Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Atherosclerosis ; 270: 57-67, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29407889

RESUMO

BACKGROUND AND AIMS: Liver scavenger receptor class B type I (SR-BI) exerts atheroprotective effects through selective lipid uptake (SLU) from high-density lipoprotein cholesterol (HDL-C). Low hepatic SR-BI expression leads to high HDL-C levels in the circulation and an increased risk of atherosclerosis. Furthermore, macrophage SR-BI mediates bidirectional cholesterol flux and may protect against atherogenesis. Previous studies have revealed that miR-24 is closely related to cardiovascular disease (CVD) progression. We aimed to investigate the molecular mechanisms by which miR-24 participates in SR-BI-mediated selective HDL cholesteryl ester (HDL-CE) uptake and further atherogenesis in apoE-/- mice. METHODS: Bioinformatic predictions and luciferase reporter assays were utilized to detect the association between miR-24 and the SR-BI 3' untranslated region (3' UTR), and RT-PCR and western blotting were used to evaluate SR-BI mRNA and protein expression, respectively. The effects of miR-24 on Dil-HDL uptake were determined by flow cytometry assay. Double-radiolabeled HDL (125I-TC-/[3H] CEt-HDL) was utilized to measure the effects of miR-24 on HDL and CE binding and SLU in HepG2 and PMA-treated THP-1 cells. In addition, total cholesterol (TC) levels in HepG2 cells were analyzed using enzymatic methods, and macrophage lipid content was evaluated by high-performance liquid chromatography (HPLC) assay. Small interfering RNA (siRNA) and pcDNA3.1(-)-hSR-BI plasmid transfection procedures were utilized to confirm the role of SR-BI in the effects of miR-24 on Dil-HDL uptake, SLU and cholesterol levels in both cell types. Hepatic SR-BI level in apoE-/- mice was measured by western blotting. Liver TC, FC and CE levels and plasma triglycerides (TG), TC and HDL-C levels were evaluated enzymatically using commercial test kits. Atherosclerotic lesion sizes were measured using Oil Red O and hematoxylin-eosin staining. RESULTS: miR-24 directly repressed SR-BI expression by targeting its 3'UTR. In addition, miR-24 decreased Dil-HDL uptake and SLU in HepG2 and THP-1 macrophages. In the presence of HDL, miR-24 decreased TC levels in HepG2 cells and TC, free cholesterol (FC) and CE levels in macrophages. Overexpression and down-regulation assays showed that SR-BI mediated the effects of miR-24 on Dil-HDL uptake, SLU and cholesterol levels. Lastly, miR-24 administration decreased hepatic SR-BI expression and promoted atheromatous plaque formation in apoE-/- mice, findings in line with those of our in vitro studies. CONCLUSIONS: These findings indicate that miR-24 accelerates atherogenesis by repressing SR-BI-mediated SLU from HDL-C.


Assuntos
Aterosclerose/sangue , HDL-Colesterol/sangue , Fígado/metabolismo , Macrófagos/metabolismo , MicroRNAs/metabolismo , Receptores Depuradores Classe B/metabolismo , Regiões 3' não Traduzidas , Animais , Aterosclerose/genética , Aterosclerose/patologia , Sítios de Ligação , Modelos Animais de Doenças , Células HEK293 , Células Hep G2 , Humanos , Masculino , Camundongos Knockout para ApoE , MicroRNAs/genética , Processamento Pós-Transcricional do RNA , Receptores Depuradores Classe B/genética , Células THP-1
2.
Oncol Rep ; 38(2): 1303-1311, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28677794

