Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
1.
J Cell Mol Med ; 28(4): e18185, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38396325

RESUMO

Chemotherapy-resistant non-small cell lung cancer (NSCLC) presents a substantial barrier to effective care. It is still unclear how cancer-associated fibroblasts (CAFs) contribute to NSCLC resistance to chemotherapy. Here, we found that CD248+ CAFs released IL-8 in NSCLC, which, in turn, enhanced the cisplatin (CDDP) IC50 in A549 and NCI-H460 while decreasing the apoptotic percentage of A549 and NCI-H460 in vitro. The CD248+ CAFs-based IL-8 secretion induced NSCLC chemoresistance by stimulating nuclear factor kappa B (NF-κB) and elevating ATP-binding cassette transporter B1 (ABCB1). We also revealed that the CD248+ CAFs-based IL-8 release enhanced cisplatin chemoresistance in NSCLC mouse models in vivo. Relative to wild-type control mice, the CD248 conditional knockout mice exhibited significant reduction of IL-8 secretion, which, in turn, enhanced the therapeutic efficacy of cisplatin in vivo. In summary, our study identified CD248 activates the NF-κB axis, which, consecutively induces the CAFs-based secretion of IL-8, which promotes NSCLC chemoresistance. This report highlights a potential new approach to enhancing the chemotherapeutic potential of NSCLC-treating cisplatin.


Assuntos
Antineoplásicos , Fibroblastos Associados a Câncer , Carcinoma Pulmonar de Células não Pequenas , Resistencia a Medicamentos Antineoplásicos , Interleucina-8 , Neoplasias Pulmonares , Animais , Camundongos , Antígenos CD , Antígenos de Neoplasias , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Fibroblastos Associados a Câncer/metabolismo , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Linhagem Celular Tumoral , Proliferação de Células , Cisplatino/farmacologia , Cisplatino/uso terapêutico , Resistencia a Medicamentos Antineoplásicos/genética , Interleucina-8/genética , Interleucina-8/farmacologia , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , NF-kappa B , Humanos
2.
Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi ; 40(2): 168-173, 2024 Feb.
Artigo em Chinês | MEDLINE | ID: mdl-38284258

RESUMO

Cancer associated fibroblasts (CAFs) are one of the main components of tumor microenvironment (TME). In TME, the interaction between tumor cells and non-tumor cells or among non tumor cells can promote the occurrence and development of tumors. CAFs can interact with a variety of immune cells and promote the occurrence and development of tumors by inhibiting the function of adaptive immune cells and reshaping the immune microenvironment in TME. The interaction between CAFs and macrophages and the induction of macrophage polarization towards M2 type play an important role in promoting tumor occurrence and development. This article reviews the research progress of CAF in promoting the polarization of M2 macrophages.


Assuntos
Fibroblastos Associados a Câncer , Fibroblastos Associados a Câncer/patologia , Macrófagos/patologia , Microambiente Tumoral
3.
Int J Gen Med ; 16: 5817-5839, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38106976

RESUMO

Background: Cyclin-dependent kinase inhibitor 3 (CDKN3) has been studied in many cancers. However, the comprehensive and systematic pancancer analysis of CDKN3 genes is still lacking. Methods: Data were downloaded from online databases. R was used for analysis of the differential expression and gene alteration of CDKN3 and of the associations between CDKN3 expression and survival, signaling pathways, and drug sensitivity. Clinical samples and in vitro experiments were selected for verification. Results: CDKN3 expression was higher in most types of cancers, and this phenotype was significantly correlated with poor survival. CDKN3 showed gene alterations and copy number alterations in many cancers and associated with some immune-related pathways and factors. Drug sensitivity analysis elucidated that CDKN3 could be a useful marker for therapy selection. Clinical samples elucidated CDKN3 expressed high in endometrial cancer tissue. In vitro studies showed that CDKN3 induced pro-tumor effect in immune environment and facilitated endometrial cancer cell proliferation and G1/S phase transition. Conclusion: CDKN3 has been shown to be highly expressed in most types of cancers and promoted cancer cell progression. CDKN3 may serve as a novel marker in clinical diagnosis, treatment, and prognosis prediction in future.

4.
Biochem Biophys Res Commun ; 686: 149171, 2023 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-37922573

RESUMO

Estrogen receptor (ER)-positive breast cancer (BRCA) is the most commonly diagnosed molecular subtype of BRCA. It is routinely treated with endocrine therapy; however, some patients relapse after therapy and develop drug resistance, resulting in treatment failure. In the present study, we identified markers of ER-positive BRCA and evaluated their putative function in immune infiltration as well as their clinicopathological significance. The ubiquitin family domain containing 1 (UBFD1) protein was associated with the prognosis of ER-positive BRCA patients. Its expression was higher in ER-positive BRCA tissues compared with adjacent nontumor tissues. Patients with higher UBFD1 expression had a poorer prognosis. UBFD1 is an independent risk factor for ER-positive BRCA patients and its function was primarily associated with hormone activity and inflammation. Taken together, UBFD1 is a potential prognostic biomarker and candidate target of ER-positive BRCA.


Assuntos
Neoplasias da Mama , Humanos , Feminino , Neoplasias da Mama/diagnóstico , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Receptores de Estrogênio/genética , Receptores de Estrogênio/metabolismo , Prognóstico , Recidiva Local de Neoplasia , Biomarcadores
5.
Hum Reprod ; 38(12): 2422-2432, 2023 12 04.
Artigo em Inglês | MEDLINE | ID: mdl-37814907

RESUMO

STUDY QUESTION: Does a humanin analogue (HNG) have a therapeutic effect on intrauterine adhesions (IUAs) caused by uterine cavity surgery in a rat model? SUMMARY ANSWER: HNG supplementation attenuated the development of endometrial fibrosis and IUAs, improved fertility, and contributed to the regulation of endometrial fibrosis by inhibiting endometrial ferroptosis in rats with IUAs. WHAT IS KNOWN ALREADY: IUAs, which are characterized by endometrial fibrosis, are a common cause of female infertility. Humanin (rattin in rats) is a mitochondrial-derived peptide that is widely expressed in multiple tissues. S14G-humanin (HNG) is an HNG that has been reported to have a protective effect against myocardial fibrosis. STUDY DESIGN, SIZE, DURATION: Endometrial tissues from three patients with IUAs and three controls were tested for humanin expression. Two animal models were used to evaluate the modelling effect of IUAs and the preventive effect of HNG against IUAs. In the first model, 40 rats were equally randomized to control and Day 7, 14, and 21 groups to establish the IUA model. In the second model, 66 rats were equally randomized to the control, IUA, and IUA + humanin analogue (HNG) groups. Erastin was used to induce ferroptosis in the Ishikawa cell line. PARTICIPANTS/MATERIALS, SETTING, METHODS: The endometrium was scraped with a surgical spatula, combined with lipopolysaccharide treatment, to establish the rat model of IUAs. Rats were intraperitoneally injected with 5 mg/kg/day HNG for 21 consecutive days beginning from the day of operation to evaluate the therapeutic effect on IUAs. Haematoxylin-eosin and Masson's trichrome staining were used to assess endometrial morphology and evaluate fibrosis. Ferroptosis-related markers, namely nuclear factor E2-related factor 2 (Nrf2), acyl-CoA synthetase long-chain family member 4 (ACSL4), haeme oxygenase-1 (HO-1), solute carrier family 7 member 11 (SLC7A11), glutathione peroxidase 4 (GPX4), and ferritin, were measured by immunohistochemistry and western blotting to determine whether ferroptosis was involved in the development of IUAs and to assess the attenuative effect of HNG on ferroptosis. Additionally, the female rats were mated with male rats with normal fertility to assess fertility. MAIN RESULTS AND THE ROLE OF CHANCE: Humanin was widely expressed in endometrial cells, including epithelial and stromal cells, in both humans and rats. Humanin expression levels were downregulated in the endometria of patients and rats with IUAs relative to the endometria of controls. Endometrial thickness and the number of glands were significantly decreased on Day 7, 14, and 21 after endometrial scraping when compared with the controls (all P < 0.05), whereas the fibrotic area was significantly increased (P < 0.05). Among the tested ferroptosis markers, the expression levels of Nrf2, SLC7A11, and GPX4 were significantly downregulated and those of ACSL4, HO-1, and ferritin were significantly upregulated after endometrial scraping relative to their expression levels in controls (all P < 0.05). The mating rates in the control, IUA, and IUA + HNG groups were 100% (10/10), 40% (4/10), and 80% (8/10), respectively. The number of embryos in rats with IUAs (mean ± SD: 1.6 ± 2.1) was significantly less than the number in the controls (11.8 ± 1.5). HNG supplementation significantly attenuated this decrease in the number of implanted embryos (6.3 ± 4.5) (P < 0.01). Further results showed that HNG significantly attenuated the altered expression levels of proteins involved in ferroptosis in the endometria of rats with IUAs. Moreover, in vitro experiments showed that HNG significantly attenuated the erastin-induced decrease in the viability of the Ishikawa cell line and also attenuated the increase in reactive oxygen species production and the downregulation of GPX4. LARGE SCALE DATA: None. LIMITATIONS, REASONS FOR CAUTION: The findings of this study showed that HNG inhibited ferroptosis and reduced fibrosis in a rat model of IUAs. However, we could not establish a causal relationship between ferroptosis and the development of IUAs. WIDER IMPLICATIONS OF THE FINDINGS: HNG may be effective at alleviating fibrosis during the development of IUAs, and the inhibition of ferroptosis is a promising new strategy for IUA therapy. STUDY FUNDING/COMPETING INTEREST(S): This study was supported by the National Natural Science Foundation of China (No. 82171647); the '1000 Talent Plan' of Yunnan Province (No. RLQN20200001); and the Basic Research Project of the Yunnan Province-Outstanding Youth Foundation (No. 202101AW070018). The authors declare no competing financial interests.


Assuntos
Ferroptose , Doenças Uterinas , Humanos , Adolescente , Ratos , Animais , Feminino , Masculino , Fator 2 Relacionado a NF-E2/metabolismo , China , Endométrio/metabolismo , Doenças Uterinas/metabolismo , Células Epiteliais/metabolismo , Fibrose , Ferritinas/metabolismo , Proteínas/metabolismo
6.
Hepatology ; 78(4): 1079-1091, 2023 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-37114494

RESUMO

BACKGROUND AND AIMS: The intratumoral microbiome has been reported to regulate the development and progression of cancers. We aimed to characterize intratumoral microbial heterogeneity (IMH) and establish microbiome-based molecular subtyping of HBV-related HCC to elucidate the correlation between IMH and HCC tumorigenesis. APPROACH AND RESULTS: A case-control study was designed to investigate microbial landscape and characteristic microbial signatures of HBV-related HCC tissues adopting metagenomics next-generation sequencing. Microbiome-based molecular subtyping of HCC tissues was established by nonmetric multidimensional scaling. The tumor immune microenvironment of 2 molecular subtypes was characterized by EPIC and CIBERSORT based on RNA-seq and verified by immunohistochemistry. The gene set variation analysis was adopted to explore the crosstalk between the immune and metabolism microenvironment. A prognosis-related gene risk signature between 2 subtypes was constructed by the weighted gene coexpression network analysis and the Cox regression analysis and then verified by the Kaplan-Meier survival curve.IMH demonstrated in HBV-related HCC tissues was comparably lower than that in chronic hepatitis tissues. Two microbiome-based HCC molecular subtypes, defined as bacteria- and virus-dominant subtypes, were established and significantly correlated with discrepant clinical-pathologic features. Higher infiltration of M2 macrophage was detected in the bacteria-dominant subtype with to the virus-dominant subtype, accompanied by multiple upregulated metabolism pathways. Furthermore, a 3-gene risk signature containing CSAG4 , PIP4P2 , and TOMM5 was filtered out, which could predict the clinical prognosis of HCC patients accurately using the Cancer Genome Atlas data. CONCLUSIONS: Microbiome-based molecular subtyping demonstrated IMH of HBV-related HCC was correlated with a disparity in clinical-pathologic features and tumor microenvironment (TME), which might be proposed as a biomarker for prognosis prediction of HCC.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Estudos de Casos e Controles , Vírus da Hepatite B/genética , Neoplasias Hepáticas/etiologia , Microambiente Tumoral
7.
Biomed Pharmacother ; 161: 114488, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37002576

RESUMO

Triple negative breast cancer (TNBC) is a highly aggressive subtype with a poor prognosis due to its high rates of proliferation and metastasis. Recently, hydrogen sulfide (H2S) has been recognized as a novel gasotransmitter that plays a significant role in various pathological processes, including cancer. Here, we show that exogenous H2S inhibited TNBC cancer cell proliferation, migration and invasion in vitro, and also decreased cancer malignances in the mouse model of TNBC. To investigate the underlying mechanisms of H2S's anti-cancer effects in TNBC, we performed transcriptome sequencing and bioinformatic analyses. 2121 differentially expressed genes (DEGs) were revealed, and mainly enriched in cell cycle and DNA replication pathways. Further analysis revealed changes in alternative splicing after exogenous H2S treatment. Protein-protein interaction (PPI) network analysis was performed, which identified 458 interactions among 276 DEGs enriched in cell cycle and DNA replication pathways.We identified seven hub genes (MCM3, MCM4, MCM5, MCM6, CDC6, CDC45, and GINS2) through PPI network analysis, which were up-regulated in clinical human breast cancer but down-regulated after H2S treatment. Based on the hub genes selected, we developed a model predicting that exogenous H2S mainly exerts its anti-TNBC role by delaying DNA replication. Our findings suggest that exogenous H2S has potential as a therapeutic agent in TNBC and may exert its therapeutic potential through DNA replication and the cell cycle pathway.


Assuntos
Sulfeto de Hidrogênio , Neoplasias de Mama Triplo Negativas , Animais , Camundongos , Humanos , Sulfeto de Hidrogênio/farmacologia , Sulfeto de Hidrogênio/metabolismo , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/metabolismo , Ciclo Celular , Mapas de Interação de Proteínas , Replicação do DNA , Regulação Neoplásica da Expressão Gênica , Proteínas Cromossômicas não Histona/genética
8.
Biosci Rep ; 43(3)2023 03 31.
Artigo em Inglês | MEDLINE | ID: mdl-36924407

RESUMO

Gastrointestinal cancers are the most common type of cancer affecting humans. High expression of HOX transcript antisense intergenic RNA (HOTAIR), a long noncoding RNA (lncRNA), in various types of different tumors may be associated with poor prognosis. In the present study, we performed a meta-analysis of the relationship between HOTAIR expression and gastrointestinal cancers. Five databases were comprehensively searched for all literature until January 2023. Moreover, the target genes of HOTAIR were predicted by coexpression analysis based on The Cancer Genome Atlas (TCGA) gene expression matrix for six gastrointestinal cancer types. Finally, the mechanism through which HOTAIR affects tumors of the digestive system was systematically reviewed. Our results showed that the high HOTAIR expression group had worse outcomes with a pooled hazard ratio (HR) of 1.56 (95% confidence interval [CI] = 1.38-1.75, P<0.001). Furthermore, HOTAIR was identified as an unfavorable prognostic factor for overall survival (OS) in the esophageal carcinoma (ESCA) and gastric cancer (GC), as the HR were 1.94 and 1.58, respectively. The high correlation between the expression of homeobox C (HOXC) family genes and HOTAIR, with correlation coefficients of 0.863 (HOXC11), 0.664 (HOXC10), 0.645 (HOXC8), and 0.581 (HOXC12). The 'cell cycle' pathway and pathways relating to infections, namely 'herpes simplex virus 1 infection' and 'complement and coagulation cascades' were significantly enriched in Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis. Also, we perform a systematic review to summarize the related oncogenic mechanism of HOTAIR. In conclusion, the HOTAIR has been identified as a potential prognostic factor in patients with gastrointestinal cancers.


Assuntos
Neoplasias Esofágicas , RNA Longo não Codificante , Neoplasias Gástricas , Humanos , Biomarcadores , Neoplasias Esofágicas/genética , Regulação Neoplásica da Expressão Gênica , Proteínas de Homeodomínio/genética , Prognóstico , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Neoplasias Gástricas/diagnóstico , Neoplasias Gástricas/genética
9.
J Leukoc Biol ; 113(5): 445-460, 2023 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-36808484

RESUMO

Early-stage myeloid-derived suppressor cells are a newly defined subset of myeloid-derived suppressor cells in breast cancer tissues and related to poor prognosis in patients with breast cancer. Compared with classical myeloid-derived suppressor cells, early-stage myeloid-derived suppressor cells display exceptional immunosuppressive ability and accumulate in the tumor microenvironment to suppress innate and adaptive immunity. Previously, we demonstrated that early-stage myeloid-derived suppressor cells were SOCS3 deficiency dependent and correlated with differentiation arrest in the myeloid lineage. Autophagy is a major regulator of myeloid differentiation, but the mechanism by which autophagy regulates the development of early-stage myeloid-derived suppressor cells has not been elucidated. Here, we constructed EO771 mammary tumor-bearing conditional myeloid SOCS3 knockout mice (SOCS3MyeKO) characterized by abundant tumor-infiltrating early-stage myeloid-derived suppressor cells and exacerbated immunosuppression in vitro and in vivo. We found that early-stage myeloid-derived suppressor cells isolated from SOCS3MyeKO mice showed differentiation arrest in the myeloid lineage, which was caused by limited autophagy activation in an Wnt/mTOR-dependent manner. RNA sequencing and microRNA microarray assays revealed that miR-155-induced C/EBPß downregulation activated the Wnt/mTOR pathway and promoted autophagy repression and differentiation arrest in early-stage myeloid-derived suppressor cells. Furthermore, inhibition of Wnt/mTOR signaling suppressed both tumor growth and the immunosuppressive functions of early-stage myeloid-derived suppressor cells. Thus, SOCS3 deficiency-dependent autophagy repression and their regulatory mechanisms could contribute to the immunosuppressive tumor microenvironment. Our study proposes a novel mechanism for promoting early-stage myeloid-derived suppressor cell survival, which might shed new light on a potential target of oncologic therapy.


Assuntos
Células Supressoras Mieloides , Neoplasias , Camundongos , Animais , Serina-Treonina Quinases TOR/metabolismo , Proteínas Supressoras da Sinalização de Citocina/genética , Neoplasias/patologia , Via de Sinalização Wnt , Imunossupressores , Autofagia , Microambiente Tumoral , Proteína 3 Supressora da Sinalização de Citocinas/genética , Proteína 3 Supressora da Sinalização de Citocinas/metabolismo
10.
Phytomedicine ; 109: 154561, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36610156

RESUMO

BACKGROUND: NAFLD is a liver disease that is caused by liver damage or extreme lipid deposition but not alcohol. Nrf2 could mediate resistance to oxidative stress injury. Autophagy can degrade metabolic waste and accumulated toxic endogenous substances. Pterostilbene (PTE) is an active compound extracted from blueberry, and grape, that exhibits many biological effects, such as antiinflammation and antitumor. PURPOSE: This study provides a mechanism of PTE affecting on oxidative stress and autophagy in NAFLD mice. Tyloxapol, oil acid (OA) and palmitic acid (PA) were used to induce lipid accumulation in mice and HepG2 cells. METHODS: Western blotting, CRISPR/Cas 9 and other molecular biological approaches were applied to explore the mechanisms of PTE effected on NAFLD. RESULTS: PTE pretreatment effectively reduced the lipid accumulation in OA and PA induced HepG2 cells and tyloxapol induced mice, and significantly promoted the expression of nNrf2, PPAR-α and HO-1, and AMPK activity, but inhibited the expression of mTORC 1 and SREBP-1c. PTE activated phosphatidylinositide 3-kinase (PI3K) and proteins in the autophagy-related gene (ATG) family, and promoted the transformation of LC3Ⅰ to LC3Ⅱ which indicated the activation of autophagy, however, these effects were abolished after Nrf2 knockout. CONCLUSION: PTE effectively alleviated oxidative stress damage induced by excessive lipid accumulation in hepatocytes, thus promoting the metabolism and decomposition of fatty acids to improve NAFLD.


Assuntos
Hepatopatia Gordurosa não Alcoólica , Animais , Camundongos , Hepatopatia Gordurosa não Alcoólica/metabolismo , Proteínas Quinases Ativadas por AMP/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Transdução de Sinais , Serina-Treonina Quinases TOR/metabolismo , Estresse Oxidativo , Autofagia , Ácidos Graxos , Metabolismo dos Lipídeos , Camundongos Endogâmicos C57BL
11.
J Adv Res ; 51: 121-134, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-36351537

RESUMO

INTRODUCTION: Gastric cancer (GC)is the third leading cause of cancer-related deaths in China and immunotherapy emerging as a revolutionary treatment for GC recently. Tumor mutational burden (TMB) is a predictive biomarker of immunotherapy in multiple cancers. However, the prognostic significance and subtype of TMB in GC is not fully understood. OBJECTIVES: This study aims to evaluate the prognostic value of TMB in Chinese GC and further classify TMB-high GC (GCTMB-H) patients combing with mutational signatures. METHODS: Genomic profiling of 435 cancer-gene panel was performed using 206 GC samples from Chinese people. Actionable genetic alterations were compared across all the samples to generate actionable subtyping. The prognostic value of TMB in Chinese GC was evaluated. Mutational signatures were analyzed on TMB-H subtype to stratify the prognosis of TMB. Transcriptomic analysis was applied to compare the distributed immunocytes among different subtypes. RESULTS: 88.3% (182/206) of GC samples had at least one mutation, while 45.1% (93/206) had at least one somatic copy number alteration (SCNA). 29.6% (61/206) of GC samples were TMB-H, including 13 MSI-H and 48 MSS tumors. According to distinct genetic alteration profiles of 69 actionable genes, we classified GC samples into eight molecular subtypes, including TMB-H, ERBB2 amplified, ATM mutated, BRCA2 mutated, CDKN2A/B deleted, PI3KCA mutated, KRAS mutated, and less-mutated subtype. TMB-H subtype presented a remarkable immune-activated phenotype as determined by transcriptomic analysis that was further validated in the TCGA GC cohort. GCTMB-H patients exhibited significantly better survival (P = 0.047). But Signature 1-high GCTMB-H patients had relatively worse prognosis (P = 0.0209, HR = 2.571) than Signature 1-low GCTMB-H patients from Chinese GC cohort, also validated in TCGA GC cohort, presenting highly activated carbohydrate, fatty acid or lipid metabolism. CONCLUSION: The Signature 1-high GCTMB-H could be a marker of poor prognosis and is associated with metabolism disorder.


Assuntos
Neoplasias Gástricas , Carga Tumoral , Humanos , Biomarcadores Tumorais/genética , População do Leste Asiático , Genômica , Mutação , Prognóstico , Neoplasias Gástricas/genética , Neoplasias Gástricas/patologia , Transcriptoma , Carga Tumoral/genética
12.
Genet Res (Camb) ; 2022: 3217248, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36186000

RESUMO

Uterine Corpus Endometrial Carcinoma (UCEC), the most common gynecologic malignancy in developed countries, remains to be a major public health problem. Further studies are surely needed to elucidate the tumorigenesis of UCEC. Herein, intersecting 203 differentially expressed genes (DEGs) were identified with the GSE17025, GSE63678, and The Cancer Genome Atlas-UCEC datasets. The Gene Ontology/Kyoto Encyclopedia of Genes and Genomes functional enrichment analysis and protein-protein interaction (PPI) network were performed on those 203 DEGs. Intriguingly, 6 of the top 10 nodes in the PPI network were related to unfavorable prognosis, that is, ASPM, CDC20, DLGAP5, BUB1B, CDCA8, and NCAPG. The mRNA and protein expression levels of the 6 hub genes were elevated in UCEC tissues compared to normal tissues. Higher expression of the 6 hub genes was associated with poor prognostic clinicopathological characteristics. The receiver operating characteristic curve suggested the significant diagnostic ability of the 6 hub genes for UCEC. Then, underlying pathogeneses of UCEC including promoter methylation level, TP53 mutation status, genomic genetic variation, and immune cells infiltration were analyzed. The mRNA expression level of the 6 hub genes was also higher in cervical squamous cell carcinoma and endocervical adenocarcinoma, uterine carcinosarcoma, and ovarian serous cystadenocarcinoma tissues than in corresponding normal tissues. In conclusion, ASPM, CDC20, DLGAP5, BUB1B, CDCA8, and NCAPG may be considered diagnostic and prognostic biomarkers in UCEC.


Assuntos
Neoplasias do Endométrio , Perfilação da Expressão Gênica , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Proteínas Cdc20 , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Biologia Computacional , Bases de Dados Genéticas , Neoplasias do Endométrio/diagnóstico , Neoplasias do Endométrio/genética , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Prognóstico , Proteínas Serina-Treonina Quinases/genética , RNA Mensageiro/genética
13.
Cancers (Basel) ; 14(20)2022 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-36291812

RESUMO

Genomic instability (GI), which leads to the accumulation of DNA loss, gain, and rearrangement, is a hallmark of many cancers such as lung cancer, breast cancer, and colon cancer. However, the clinical significance of GI has not been systematically studied in the meningeal metastasis (MM) of solid tumors. Here, we collected both cerebrospinal fluid (CSF) and plasma samples from 56 solid tumor MM patients and isolated cell-free ctDNA to investigate the GI status using a next-generation sequencing-based comprehensive genomic profiling of 543 cancer-related genes. According to the unfiltered heterozygous mutation data-derived GI score, we found that 37 (66.1%) cases of CSF and 3 cases (6%) of plasma had a high GI status, which was further validated by low-depth whole-genome sequencing analysis. It is demonstrated that a high GI status in CSF was associated with poor prognosis, high intracranial pressure, and low Karnofsky performance status scores. More notably, a high GI status was an independent poor prognostic factor of poor MM-free survival and overall survival in lung adenocarcinoma MM patients. Furthermore, high occurrences of the co-mutation of TP53/EGFR, TP53/RB1, TP53/ERBB2, and TP53/KMT2C were found in MM patients with a high GI status. In summary, the GI status in CSF ctDNA might be a valuable prognostic indicator in solid tumor patients with MM.

14.
Biochim Biophys Acta Mol Basis Dis ; 1868(11): 166521, 2022 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-35985448

RESUMO

Nonsmall cell lung cancer (NSCLC) is among the most prevalent malignant tumours threatening human health. In the tumour microenvironment (TME), cancer-associated fibroblasts (CAFs) induce M2-polarized macrophages, which strongly regulate tumour progression. However, little is known about the association between CAFs and M2 macrophages. CD248 is a transmembrane glycoprotein found in several cancer cells, tumour stromal cells, and pericytes. Here, we isolated CAFs from tumour tissues of NSCLC patients to detect the relationship between CD248 expression and patient prognosis. We knocked down the expression of CD248 on CAFs to detect CXCL12 secretion and macrophage polarization. We then examined the effects of CD248-expressing CAF-induced M2 macrophage polarization to promote NSCLC progression in vitro and in vivo. We found that CD248 is expressed mainly in NSCLC-derived CAFs and that the expression of CD248 correlates with poor patient prognosis. Blocking CXCL12 receptor (CXCR4) drastically decreased M2 macrophage chemotaxis. CD248 promotes CAFs secreting CXCL12 to mediate M2-polarized macrophages to promote NSCLC progression both in vitro and in vivo. Collectively, our data suggest that CD248-positive CAFs induce NSCLC progression by mediating M2-polarized macrophages.


Assuntos
Fibroblastos Associados a Câncer , Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Antígenos CD/metabolismo , Antígenos de Neoplasias/metabolismo , Fibroblastos Associados a Câncer/patologia , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Linhagem Celular Tumoral , Quimiocina CXCL12/genética , Quimiocina CXCL12/metabolismo , Glicoproteínas/metabolismo , Humanos , Neoplasias Pulmonares/metabolismo , Macrófagos/metabolismo , Microambiente Tumoral
15.
Res Vet Sci ; 147: 68-73, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35461010

RESUMO

MicroRNAs are small, non-coding RNAs that regulate the expression of target genes. Previous research has demonstrated that microRNA-200a regulates cell apoptosis, tumor progression, and autoimmune disease. Preliminary studies found that microRNA-200a was differently expressed in the skin of Cashmere goats of various coat colors. However, the role of microRNA-200a in skin pigmentation remained poorly understood. In the current study, we investigated the effect of microRNA-200a on pigmentation in Cashmere goats. The expression of target genes was detected by real-time quantitative PCR, western blot, and immunohistochemistry staining both in vivo and in vitro. Luciferase reporter assays were used to demonstrate the relationship between microRNA-200a and its target genes Wnt family member 5A and frizzled class receptor 4 (WNT5A and FZD4) in HEK293T cells. BALB/c mice were injected with antagomiR-200a to detect melanin content and the expression of microRNA-200a and its target genes. The results demonstrated that the expression of microRNA-200a was significantly higher in brown tissue. Luciferase reporter assays confirmed that microRNA-200a targeted WNT5A and FZD4. The expression of WNT5A and FZD4 in the skin of brown Cashmere goats was significantly lower than that in white Cashmere goats by the detection of mRNA and protein levels. Overexpression/inhibition of microRNA-200a in keratinocytes decreased/increased the mRNA and protein expression of WNT5A and FZD4, respectively. In addition, the expression of WNT5A and FZD4 increased in the skin of BALB/c mice injected with antagomiR-200a, but the melanin content decreased. In summary, this study indicated that microRNA-200a regulates skin pigmentation by targeting WNT5A and FZD4 in Cashmere goats.


Assuntos
MicroRNAs , Pigmentação da Pele , Animais , Antagomirs , Receptores Frizzled/genética , Receptores Frizzled/metabolismo , Cabras/fisiologia , Células HEK293 , Humanos , Melaninas , Camundongos , Camundongos Endogâmicos BALB C , MicroRNAs/genética , MicroRNAs/metabolismo , RNA Mensageiro/genética , Pigmentação da Pele/genética , Proteína Wnt-5a/genética
16.
Oncol Rep ; 47(5)2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35362546

RESUMO

Ovarian cancer (OC) is the leading cause of mortality among the various types of gynecological cancer, and >75% of the cases are diagnosed at a late stage. Although platinum­based chemotherapy is able to help the majority of patients to achieve remission, the disease frequently recurs and acquires chemoresistance, resulting in high mortality rates. The complexity of OC therapy is not solely governed by the intrinsic characteristics of the OC cells (OCCs) themselves, but is also largely dependent on the dynamic communication between OCCs and various components of their surrounding microenvironment. The present review attempts to describe the mutual interplay between OCCs and their surrounding microenvironment. Tumor­associated macrophages (TAMs) and cancer­associated fibroblasts (CAFs) are the most abundant stromal cell types in OC. Soluble factors derived from CAFs steadily nourish both the OCCs and TAMs, facilitating their proliferation and immune evasion. ATP binding cassette transporters facilitate the extrusion of cytotoxic molecules, eventually promoting cell survival and multidrug resistance. Extracellular vesicles fulfill their role as genetic exchange vectors, transferring cargo from the donor cells to the recipient cells and propagating oncogenic signaling. A greater understanding of the vital roles of the tumor microenvironment will allow researchers to be open to the prospect of developing therapeutic approaches for combating OC chemoresistance.


Assuntos
Resistencia a Medicamentos Antineoplásicos , Neoplasias Ovarianas , Microambiente Tumoral , Feminino , Humanos , Recidiva Local de Neoplasia/genética , Oncogenes , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/patologia
17.
Int J Biol Macromol ; 206: 175-187, 2022 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-35217087

RESUMO

Infrared (IR) spectroscopy is a highly sensitive technique that provides complete information on chemical compositions. The IR spectra of proteins or peptides give rise to nine characteristic IR absorption bands. The amide I bands are the most prominent and sensitive vibrational bands and widely used to predict protein secondary structures. The interference of H2O absorbance is the greatest challenge for IR protein secondary structure prediction. Much effort has been made to reduce/eliminate the interference of H2O, simplify operation steps, and increase prediction accuracy. Progress in sampling and equipment has rendered the Fourier transform infrared (FTIR) technique suitable for determining the protein secondary structure in broader concentration ranges, greatly simplifying the operating steps. This review highlights the recent progress in sample preparation, data analysis, and equipment development of FTIR in A/T mode, with a focus on recent applications of FTIR spectroscopy in the prediction of protein secondary structure. This review also provides a brief introduction of the progress in ATR-FTIR for predicting protein secondary structure and discusses some combined IR methods, such as AFM-based IR spectroscopy, that are used to analyze protein structural dynamics and protein aggregation.


Assuntos
Peptídeos , Proteínas , Peptídeos/química , Estrutura Secundária de Proteína , Proteínas/química , Espectrofotometria Infravermelho , Espectroscopia de Infravermelho com Transformada de Fourier/métodos
18.
Mol Cancer ; 21(1): 41, 2022 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-35135542

RESUMO

BACKGROUND: PTEN is one of the most frequently mutated genes in human cancer. Although the roles of canonical PTEN protein and PTEN isoforms have been extensively explored, the current understanding of PTEN family members cannot fully illustrate the diversity of their roles in biological processes and tumor development. Notably, the function of noncoding RNAs arising from PTEN has been less elucidated. METHODS: We searched circBase and circInteractome to analyze the potential of PTEN for generating circRNAs. Then, Sanger sequencing, RNase R and Actinomycin D assays were used to verify the ring structure of circPTEN1. In situ hybridization and qRT-PCR were used to determine the level of circPTEN1 in peritumor and tumor tissues of colorectal cancer (CRC). Furthermore, functional experiments, including Transwell assay, 3D multicellular tumor spheroid invasion assay and metastasis models, were performed using circPTEN1 knockdown and overexpression cell lines in vitro and in vivo to investigate the effects of circPTEN1 on tumor metastasis in CRC. Mechanistically, luciferase reporter assay, fluorescence in situ hybridization, electrophoretic mobility shift assay, RNA immunoprecipitation, RNA pull-down and mass spectrometry were executed. RESULTS: We identified a circular RNA generated from the PTEN gene, designated circPTEN1, that is frequently downregulated in colorectal cancer, and decreased expression of circPTEN1 predicts poor survival. Low expression of circPTEN1 promotes metastasis in PDX models in vivo and accelerates cancer cell invasion in vitro, whereas overexpression of circPTEN1 reveals opposite roles. Mechanically, we found that circPTEN1 is capable of binding the MH2 domain of Smad4 to disrupt its physical interaction with Smad2/3, which reduces the formation and subsequent nucleus translocation of Smad complexes and consequently suppresses the expression of its downstream genes associated with epithelial-mesenchymal transition upon TGF-ß stimulation. Furthermore, we found that eIF4A3 suppresses the cyclization of circPTEN1 by directly binding to the circPTEN1 flanking region. CONCLUSIONS: Our study uncovered a novel PTEN gene-generated circRNA with a tumor suppression function, and further revealed the mechanism of circPTEN1 in CRC metastasis mediated by TGF-ß. The identification of circPTEN1 provides a new direction for PTEN investigation, and elucidation of circPTEN1/TGF-ß/Smad signaling may pave the way for the development of a potential therapeutic strategy for the suppression of cancer progression.


Assuntos
Neoplasias Colorretais , MicroRNAs , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células , Neoplasias Colorretais/patologia , Regulação Neoplásica da Expressão Gênica , Humanos , Hibridização in Situ Fluorescente , MicroRNAs/genética , PTEN Fosfo-Hidrolase/genética , PTEN Fosfo-Hidrolase/metabolismo , RNA Circular/genética , Fator de Crescimento Transformador beta/metabolismo
19.
J Cell Mol Med ; 25(21): 9891-9904, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34585512

RESUMO

Cancer stem cells (CSCs), a group of tumour cells with stem cell characteristics, have the ability of self-renewal, multi-lineage differentiation and tumour formation. Since CSCs are resistant to conventional radiotherapy and chemotherapy, their existence may be one of the root causes of cancer treatment failure and tumour progression. The elimination of CSCs may be effective for eventual tumour eradication. Because of the good therapeutic effects without major histocompatibility complex (MHC) restriction and the unique characteristics of CSCs, chimeric antigen receptor T-cell (CAR-T) therapy is expected to be an important method to eliminate CSCs. In this review, we have discussed the feasibility of CSCs-targeted CAR-T therapy for cancer treatment, summarized current research and clinical trials of targeting CSCs with CAR-T cells and forecasted the challenges and future direction from the perspectives of toxicity, persistence and potency, trafficking, infiltration, immunosuppressive tumour microenvironment, and tumour heterogeneity.


Assuntos
Imunoterapia Adotiva/métodos , Células-Tronco Neoplásicas/imunologia , Células-Tronco Neoplásicas/metabolismo , Animais , Estudos Clínicos como Assunto , Gerenciamento Clínico , Engenharia Genética , Humanos , Imunoterapia Adotiva/efeitos adversos , Neoplasias/etiologia , Neoplasias/terapia , Receptores de Antígenos de Linfócitos T/genética , Receptores de Antígenos de Linfócitos T/imunologia , Receptores de Antígenos de Linfócitos T/metabolismo , Receptores de Antígenos Quiméricos/genética , Receptores de Antígenos Quiméricos/metabolismo , Linfócitos T/imunologia , Linfócitos T/metabolismo , Linfócitos T/patologia , Resultado do Tratamento
20.
EMBO J ; 40(10): e105806, 2021 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-33755220

RESUMO

PTEN is one of the most frequently mutated genes in malignancies and acts as a powerful tumor suppressor. Tumorigenesis is involved in multiple and complex processes including initiation, invasion, and metastasis. The complexity of PTEN function is partially attributed to PTEN family members such as PTENα and PTENß. Here, we report the identification of PTENε (also named as PTEN5), a novel N-terminal-extended PTEN isoform that suppresses tumor invasion and metastasis. We show that the translation of PTENε/PTEN5 is initiated from the CUG816 codon within the 5'UTR region of PTEN mRNA. PTENε/PTEN5 mainly localizes in the cell membrane and physically associates with and dephosphorylates VASP and ACTR2, which govern filopodia formation and cell motility. We found that endogenous depletion of PTENε/PTEN5 promotes filopodia formation and enhances the metastasis capacity of tumor cells. Overall, we identify a new isoform of PTEN with distinct subcellular localization and molecular function compared to the known members of the PTEN family. These findings advance our current understanding of the importance and diversity of PTEN functions.


Assuntos
PTEN Fosfo-Hidrolase/metabolismo , Pseudópodes/metabolismo , Animais , Western Blotting , Carcinogênese/metabolismo , Transformação Celular Neoplásica/metabolismo , Humanos , Espectrometria de Massas , Camundongos , Camundongos Endogâmicos C57BL , Microscopia Confocal , PTEN Fosfo-Hidrolase/genética , Reação em Cadeia da Polimerase em Tempo Real
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA