in the environment can have toxic effects on non-target organisms. AVM can exert immunotoxicity by inducing genomic demethylation, but its effect on neutrophil extracellular traps (NETs) release in carp is unclear. In this study, carp neutrophils were pretreated with 5⯵g/L AVM or 4⯵M DNA demethylation inhibitor (aurintricarboxylic acid, ATA), alone or in combination, and then treated with 4⯵M phorbol 12-myristate 13-acetate (PMA) to stimulate NETs release. The results showed that exposure of carp neutrophils to AVM significantly suppressed NETs release and MPO expression, increased ROS production, and dramatically reduced PMA-induced cellular respiratory burst. In addition, AVM could bind to the MBD2 molecule, markedly upregulate MBD2 expression to cause demethylation, and clearly activate PTEN expression, thereby inhibiting the expression of PI3K, AKT, Raf, MEK, and ERK. However, these effects were alleviated by ATA. In conclusion, our study showed that AVM could inhibit NETs release in carp by inducing demethylation of PTEN to negatively regulate NETs synthesis pathways and reducing respiratory burst level. Our findings clarify the mechanism of AVM immunotoxicity to fish and are of great significance for efforts to protect the ecological environment and human health.
Assuntos
Antiparasitários/toxicidade , Carpas/imunologia , Armadilhas Extracelulares/efeitos dos fármacos , Ivermectina/análogos & derivados , Neutrófilos/efeitos dos fármacos , Poluentes Químicos da Água/toxicidade , Animais , Carpas/metabolismo , Desmetilação/efeitos dos fármacos , Proteínas de Peixes/metabolismo , Ivermectina/toxicidade , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , PTEN Fosfo-Hidrolase/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Explosão Respiratória/efeitos dos fármacosRESUMO
Chlorpyrifos (CPF) has become a mainly pollution in water environment. Micro-RNAs (miRNAs) play an important part in the development of apoptosis and autophagy. However, the potential mechanism of CPF induced kidney toxicity and the roles of miRNAs are still unclear. To explore the underlying mechanism, the kidney of common carp exposed to different concentrations of CPF for 40 days was used as a research object. We found that CPF could damage the ultrastructure and function of kidney; and also caused antioxidant system disorder. CPF inhibited the mRNA level of miR-19a which improved AMP-activated protein kinase (AMPK). Furthermore, the detection of apoptosis and autophagy relative genes showed that the expressions of TSC complex subunit 2 (TSC2), light chain 3 (LC3), Dynein, tumor protein 53 (p53), Bcl-2 associated X protein (Bax), caspase-3 and caspase-9 were enhanced and the expressions of nechanistic target of rapamycin (mTOR), Ras homolog mTORC1 binding (Rheb) and B-cell lymphoma (Bcl-2) were reduced in dose-dependent way. Taken together, we conclude that CPF causes oxidative stress and miR-19a-AMPK axis disorder, thereby promotes apoptosis and autophagy in common carp kidney. Our study will provide theoretical basis for toxicology research and environmental protection of CPF.
Assuntos
Apoptose/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Carpas/fisiologia , Clorpirifos/efeitos adversos , Proteínas de Peixes/genética , Regulação da Expressão Gênica/imunologia , Poluentes Químicos da Água/efeitos adversos , Proteínas Quinases Ativadas por AMP/genética , Proteínas Quinases Ativadas por AMP/metabolismo , Animais , Carpas/genética , Carpas/imunologia , Relação Dose-Resposta a Droga , Proteínas de Peixes/metabolismo , Inseticidas/efeitos adversos , Rim/efeitos dos fármacos , Rim/enzimologia , MicroRNAs/genética , MicroRNAs/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Distribuição AleatóriaRESUMO
Neutrophil extracellular traps (NETs) are reticular structures formed by myeloperoxidase (MPO), histones, and neutrophil elastase (NE) that are released from neutrophils in response to pathogenic stimuli. Chlorpyrifos (CPF) is wildly used as an organophosphorus pesticide that causes a range of toxicological and environmental problems. Exposure to CPF can increase the production of neutrophils in carps, and this increase can be considered a biomarker of water pollution. To explore a relationship between NETs and CPF and its mechanism of influence, we treated neutrophils from the blood of carp with 1 µg/mL phorbol 12-myristate 13-acetate (PMA), 0.325 mg/L CPF, or 20 µM necrostatin-1 (Nec-1). The production of MPO and NETs was reduced in the CPF+PMA group compared with that in the PMA group. CPF can cause an increase in reactive oxygen species (ROS), while inhibiting respiratory burst caused by PMA stimulation. We found that the expression levels of protein-coupled receptor 84 (gpr84), dystroglycan (DAG), proto-oncogene serine/threonine kinase (RAF), protein kinase C (PKC), and mitogen-activated protein kinase 3 (MAPK3) in the CPF+PMA group were lower than those in the PMA group, indicating that the PKC-MAPK pathway was suppressed. The expression levels of cylindromatosis (CYLD), mixed lineage kinase domain-like pseudokinase (MLKL), receptor-interacting serine-threonine kinase 1 (RIP1), and receptor-interacting serine-threonine kinase 3 (RIP3) were increased, and the expression levels of caspase 8 were reduced by CPF, indicating that CPF may cause necroptosis. The addition of Nec-1 restored the number of NETs in the CPF+PMA group. The results indicate that CPF reduced the production of NETs by inhibiting respiratory burst and increasing necroptosis. The results contribute to the understanding of the immunotoxicological mechanism of CPF and provide a reference for comparative medical studies.
Assuntos
Clorpirifos/efeitos adversos , Inibidores da Colinesterase/efeitos adversos , Armadilhas Extracelulares/metabolismo , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Neutrófilos/metabolismo , Proteína Quinase C/metabolismo , Explosão Respiratória/genética , Animais , Apoptose , Clorpirifos/farmacologia , Inibidores da Colinesterase/farmacologia , Peixes , Humanos , Necrose , Proto-Oncogene MasRESUMO
Atrazine (ATR), a selective herbicide, is consistently used worldwide and has been confirmed to be harmful to the health of aquatic organisms. The release of neutrophil extracellular traps (NETs) is one of the newly discovered antimicrobial mechanisms. Although several immune functions have been analyzed under ATR exposure, the effect of ATR on NETs remains mainly unexplored. In the present study, we treated carp neutrophils using 5⯵g/ml ATR and 5⯵g/ml ATR combined with 100â¯nM rapamycin to elucidate the underlying mechanisms and to clarify the effect of ATR on phorbol myristate acetate (PMA)-induced NETs. The results of the morphological observation and quantitative analysis of extracellular DNA and myeloperoxidase (MPO) showed that NETs formation were significantly inhibited by ATR exposure. Moreover, we found that in the NETs process, ATR downregulated the expression of the anti-apoptosis gene B-cell lymphoma-2 (Bcl-2), increased the expression of the pro-apoptosis factors Bcl-2-Associated X (BAX), cysteinyl aspartate specific proteinases (Caspase3, 9), and anti-autophagy factor mammalian target of rapamycin (mTOR), decreased the expression of autophagy-related protein light chain 3B (LC3B) and glucose transport proteins (GLUT1, 4), disturbed the activities of phosphofructokinase (PFK), pyruvate kinase (PKM), and hexokinase (HK) and limited reactive oxygen species (ROS) levels, indicating that the reduced NETs release was a consequence of increased apoptosis and diminished ROS burst, autophagy and down-regulated glycolysis under ATR treatment. Meanwhile, rapamycin restored the inhibited autophagy and glycolysis and thus resisted the ATR-suppressed NETs. The present study perfects the mechanism theory of ATR immunotoxicity to fish and has a certain value for human health risk assessment.
Assuntos
Apoptose/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Glicólise/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Animais , Proteínas Reguladoras de Apoptose/biossíntese , Atrazina/antagonistas & inibidores , Atrazina/toxicidade , Carpas , Armadilhas Extracelulares , Herbicidas/toxicidade , Neutrófilos/efeitos dos fármacos , Peroxidase/metabolismo , Sirolimo/farmacologia , Acetato de Tetradecanoilforbol/antagonistas & inibidoresRESUMO
Hydrogen sulfide (H2S), an endogenous gasotransmitter, plays an important role in apoptosis. Exudative diathesis (ED) disease is associated with dietary selenium (Se) deficiency in broilers. The liver is one of the target organs of Se deficiency; however, little is known about the effect of H2S on apoptosis via mitochondrial pathways in the livers of broilers with ED disease. In the present study, we aimed to investigate the correlation between endogenous H2S and mitochondrial-mediated apoptosis in the livers of broilers with ED disease, as induced by Se deficiency. One hundred twenty healthy, 1-day-old broilers were randomly assigned to one of two groups (60 each) based on diet: Basal diet (control group, 0.2 mg/kg Se) or a low-Se diet (-Se group, 0.033 mg/kg Se). At day 20, 15 broilers of a similar weight were sacrificed from the control group, while the same number of broilers were euthanatized from the -Se group when displaying typical symptoms of ED between days 18 and 25. The livers were collected, and apoptosis was measured using a TUNEL assay. Additionally, H2S concentration, the expression of H2S synthases of cystathionine γ-lyase (CSE), cystathionine ß-synthase (CBS), and 3-mercaptopyruvate sulfurtransferase (3-MST), as well as mitochondrial apoptosis-related genes of Bcl-2, Bax, Bak, Cyt-C, Caspase-9, Caspase-3, and p53, were examined in livers. The results indicated that Se deficiency could induce apoptosis in the livers of broilers. Swelling, fractures, and vacuolization were visible in the mitochondrial cristae in the livers of the -Se group. The expression of H2S synthase-related genes and H2S concentration was significantly enhanced (P < 0.05) in the livers of the -Se group compared to controls. Moreover, a low-Se diet downregulated (P < 0.05) the level of Bcl-2 and upregulated (P < 0.05) the levels of Bax, Bak, Cyt-C, Caspase-9, Caspase-3, and p53. These results suggest that an H2S increase in the livers of ED broilers, which was induced by Se deficiency, is related to apoptosis mediated by mitochondrial pathways.
Assuntos
Apoptose/efeitos dos fármacos , Suscetibilidade a Doenças/patologia , Sulfeto de Hidrogênio/farmacologia , Fígado/efeitos dos fármacos , Mitocôndrias Hepáticas/efeitos dos fármacos , Selênio/deficiência , Animais , Galinhas , Suplementos Nutricionais , Suscetibilidade a Doenças/metabolismo , Relação Dose-Resposta a Droga , Fígado/metabolismo , Masculino , Mitocôndrias Hepáticas/metabolismo , Selênio/administração & dosagem , Selênio/farmacologiaRESUMO
Increasing evidence indicates that selenium (Se) could antagonize metal toxicity, including cadmium (Cd) toxicity. However, the effects of Se on Cd-induced changes in the ion profile in the pancreas of chickens have not been reported. In the present study, 128 Hy-Line brown laying chickens were divided into the control group, Se-treated group, Se/Cd-treated group, and Cd-treated group, and we detected the concentrations of 28 ions in the four groups by inductively coupled plasma mass spectrometry. In the Cd-treated group, the accumulation of Cd in the pancreas was 836.8 times higher that than in the control group (27,353.71 ppb/32.69 ppb). Meanwhile, the Ca, Ti, Fe, Mo, Li, Al, and Pb levels increased and the Cr, Mn, Ni, Cu, Zn, Se, Sr, and Sb levels decreased due to sub-chronic Cd poisoning. The Fe, Mo, Ba, and Pb levels decreased in the Se/Cd-treated group. Our findings suggest that Cd can accumulate in the chicken pancreas and affect the ion profiles, whereas Se can ameliorate the accumulation of Cd and change the ion profiles in the chicken pancreas.