RESUMO

Our previous study reported several alternative splicing variants of arginine N-methyltransferase 2 (PRMT2), which lose different exons in the C-terminals of the wild-type PRMT2 gene. Particularly, due to frame-shifting, PRMT2ß encodes a novel amino acid sequence at the C-terminus of the protein, the function of which is not understood. In the present study, we determined the role of PRMT2ß in breast cancer cell proliferation, apoptosis and its effect on the Akt signaling pathway. Stable breast cancer MCF7 cell line with lentivirus-mediated PRMT2ß overexpression was obtained after selection by puromycin for 2 weeks. The effect of lentivirus-mediated PRMT2ß overexpression on breast cancer cellular oncogenic properties was evaluated by MTT, colony formation, cell cycle analysis and apoptosis assays in MCF7 cells. Luciferase activity assay and western blot analysis were performed to characterize the effects of PRMT2ß on cyclin D1 promoter activities and the Akt signaling pathway. Tissue microarray was performed to investigate the association of PRMT2ß with breast cancer progression. Lentivirus-mediated PRMT2ß overexpression suppressed the cell proliferation and colony formation of breast cancer MCF7 cells. PRMT2ß overexpression induced cell cycle arrest and apoptosis of MCF7 cells. Furthermore, PRMT2ß was revealed to suppress the transcription activity of the cyclin D1 promoter, and PRMT2ß was also found to inhibit cyclin D1 expression via the suppression of Akt/GSK-3ß signaling in breast cancer cells. Clinically, it was revealed that PRMT2ß expression was negatively correlated with human epidermal growth factor receptor 2 (HER2) (p=0.033) in breast tumors. Our results revealed that PRMT2ß, a novel splice variant of PRMT2, plays potential antitumor effect by suppressing cyclin D1 expression and inhibiting Akt signaling activity. This also opens a new avenue for treating breast cancer.


Assuntos
Processamento Alternativo , Biomarcadores Tumorais/genética , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Regulação Neoplásica da Expressão Gênica , Peptídeos e Proteínas de Sinalização Intracelular/genética , Proteína-Arginina N-Metiltransferases/genética , Apoptose , Neoplasias da Mama/metabolismo , Estudos de Casos e Controles , Proliferação de Células , Ciclina D1/genética , Ciclina D1/metabolismo , Feminino , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Prognóstico , Isoformas de Proteínas , Proteína-Arginina N-Metiltransferases/metabolismo , Receptor ErbB-2/genética , Receptor ErbB-2/metabolismo , Células Tumorais Cultivadas
3.
Int J Oncol ; 50(5): 1567-1578, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28393241

RESUMO

The role of transforming growth factor-ß1 (TGF-ß1) is complicated and plays a different role in the development of cancer. High mobility group A (HMGA1) participates in multiple cellular biology processes, and exerts important roles in the epithelial-mesenchymal transition (EMT). However, the correlation of TGF-ß1 and HMGA1 in cancer cells is not yet fully understood. In this study, we determined the effects of TGF-ß1 on HMGA1 expression in thyroid cancer cells and examined the role of HMGA1 in thyroid cancer progression. With real-time PCR and immunofluorescence staining, our study demonstrated that TGF-ß1 induced the expression of HMGA1 through phosphoinositide 3-kinase (PI3K) and the extracellular signal-related kinase (ERK) signaling in thyroid cancer cells. With luciferase reported assay, the HMGA1 promoter activity was activated by TGF-ß1 in the SW579 cells. Furthermore, lentivirus-mediated HMGA1 knockdown inhibits cellular oncogenic properties of thyroid cancer cells. Clinically, tissue microarray revealed that HMGA1 was expressed in thyroid carcinoma more than that in normal thyroid tissues (P<0.001); expression of HMGA1 and MMP-2 was identified to be positively correlated (P=0.017). The present study established the first link between HMGA1 and TGF-ß1 in the regulation of thyroid cancer proliferation and invasion, and provided evidence for the pivotal role of HMGA1 in the progression of thyroid cancer, indicating HMGA1 to be potential biological marker for the diagnosis of thyroid cancer.


Assuntos
Proteína HMGA1a/genética , Metaloproteinase 2 da Matriz/genética , Neoplasias da Glândula Tireoide/genética , Fator de Crescimento Transformador beta1/genética , Adulto , Idoso , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , Feminino , Regulação Neoplásica da Expressão Gênica , Proteína HMGA1a/biossíntese , Humanos , Sistema de Sinalização das MAP Quinases , Masculino , Metaloproteinase 2 da Matriz/biossíntese , Pessoa de Meia-Idade , Invasividade Neoplásica/genética , Neoplasias da Glândula Tireoide/patologia
4.
J Physiol Biochem ; 73(2): 287-296, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28181168

RESUMO

Endothelial dysfunction plays a vital role during the initial stage of atherosclerosis. Oxidized low-density lipoprotein (ox-LDL) induces vascular endothelial injury and vessel wall inflammation. Sphingosine-1-phosphate (S1P) exerts numerous vasoprotective effects by binding to diverse S1P receptors (S1PRs; S1PR1-5). A number of studies have shown that in endothelial cells (ECs), S1PR2 acts as a pro-atherosclerotic mediator by stimulating vessel wall inflammation through the phosphatidylinositol 3-kinase (PI3K)/Akt signaling pathway. Scavenger receptor class B member I (SR-BI), a high-affinity receptor for apolipoprotein A-I (apoA-I)/high-density lipoprotein (HDL), inhibits nuclear factor-κB (NF-κB) translocation and decreases the plasma levels of inflammatory mediators via the PI3K/Akt pathway. We hypothesized that the inflammatory effects of S1P/S1PR2 on ECs may be regulated by apoA-I/SR-BI. The results showed that ox-LDL, a pro-inflammatory factor, augmented the S1PR2 level in human umbilical vein endothelial cells (HUVECs) in a dose- and time-dependent manner. In addition, S1P/S1PR2 signaling influenced the levels of inflammatory factors, including tumor necrosis factor-α (TNF-α), interleukin-1ß (IL-1ß), and IL-10, aggravating inflammation in HUVECs. Moreover, the pro-inflammatory effects induced by S1P/S1PR2 were attenuated by SR-BI overexpression and enhanced by an SR-BI inhibitor, BLT-1. Further experiments showed that the PI3K/Akt signaling pathway was involved in this process. Taken together, these results demonstrate that apoA-I/SR-BI negatively regulates S1P/S1PR2-mediated inflammation in HUVECs by activating the PI3K/Akt signaling pathway.


Assuntos
Apolipoproteína A-I/metabolismo , Endotélio Vascular/metabolismo , Lisofosfolipídeos/metabolismo , Fosfatidilinositol 3-Quinase/metabolismo , Receptores de Lisoesfingolipídeo/agonistas , Receptores Depuradores Classe B/agonistas , Transdução de Sinais , Esfingosina/análogos & derivados , Transporte Ativo do Núcleo Celular/efeitos dos fármacos , Apolipoproteína A-I/genética , Células Cultivadas , Ciclopentanos/farmacologia , Endotélio Vascular/citologia , Endotélio Vascular/efeitos dos fármacos , Endotélio Vascular/imunologia , Regulação da Expressão Gênica/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana/citologia , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana/imunologia , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Interleucina-10/agonistas , Interleucina-10/metabolismo , Interleucina-1beta/agonistas , Interleucina-1beta/metabolismo , Cinética , Lipoproteínas LDL/efeitos adversos , Lipoproteínas LDL/genética , Lipoproteínas LDL/metabolismo , Proteínas Proto-Oncogênicas c-akt/agonistas , Proteínas Proto-Oncogênicas c-akt/metabolismo , Receptores de Lisoesfingolipídeo/genética , Receptores de Lisoesfingolipídeo/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Receptores Depuradores Classe B/antagonistas & inibidores , Receptores Depuradores Classe B/genética , Receptores Depuradores Classe B/metabolismo , Transdução de Sinais/efeitos dos fármacos , Esfingosina/metabolismo , Receptores de Esfingosina-1-Fosfato , Tiossemicarbazonas/farmacologia , Fator de Necrose Tumoral alfa/agonistas , Fator de Necrose Tumoral alfa/metabolismo
5.
Lipids ; 52(2): 109-117, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-28039587

RESUMO

Apolipoprotein M (apoM) is a relatively novel apolipoprotein that plays pivotal roles in many dyslipidemia-associated diseases; however, its regulatory mechanisms are poorly understood. Many cytokines have been identified that down-regulate apoM expression in HepG2 cells, among which transforming growth factor-ß (TGF-ß) exerts the most potent effects. In addition, c-Jun, a member of the activated protein 1 (AP-1) family whose activity is modulated by c-Jun N-terminal kinase (JNK), decreases apoM expression at the transcriptional level by binding to the regulatory element in the proximal apoM promoter. In this study, we investigated the molecular mechanisms through which TGF-ß decreases the apoM level in HepG2 cells. The results revealed that TGF-ß inhibited apoM expression at both the mRNA and protein levels in a dose- and time-dependent manner and that it suppressed apoM secretion. These effects were attenuated by treatment of cells with either SP600125 (JNK inhibitor) or c-Jun siRNA. 5Z-7-oxozeaenol [(a TGF-ß-activated kinase 1 (TAK-1) inhibitor)] also attenuated the TGF-ß-mediated inhibition of apoM expression and suppressed the activation of JNK and c-Jun. These results have demonstrated that TGF-ß suppresses apoM expression through the TAK-1-JNK-c-Jun pathway in HepG2 cells.


Assuntos
Apolipoproteínas/genética , Apolipoproteínas/metabolismo , Lipocalinas/genética , Lipocalinas/metabolismo , MAP Quinase Quinase Quinases/metabolismo , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-jun/metabolismo , Fator de Crescimento Transformador beta/farmacologia , Antracenos/farmacologia , Apolipoproteínas M , Relação Dose-Resposta a Droga , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Células Hep G2 , Humanos , Lactonas/farmacologia , Regiões Promotoras Genéticas , Resorcinóis/farmacologia , Fatores de Tempo
6.
Yi Chuan ; 38(7): 666-673, 2016 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-27733340

RESUMO

Mitochondrial DNA (mtDNA) mutations cause a variety of mitochondrial DNA-based diseases which have been studied using Lymphoblastoid cell lines (LCLs) and transmitochondrial cybrids. Individual genetic information is preserved permanently in LCLs while the development of transmitochondrial cybrids provide ex-vivo cellular platform to study molecular mechanism of mitochondrial DNA-based diseases. The cytoplasmic donor cells for previous transmitochondrial cybrids come from patient's tissue or platelet directly. Here, we depicted in details the principle, methods and techniques to establish LCLs from frozen peripheral bloods harboring mitochondrial 4401G > A mutation by infection of Epstein Barr virus, and then to generate cybrids using ρ0 206 and LCLs. The process of establishing these two cellular models was summarized into four steps as follows: (1) Generation of LCLs; (2) Transformation; (3) Selection; (4) Verification. To faithfully represent the function of mtDNA mutation, we analyzed and identified the sites of mtDNA mutations and copy numbers of each cellular models as well as the karyotype of transmitochondrial cybrids. Those clones with consistent parameters were selected for preservation and future analysis of the function of point mutations of mtDNA. Although these two cellular models play important roles in understanding molecular mechanism of mitochondrial DNA-based diseases on the cellular level, their limitations should be considered when elucidating the character of tissue specificity of mitochondrial DNA-based diseases.


Assuntos
DNA Mitocondrial/genética , Linfócitos/metabolismo , Doenças Mitocondriais/genética , Linhagem Celular Tumoral , Dosagem de Genes , Humanos , Mitocôndrias/metabolismo , Doenças Mitocondriais/etiologia , Mutação , Consumo de Oxigênio
7.
J Transl Med ; 14: 80, 2016 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-27008379

RESUMO

BACKGROUND: S100A13 and high mobility group A (HMGA1) are known to play essential roles in the carcinogenesis and progression of cancer. However, the correlation between S100A13 and HMGA1 during cancer progression is not yet well understood. In this study, we determined the effects of S100A13 on HMGA1 expression in thyroid cancer cells and examined the role of HMGA1 in thyroid cancer progression. METHODS: Stable ectopic S100A13 expression TT cellular proliferation was evaluated by nude mice xenografts assays. The effect of lentivirus-mediated S100A13 knockdown on thyroid cancer cellular oncogenic properties were evaluated by MTT, colony formation assays and transwell assays in TPC1 and SW579 cells. The effect of siRNA-mediated HMGA1 knockdown on thyroid cancer cellular proliferation and invasion were evaluated by MTT, colony formation assays and transwell assays. The tissue microarray was performed to investigate the correlation between S100A13 and HMGA1 expression in tumor tissues. RESULTS: The ectopic expression of S100A13 could increase tumor growth in a TT cell xenograft mouse model. Moreover, lentivirus-mediated S100A13 knockdown led to the inhibition of cellular oncogenic properties in thyroid cancer cells, and HMGA1 was found to be involved in the effect of S100A13 on thyroid cancer growth and invasion. Furthermore, siRNA-mediated HMGA1 knockdown was proved to inhibit the growth of TPC1 cells and invasive abilities of SW579 cells. Clinically, it was revealed that both S100A13 and HMGA1 showed a higher expression levels in thyroid cancer cases compared with those in matched normal thyroid cases (P = 0.007 and P = 0.000); S100A13 and HMGA1 expressions were identified to be positively correlated (P = 0.004, R = 0.316) when analyzed regardless of thyroid cancer types. CONCLUSIONS: This is the first report for the association between HMGA1 and S100A13 expression in the modulation of thyroid cancer growth and invasion. Those results would provide an essential insight into the effect of S100A13 on carcinogenesis of thyroid tumor, rending S100A13 to be potential biological marker for the diagnosis of thyroid cancer.


Assuntos
Proteína HMGA1a/metabolismo , Proteínas S100/metabolismo , Neoplasias da Glândula Tireoide/metabolismo , Neoplasias da Glândula Tireoide/patologia , Animais , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Feminino , Técnicas de Silenciamento de Genes , Humanos , Lentivirus/metabolismo , Masculino , Camundongos Endogâmicos BALB C , Camundongos Nus , Microscopia de Fluorescência , Invasividade Neoplásica , RNA Interferente Pequeno/metabolismo , Fatores de Transcrição da Família Snail , Fatores de Transcrição/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
8.
FEBS Lett ; 586(22): 4052-60, 2012 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-23085394

RESUMO

Hedgehog (Hh) signaling plays many important roles in developmental processes and cancers. Smoothened (Smo) is an important signal transducer in the Hh pathway, and its expression is tightly regulated by several different post-transcriptional mechanisms. However, whether microRNAs (miRNAs) are involved in Smo regulation is still unclear. Here, we found that miR-5 acts as a suppressor of the Hh pathway by targeting Smo. Through in vivo sensor assay and in vitro luciferase assay, we found that miR-5 downregulates Smo through directly binding to its 3'UTR. Moreover, our data indicated Costal-2 (Cos2) and Fused (Fu) do not play a role in the reduction of Smo mediated by miR-5. Furthermore, we determined that miR-5 not involved in Notch or Dpp signaling pathways by detecting target gene expression. Together, our results indicate that miR-5 can specifically suppress Hh signaling by directly targeting Smo in Drosophila.


Assuntos
Proteínas de Drosophila/genética , Proteínas Hedgehog/genética , MicroRNAs/genética , Receptores Acoplados a Proteínas G/genética , Transdução de Sinais/genética , Regiões 3' não Traduzidas/genética , Animais , Animais Geneticamente Modificados , Sequência de Bases , Regulação para Baixo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/crescimento & desenvolvimento , Drosophila melanogaster/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Proteínas Hedgehog/metabolismo , Discos Imaginais/crescimento & desenvolvimento , Discos Imaginais/metabolismo , Imuno-Histoquímica , MicroRNAs/metabolismo , Microscopia Confocal , Dados de Sequência Molecular , Receptores Acoplados a Proteínas G/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Homologia de Sequência do Ácido Nucleico , Receptor Smoothened , Asas de Animais/crescimento & desenvolvimento , Asas de Animais/metabolismo
9.
Biochem Biophys Res Commun ; 420(1): 17-23, 2012 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-22390933

RESUMO

It is well-known that sphingosine-1-phosphate (S1P), the phospholipid content of HDL, binding to S1P receptors can raise COX-2 expression and PGI(2) release through p38MAPK/CREB pathway. In the present study we assess the action of SR-B1 initiated PI3K-Akt-eNOS signaling in the regulation of COX-2 expression and PGI(2) production in response to HDL. We found that apoA1 could increase PGI(2) release and COX-2 expression in ECV 304 endothelial cells. Furthermore, SR-B1 was found to be involved in HDL induced up-regulation of COX-2 and PGI(2). Over-expressed SR-B1 did not significantly increase the expression of COX-2 and the PGI(2) levels, but knock-down of SR-B1 by siRNA could significantly attenuate COX-2 expression and PGI(2) release together with p38MAPK and CREB phosphorylation. Consistently, the declines of p-p38MAPK, p-CREB, COX-2 and PGI(2) were also observed after incubation with LY294002 (25µmol/L; PI3K special inhibitor) or L-NAME (50µmol/L; eNOS special inhibitor). In addition, we demonstrated the increases of PGI(2) release, COX-2 expression and p38MAPK phosphorylation, when nitric oxide level was raised through the incubation of L-arginine (10 or 20nmol/L) in endothelial cells. Taking together, our data support that SR-B1 mediated PI3K-Akt-eNOS signaling was involved in HDL-induced COX-2 expression and PGI(2) release in endothelial cells.


Assuntos
Células Endoteliais/metabolismo , Epoprostenol/biossíntese , Lipoproteínas HDL/metabolismo , Receptores Depuradores Classe B/metabolismo , Apolipoproteína A-I/metabolismo , Apolipoproteína A-I/farmacologia , Linhagem Celular , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Ciclo-Oxigenase 2/biossíntese , Células Endoteliais/efeitos dos fármacos , Humanos , Lipoproteínas HDL/farmacologia , Óxido Nítrico Sintase Tipo III/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Receptores Depuradores Classe B/genética , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
10.
Recent Pat Anticancer Drug Discov ; 7(2): 154-67, 2012 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-22339355

RESUMO

ATP citrate lyase (ACL or ACLY) is an extra-mitochondrial enzyme widely distributed in various human and animal tissues. ACL links glucose and lipid metabolism by catalyzing the formation of acetyl-CoA and oxaloacetate from citrate produced by glycolysis in the presence of ATP and CoA. ACL is aberrantly expressed in many immortalized cells and tumors, such as breast, liver, colon, lung and prostate cancers, and is correlated reversely with tumor stage and differentiation, serving as a negative prognostic marker. ACL is an upstream enzyme of the long chain fatty acid synthesis, providing acetyl-CoA as an essential component of the fatty acid synthesis. Therefore, ACL is a key enzyme of cellular lipogenesis and potent target for cancer therapy. As a hypolipidemic strategy of metabolic syndrome and cancer treatment, many small chemicals targeting ACL have been designed and developed. This review article provides an update for the research and development of ACL inhibitors with a focus on their patent status, offering a new insight into their potential application.


Assuntos
ATP Citrato (pro-S)-Liase/antagonistas & inibidores , Antineoplásicos/química , Desenho de Fármacos , Inibidores Enzimáticos/química , Lipogênese/efeitos dos fármacos , Neoplasias/tratamento farmacológico , Neoplasias/enzimologia , ATP Citrato (pro-S)-Liase/química , ATP Citrato (pro-S)-Liase/metabolismo , Animais , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Ácido Cítrico/análogos & derivados , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/uso terapêutico , Humanos , Camundongos , Patentes como Assunto , Processamento de Proteína Pós-Traducional
11.
Mol Cell Biochem ; 363(1-2): 21-33, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22113622

RESUMO

Sphingosine-1-phosphate (S1P), which is generated from the sphingosine kinase-catalyzed phosphorylation of sphingosine, is now recognized as a critical regulator of many kinds of physiological and pathological processes, including cancer, cardiovascular function, and diabetes. It can also trigger a wide variety of biological effect, such as cell movement, differentiation, survival, inflammation, immunity, calcium homeostasis, and angiogenesis. As we know, a number of the biological effects of S1P are mediated by its binding to five specific G protein-coupled receptors located on the cell surface or intracellular targets. However, the synthesis and the secretion of S1P are regulated by various endogenetic or ectogenous stimuli and involve many kinds of enzymes and transporters. In this review, we discuss the regulation of S1P synthesis by many kinds of enzymes and mainly introduce the process of ceramide to S1P. Moreover, S1P deterioration is important balance in physiologic adjustment. We also describe the role of verified or potential transporters in S1P release in detail.


Assuntos
Lisofosfolipídeos/metabolismo , Esfingosina/análogos & derivados , Aldeído Liases/metabolismo , Animais , Transporte Biológico , Ceramidases/metabolismo , Ceramidas/metabolismo , Humanos , Proteínas de Membrana/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Monoéster Fosfórico Hidrolases/metabolismo , Fosforilação , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Esfingosina/metabolismo
12.
Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi ; 27(6): 685-7, 2011 Jun.
Artigo em Chinês | MEDLINE | ID: mdl-21882481

RESUMO

AIM: To investigate the effect of ciglitazone on CD36 expression and cholesterol influx in THP-1 macrophage. METHODS: After exposure of the cultured THP-1 macrophage to ciglitazone for 24 h, [(3)H] labeled Cholesterol influx was determined by FJ-2107P typed liquid scintillator. CD36 mRNA and protein level were determined by reverse transcription-polymerase chain reaction (RT-PCR) and Western blotting respectively. RESULTS: PPARγ agonist, ciglitazone, elevated CD36 in both protein and mRNA levels, and increased cholesterol influx in THP-1 macrophage. The levels of cholesterol influx were 20. 3%, 28. 6%, 37. 2%, 44. 3%, 48. 7% respectively. CONCLUSION: Our results indicated that ciglitazone may play an important role in cholesterol influx and modulating CD36 expression in THP-1 macrophage.


Assuntos
Antígenos CD36/metabolismo , Colesterol/metabolismo , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Tiazolidinedionas/farmacologia , Antígenos CD36/efeitos dos fármacos , Linhagem Celular , Células Espumosas/efeitos dos fármacos , Células Espumosas/metabolismo , Humanos , Masculino , PPAR gama/agonistas , RNA Mensageiro/efeitos dos fármacos , RNA Mensageiro/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA