Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 77
Filtrar
1.
Anal Chem ; 2024 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-38329294

RESUMO

Amplification-free digital immunoassays (DIAs) typically utilize optical nanoparticles to enhance single immunocomplex molecule detection. The efficiency and uniformity of transferring the nanoparticles from a bulk solution to a solid surface determine the limit of detection (LOD) and the accuracy of DIAs. Previous methods suffer from issues like low efficiency, nonuniform distribution, and particle aggregation. Here, we present a novel technique named synergistic sedimentation of Brownian motion suppression and dehydration transfer (SynSed) for nanoparticles using water-soluble polymers. The efficiency of transferring quantum dots (QDs) was increased from 10.7 to 91.4%, and the variation in QD distribution was restricted to 8.8%. By incorporating SynSed into DIAs, we achieved a remarkable reduction in the LOD (down to 3.9 aM) for carcinoembryonic antigen and expanded the dynamic range to cover 3 orders of magnitude in concentration, ranging from 0.01 to 10 fM. DIAs enhanced with SynSed possess ultrahigh sensitivity, advanced accuracy, and specificity, offering a great premise in early disease diagnostics, risk stratification, and treatment response monitoring.

2.
Analyst ; 148(19): 4877-4884, 2023 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-37642356

RESUMO

There is an urgent need for homogeneous immunoassays that offer sufficient sensitivity for routine clinical practice. In this study, we have developed a highly sensitive, fluorescence resonance energy transfer (FRET)-based homogeneous immunoassay. Unlike previous FRET-based homogeneous immunoassays, where acceptors were attached to antibody molecules located far from the donor, we employed acceptors to label the entire sandwich-structured immunocomplex, including two antibodies and one antigen. As a result, the FRET signal was amplified by a factor of 10, owing to the reduced distance between the donor and acceptors. We validated our method by quantifying carcinoembryonic antigen (CEA) and α-fetoprotein (AFP) in PBS buffer and blank plasma. The limits of detection (LOD) for CEA and AFP in both PBS buffer and blank plasma were comparable, reaching sub-femtomolar levels. Furthermore, we successfully quantified CEA and AFP in three human plasma samples, thereby confirming the reliability of our method for clinical applications.


Assuntos
Antígeno Carcinoembrionário , Pontos Quânticos , Humanos , Transferência Ressonante de Energia de Fluorescência , Reprodutibilidade dos Testes , alfa-Fetoproteínas , Anticorpos , Corantes , Imunoensaio
3.
J Craniofac Surg ; 34(8): 2430-2432, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37643077

RESUMO

The aim of this study was to investigate the feasibility and evaluate the clinical effects of transnasal marsupialization of maxillary cyst under nasal endoscope. Twenty patients with maxillary bone cysts were treated with endoscopic marsupialization. According to the location of the maxillary bone cyst, the opening window was selected in the nasal base or the inferior or middle nasal meatus. The cyst wall of the window was removed, and the fluid was drained out. The diameter of the opening window was more than 1 cm, so that the cyst and the maxillary sinus can be fused into a cavity. This ensured nasal drainage through the cyst cavity and nasal cavity or maxillary sinus. The patients were followed up for 6 to 18 months. No serious complications occurred. The cyst wall epithelialized 2 or 3 months after the operation, and the cyst cavity drained well with no recurrence. Intranasal marsupialization under a nasal endoscope is a feasible alternative for the treatment of maxillary cysts. It makes the procedure simple, safe, less traumatic, has definite clinical effects, and low recurrence rate. Especially suitable for maxillary cysts protruding into the nasal floor or maxillary sinus.


Assuntos
Cistos Ósseos , Cistos , Humanos , Cistos/diagnóstico por imagem , Cistos/cirurgia , Drenagem , Endoscopia/métodos , Seio Maxilar/diagnóstico por imagem , Seio Maxilar/cirurgia , Cavidade Nasal/cirurgia
4.
Sci Total Environ ; 861: 160564, 2023 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-36455743

RESUMO

Breast cancer is the most common malignant tumor in women worldwide, and environmental pollutants are considered to be risk factors. Currently, most studies into benzo[a]pyrene (B[a]P)-induced breast cancer focus on biological effects such as proliferation, invasion, and metastasis, DNA damage, estrogen receptor (ER)-related molecular mechanisms, oxidative damage, and other metabolic pathways. This study aims to provide insights into the role of B[a]P in breast cancer development through RNA-seq and bioinformatics analysis and construction of a competing endogenous RNA (ceRNA) regulatory network. By analyzing RNA-seq results, we identified 144 differentially-expressed circRNAs, 69 differentially-expressed lncRNAs, 20 differentially-expressed miRNAs, and 212 differentially-expressed mRNAs. Following on, we analyzed the gene ontology (GO) and KEGG enrichment functions of the differentially-expressed RNAs. In addition, the protein-protein interaction (PPI) network was mapped for differentially-expressed mRNAs. Subsequently, we constructed ceRNA networks, one of which consisted of 45 dysregulated circRNAs, 11 miRNAs, and 9 mRNAs, and a second consisted of 40 lncRNAs, 11 miRNAs, and 9 mRNAs. Finally, 6 circRNAs, 4 lncRNAs, 1 miRNA, and 4 mRNAs were randomly selected for quantitative real-time PCR verification. PCR results were further verified by Western blotting assays. These results show that the expression level of differentially-expressed RNA was consistent with the sequencing data, and the Western blotting results were highly consistent with the PCR results, confirming that the sequencing result was very reliable. This study systematically explores the ceRNA atlas of differentially-expressed genes related to B[a]P exposure in breast cancer cells, providing new insights into mechanisms of environmental pollutants in breast cancer.


Assuntos
Neoplasias da Mama , MicroRNAs , RNA Longo não Codificante , Humanos , Feminino , Benzo(a)pireno/toxicidade , RNA Circular , Neoplasias da Mama/genética , RNA Longo não Codificante/genética , Sequenciamento do Exoma , Redes Reguladoras de Genes , MicroRNAs/genética , RNA Mensageiro/genética , Transcriptoma
5.
Front Cell Dev Biol ; 10: 1023079, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36506097

RESUMO

Background: Tamoxifen (TMX) is one of the most widely used drugs to treat breast cancer (BC). However, acquired drug resistance is still a major obstacle to its application, rendering it crucial to explore the mechanisms of TMX resistance in BC. This aims of this study were to identify the mechanisms of TMX resistance and construct ceRNA regulatory networks in breast cancer. Methods: GEO2R was used to screen for differentially expressed mRNAs (DEmRNAs) leading to drug resistance in BC cells. MiRTarbase and miRNet were used to predict miRNAs and lncRNAs upstream, and the competing endogenous RNA (ceRNA) regulatory network of BC cell resistance was constructed by starBase. We used the Kaplan-Meier plotter and Gene Expression Profiling Interactive Analysis (GEPIA) to analyze the expression and prognostic differences of genes in the ceRNA network with core axis, and qRT-PCR was used to further verify the above conclusions. Results: We found that 21 DEmRNAs were upregulated and 43 DEmRNA downregulated in drug-resistant BC cells. DEmRNAs were noticeably enriched in pathways relevant to cancer. We then constructed a protein-protein interaction (PPI) network based on the STRING database and defined 10 top-ranked hub genes among the upregulated and downregulated DEmRNAs. The 20 DEmRNAs were predicted to obtain 113 upstream miRNAs and 501 lncRNAs. Among them, 7 mRNAs, 22 lncRNAs, and 11 miRNAs were used to structure the ceRNA regulatory network of drug resistance in BC cells. 4 mRNAs, 4 lncRNAs, and 3 miRNAs were detected by GEPIA and the Kaplan-Meier plotter to be significantly associated with BC expression and prognosis. The differential expression of the genes in BC cells was confirmed by qRT-PCR. Conclusion: The ceRNA regulatory network of TMX-resistant BC was successfully constructed and confirmed. This will provide an important resource for finding therapeutic targets for TMX resistance, where the discovery of candidate conventional mechanisms can aid clinical decision-making. In addition, this resource will help discover the mechanisms behind this type of resistance.

6.
Front Oncol ; 12: 780950, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35280739

RESUMO

Background: Pyroptosis is regulated by long non-coding RNAs (lncRNAs) in ovarian cancer (OC). Therefore, a comprehensive analysis of pyroptosis-related lncRNAs (PRLs) in OC is crucial for developing therapeutic strategies and survival prediction. Methods: Based on public database raw data, mutations in the landscape of pyroptosis-related genes (PRGs) in patients with OC were investigated thoroughly. PRLs were identified by calculating Pearson correlation coefficients. Cox and LASSO regression analyses were performed on PRLs to screen for lncRNAs participating in the risk signature. Furthermore, receiver operating characteristic (ROC) curves, Kaplan-Meier survival analyses, decision curve analysis (DCA) curves, and calibration curves were used to confirm the clinical benefits. To assess the ability of the risk signature to independently predict prognosis, it was included in a Cox regression analysis with clinicopathological parameters. Two nomograms were constructed to facilitate clinical application. In addition, potential biological functions of the risk signature were investigated using gene function annotation. Subsequently, immune-related landscapes and BRCA1/2 mutations were compared in different risk groups using diverse bioinformatics algorithms. Finally, we conducted a meta-analysis and in-vitro assays on alternative lncRNAs. Results: A total of 374 patients with OC were randomized into training and validation cohorts (7:3). A total of 250 PRLs were selected from all the lncRNAs. Subsequently, a risk signature (DICER1-AS1, MIR600HG, AC083880.1, AC109322.1, AC007991.4, IL6R-AS1, AL365361.1, and AC022098.2) was constructed to distinguish the risk of patient survival. The ROC curve, K-M analysis, DCA curve, and calibration curve indicated excellent predictive performance for determining overall survival (OS) based on the risk signature in each cohort (p < 0.05). The Cox regression analysis indicated that the risk signature was an independent prognostic factor for OS (p < 0.05). Moreover, significant differences in the immune response and BRCA1 mutations were identified in different groups distinguished by the risk signature (p < 0.05). Interestingly, in-vitro assays showed that an alternative lncRNA (DICER1-AS1) could promote OC cell proliferation. Conclusion: The PRL risk signature could independently predict overall survival and guide treatment in patients with OC.

7.
Anal Chim Acta ; 1197: 339540, 2022 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-35168717

RESUMO

Integration and storage of bioactive reagents is an important and challenging task in microfluidic paper-based analytical devices (µPADs). Here, we developed a convenient and universal method to store proteins and preserve their activities in µPADs by using aqueous two-phase systems (ATPs) evolved film. A polyethylene glycol (PEG)-dextran (DEX) double-layer film was formed through dehydration of ATPs. Functional biomolecules were stored in the bottom DEX layer on the basis of the biased partitioning and rehydrated conveniently by simple addition of buffer solution at usage. As a demonstration, enzyme immunoassay (EIA) of carcinoembryonic antigen was performed successfully on µPAD integrated with antibodies. Even after 104 days of storage at 4 °C and ambient conditions, the EIA signal just lost less than 10% and 30%, which meet the storage requirements of invitro diagnosis reagents. The ATPs evolved double-layer film has double functions of stabilization and insulation, and provide a high efficiency of biomolecule preservation, thereby promoting the applications of µPADs in POC diagnostic assay.


Assuntos
Proteínas , Água , Sistemas de Liberação de Medicamentos , Dispositivos Lab-On-A-Chip , Papel , Polietilenoglicóis
8.
Anal Chem ; 93(38): 12848-12853, 2021 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-34520178

RESUMO

Quantum dot (QD)-based digital immunoassays play an important role in ultrasensitive biomarker detection. However, the requirement of an objective with a high numerical aperture (NA) limits the application of this immunoassay. Here, high-quality imaging of massive single-QDs was achieved by the combination of an air objective (20×/0.4 NA) and liquid-immersed microspheres (150 µm, n = 2.2). The signal-to-noise ratio was comparable to that of a 100×/1.4 NA oil objective. Digital analysis of prostate-specific antigen (PSA) was performed within the dynamic range of 0-50 ng/mL and a limit of detection of 0.17 ng/mL. The measured serum data from the PSA were close to the values provided by a hospital. Using a low-magnification and low-NA objective may reduce the barrier of microscopy miniaturization and is beneficial to popularize biomolecular digital analysis.


Assuntos
Pontos Quânticos , Humanos , Imunoensaio , Masculino , Microesferas , Antígeno Prostático Específico , Soro
9.
Ecotoxicol Environ Saf ; 207: 111275, 2021 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-32920316

RESUMO

In-situ immobilization is an effective and economically viable strategy for remediation of soil extensively polluted with heavy metals. The long-term sustainability is critical for the remediation practice. In the present study, a ten-year experiment was performed in a Cd-polluted agricultural field to evaluate the long-term stability of lime, silicon fertilizer (SF), fused calcium magnesium phosphate fertilizer (FCMP), bone charcoal, steel slag, and blast furnace slag with one-off application. All amendments had no significant effect on biomass but significantly reduced Cd uptake by Artemisia selengensis at higher dose. Among them, SF and FCMP applied at 1% could reduce Cd uptake by more than 40% to meet the Chinese maximum permissible limit for Cd content in food products (50 µg kg-1). These amendments stimulated high Cd immobilization by increasing the soil pH and decreasing the soil acid-extractable Cd content, which were closely associated with Cd uptake. In addition, the two amendments altered the soil microbial structure and stimulated metabolism pathways, including amino acid, carbohydrate, and lipid metabolism, which are beneficial for soil function and quality. The results proved that SF and FCMP at 1% are stable and ecologically safe amendments, suitable for long-term Cd immobilization, and provide a strategy to mitigate the risk of food product contamination in heavy-metal-polluted soil.


Assuntos
Cádmio/análise , Monitoramento Ambiental , Poluentes do Solo/análise , Biomassa , Cádmio/metabolismo , Compostos de Cálcio , Carvão Vegetal/química , Poluição Ambiental , Recuperação e Remediação Ambiental , Fertilizantes , Metais Pesados/química , Óxidos , Fosfatos , Solo/química
10.
Front Public Health ; 9: 815631, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35096758

RESUMO

Background: Hypopharyngeal squamous cell carcinomas (HPSCC) is one of the causes of death in elderly patients, an accurate prediction of survival can effectively improve the prognosis of patients. However, there is no accurate assessment of the survival prognosis of elderly patients with HPSCC. The purpose of this study is to establish a nomogram to predict the cancer-specific survival (CSS) of elderly patients with HPSCC. Methods: The clinicopathological data of all patients from 2004 to 2018 were downloaded from the SEER database. These patients were randomly divided into a training set (70%) and a validation set (30%). The univariate and multivariate Cox regression analysis confirmed independent risk factors for the prognosis of elderly patients with HPSCC. A new nomogram was constructed to predict 1-, 3-, and 5-year CSS in elderly patients with HPSCC. Then used the consistency index (C-index), the calibration curve, and the area under the receiver operating curve (AUC) to evaluate the accuracy and discrimination of the prediction model. Decision curve analysis (DCA) was used to assess the clinical value of the model. Results: A total of 3,172 patients were included in the study, and they were randomly divided into a training set (N = 2,219) and a validation set (N = 953). Univariate and multivariate analysis suggested that age, T stage, N stage, M stage, tumor size, surgery, radiotherapy, chemotherapy, and marriage were independent risk factors for patient prognosis. These nine variables are included in the nomogram to predict the CSS of patients. The C-index for the training set and validation was 0.713 (95% CI, 0.697-0.729) and 0.703 (95% CI, 0.678-0.729), respectively. The AUC results of the training and validation set indicate that this nomogram has good accuracy. The calibration curve indicates that the observed and predicted values are highly consistent. DCA indicated that the nomogram has a better clinical application value than the traditional TNM staging system. Conclusion: This study identified risk factors for survival in elderly patients with HPSCC. We found that age, T stage, N stage, M stage, tumor size, surgery, radiotherapy, chemotherapy, and marriage are independent prognostic factors. A new nomogram for predicting the CSS of elderly HPSCC patients was established. This model has good clinical application value and can help patients and doctors make clinical decisions.


Assuntos
Neoplasias de Cabeça e Pescoço , Nomogramas , Idoso , Humanos , Internet , Programa de SEER , Carcinoma de Células Escamosas de Cabeça e Pescoço
11.
Cell Biol Int ; 44(8): 1651-1659, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32285989

RESUMO

Colorectal cancer (CRC) is the leading cause of cancer death, and its 5-year survival rate remains unsatisfactory. Recent studies have revealed that ubiquitin-specific protease 44 (USP44) is a cancer suppressor or oncogene depending on the type of neoplasm. However, its role in CRC remains unclear. Here, we found that the USP44 expression level was markedly decreased in CRC, and USP44 overexpression inhibited proliferation while enhancing apoptosis in CRC cells, suggesting that USP44 is a cancer suppressor in CRC. We then investigated if USP44 functioned through regulating the Wnt/ß-catenin pathway. We found that USP44 overexpression increased the Axin1 protein while decreasing ß-catenin, c-myc, and cyclin D1 proteins, suggesting that USP44 inhibited the activation of the Wnt/ß-catenin pathway. Moreover, we found that two Wnt/ß-catenin activators, LiCl and SKL2001, both attenuated oeUSP44-mediated proliferation and apoptosis in CRC cells. Collectively, these data points indicated that USP44 inhibited proliferation while promoting apoptosis in CRC cells by inhibiting the Wnt/ß-catenin pathway. Interestingly, we observed that USP44 overexpression did not affect the Axin1 mRNA level. Further study uncovered that USP44 interacted with Axin1 and reduced the ubiquitination of Axin1. Furthermore, Axin1 knock-down abolished the effects of oeUSP44 on proliferation, apoptosis, and Wnt/ß-catenin activity in CRC cells. Taken together, this study demonstrates that USP44 inhibits proliferation while enhancing apoptosis in CRC cells by inactivating the Wnt/ß-catenin pathway via Axin1 deubiquitination. USP44 is a cancer suppressor in CRC and a potential target for CRC therapy.


Assuntos
Proteína Axina/metabolismo , Neoplasias Colorretais/metabolismo , Ubiquitina Tiolesterase/metabolismo , Via de Sinalização Wnt , Apoptose , Proteína Axina/genética , Linhagem Celular Tumoral , Proliferação de Células , Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia , Técnicas de Silenciamento de Genes , Humanos , Ubiquitina Tiolesterase/genética
12.
Anal Chem ; 92(1): 654-658, 2020 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-31820622

RESUMO

Protein counting analysis obtains the quantitative results of specific protein through counting the number of target signals and displays a great value in disease diagnosis. Current protein counting techniques just stochastically count a small portion of the target signal, which causes a considerable information loss and limits the accuracy and precision of the protein assay at ultralow concentration. Here, we present a nonstochastic and ultrasensitive protein counting method through combining multiround evaporation-induced particle sedimentation, grid-assisted multiframe imaging, and microsphere-enhanced high-resolution signals. Using carcinoembryonic antigen (CEA) as the model, the dynamic range was from 5 × 10-18 M (aM) to 5 × 10-16 M, and the limit of detection was 4.9 aM. For CEA-spiked plasma detection, the relative standard deviation and the relative error of CEA concentrations were both lower than 8.0%, and the recoveries reached 92.5% and 98.8% for 20.0 aM and 40.0 aM CEA respectively. Two clinical plasma samples were measured by the standard addition method, and the results showed little deviation with the values provided by the hospital. The established approach suppresses Poisson noise of the stochastic counting, offers ultrahigh sensitivity, and features a remarkable potential in early disease screening.


Assuntos
Antígeno Carcinoembrionário/sangue , Biomarcadores/sangue , Técnicas Biossensoriais , Humanos , Imunoensaio
13.
Theranostics ; 9(4): 986-1000, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30867811

RESUMO

Background: Transcription factor ISL1 plays a critical role in sympathetic neurogenesis. Expression of ISL1 has been associated with neuroblastoma, a pediatric tumor derived from sympatho-adrenal progenitors, however the role of ISL1 in neuroblastoma remains unexplored. Method: Here, we knocked down ISL1 (KD) in SH-SY5Y neuroblastoma cells and performed RNA-seq and ISL1 ChIP-seq analyses. Results: Analyses of these data revealed that ISL1 acts upstream of multiple oncogenic genes and pathways essential for neuroblastoma proliferation and differentiation, including LMO1 and LIN28B. ISL1 promotes expression of a number of cell cycle associated genes, but represses differentiation associated genes including RA receptors and the downstream target genes EPAS1 and CDKN1A. Consequently, Knockdown of ISL1 inhibits neuroblastoma cell proliferation and migration in vitro and impedes tumor growth in vivo, and enhances neuronal differentiation by RA treatment. Furthermore, genome-wide mapping revealed a substantial co-occupancy of binding regions by ISL1 and GATA3, and ISL1 physically interacts with GATA3, and together they synergistically regulate the aforementioned oncogenic pathways. In addition, analyses of the roles of ISL1 and MYCN in MYCN-amplified and MYCN non-amplified neuroblastoma cells revealed an epistatic relationship between ISL1 and MYCN. ISL1 and MYCN function in parallel to regulate common yet distinct oncogenic pathways in neuroblastoma. Conclusion: Our study has demonstrated that ISL1 plays an essential role in neuroblastoma regulatory networks and may serve as a potential therapeutic target in neuroblastoma.


Assuntos
Carcinogênese , Fator de Transcrição GATA3/metabolismo , Proteínas com Homeodomínio LIM/metabolismo , Proteína Proto-Oncogênica N-Myc/metabolismo , Neuroblastoma/fisiopatologia , Mapeamento de Interação de Proteínas , Fatores de Transcrição/metabolismo , Animais , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Modelos Animais de Doenças , Perfilação da Expressão Gênica , Técnicas de Silenciamento de Genes , Humanos , Camundongos SCID , Transplante de Neoplasias , Ligação Proteica , Análise de Sequência de RNA , Transplante Heterólogo
15.
Chem Commun (Camb) ; 54(93): 13103-13106, 2018 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-30397699

RESUMO

A femtomolar digital homogenous immunoassay is developed based on sensitively distinguishing the immunocomplexes labeled with quantum dot (QD) aggregates from the excessive free monodisperse single QDs. The success in quantifying the carcino-embryonic antigen and alpha-fetoprotein in plasma validated the feasibility of our approach for clinical tests.


Assuntos
Técnicas Biossensoriais , Antígeno Carcinoembrionário/análise , Imunoensaio , Pontos Quânticos , alfa-Fetoproteínas/análise , Humanos
16.
ACS Sens ; 3(12): 2644-2650, 2018 12 28.
Artigo em Inglês | MEDLINE | ID: mdl-30426743

RESUMO

We developed a single-molecule homogeneous immunoassay by counting spatially "overlapping" two-color quantum dots (QD) under a wide-field fluorescence microscope. QD 655 with red fluorescence and QD 565 with green fluorescence were modified with capture and detection antibodies, respectively. A capture antibody-modified QD 655 and a detection antibody-modified QD 565 were conjugated by a corresponding antigen molecule to form a "sandwich" immunocomplex. The conjugated QD 655 could not be distinguished from the conjugated QD 565 by fluorescent microscopy because the distance between them was smaller than the resolution of an optical microscope (approximately 200 nm). The immunocomplex color became yellow because of the spatial "overlap" of the red and green fluorescence. The number of the yellow spots was equal to the number of immunocomplex molecules, while the concentration of the antigen was related to the ratio of the yellow dots to the red dots. The successful quantification of two model proteins in the human plasma, namely, alpha-fetoprotein and carcinoembryonic antigen, demonstrated the accuracy and reliability of our approach.


Assuntos
Antígeno Carcinoembrionário/sangue , Imunoensaio/métodos , Pontos Quânticos/química , alfa-Fetoproteínas/análise , Antígeno Carcinoembrionário/imunologia , Cor , Humanos , Microscopia de Fluorescência/métodos , alfa-Fetoproteínas/imunologia
17.
Nucleic Acids Res ; 46(12): 6026-6040, 2018 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-29733394

RESUMO

Sin3a is a core component of histone-deacetylation-activity-associated transcriptional repressor complex, playing important roles in early embryo development. Here, we reported that down-regulation of Sin3a led to the loss of embryonic stem cell (ESC) self-renewal and skewed differentiation into mesendoderm lineage. We found that Sin3a functioned as a transcriptional coactivator of the critical Nodal antagonist Lefty1 through interacting with Tet1 to de-methylate the Lefty1 promoter. Further studies showed that two amino acid residues (Phe147, Phe182) in the PAH1 domain of Sin3a are essential for Sin3a-Tet1 interaction and its activity in regulating pluripotency. Furthermore, genome-wide analyses of Sin3a, Tet1 and Pol II ChIP-seq and of 5mC MeDIP-seq revealed that Sin3a acted with Tet1 to facilitate the transcription of a set of their co-target genes. These results link Sin3a to epigenetic DNA modifications in transcriptional activation and have implications for understanding mechanisms underlying versatile functions of Sin3a in mouse ESCs.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Células-Tronco Embrionárias/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Proteínas Repressoras/metabolismo , Ativação Transcricional , Animais , Diferenciação Celular , Linhagem Celular , Linhagem da Célula , Células-Tronco Embrionárias/citologia , Fatores de Determinação Direita-Esquerda/genética , Fatores de Determinação Direita-Esquerda/metabolismo , Camundongos , Proteína Nodal/metabolismo , Regiões Promotoras Genéticas , Domínios e Motivos de Interação entre Proteínas , Proteínas Repressoras/química , Proteínas Repressoras/genética , Complexo Correpressor Histona Desacetilase e Sin3
18.
Am J Physiol Renal Physiol ; 315(2): F374-F385, 2018 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-29638158

RESUMO

Kidney development involves reciprocal and inductive interactions between the ureteric bud (UB) and surrounding metanephric mesenchyme. Signals from renal stromal lineages are essential for differentiation and patterning of renal epithelial and mesenchymal cell types and renal vasculogenesis; however, underlying mechanisms remain not fully understood. Integrin-linked kinase (ILK), a key component of integrin signaling pathway, plays an important role in kidney development. However, the role of ILK in renal stroma remains unknown. Here, we ablated ILK in renal stromal lineages using a platelet-derived growth factor receptor B ( Pdgfrb) -Cre mouse line, and the resulting Ilk mutant mice presented postnatal growth retardation and died within 3 wk of age with severe renal developmental defects. Pdgfrb-Cre;Ilk mutant kidneys exhibited a significant decrease in UB branching and disrupted collecting duct formation. From E16.5 onward, renal interstitium was disorganized, forming medullary interstitial pseudocysts. Pdgfrb-Cre;Ilk mutants exhibited renal vasculature mispatterning and impaired glomerular vascular differentiation. Impaired glial cell-derived neurotrophic factor/Ret and bone morphogenetic protein 7 signaling pathways were observed in Pdgfrb-Cre;Ilk mutant kidneys. Furthermore, phosphoproteomic and Western blot analyses revealed a significant dysregulation of a number of key signaling pathways required for kidney morphogenesis, including PI3K/AKT and MAPK/ERK in Pdgfrb-Cre;Ilk mutants. Our results revealed a critical requirement for ILK in renal-stromal and vascular development, as well as a noncell autonomous role of ILK in UB branching morphogenesis.


Assuntos
Rim/enzimologia , Doenças Renais Policísticas/enzimologia , Proteínas Serina-Treonina Quinases/metabolismo , Células Estromais/enzimologia , Animais , Proteína Morfogenética Óssea 7/genética , Proteína Morfogenética Óssea 7/metabolismo , Diferenciação Celular , Linhagem da Célula , Regulação da Expressão Gênica no Desenvolvimento , Predisposição Genética para Doença , Idade Gestacional , Fator Neurotrófico Derivado de Linhagem de Célula Glial/genética , Fator Neurotrófico Derivado de Linhagem de Célula Glial/metabolismo , Integrases/genética , Integrases/metabolismo , Rim/anormalidades , Camundongos Knockout , Proteínas Quinases Ativadas por Mitógeno/genética , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Morfogênese , Fenótipo , Fosfatidilinositol 3-Quinase/genética , Fosfatidilinositol 3-Quinase/metabolismo , Doenças Renais Policísticas/genética , Doenças Renais Policísticas/patologia , Proteínas Serina-Treonina Quinases/deficiência , Proteínas Serina-Treonina Quinases/genética , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Proto-Oncogênicas c-ret/genética , Proteínas Proto-Oncogênicas c-ret/metabolismo , Receptor beta de Fator de Crescimento Derivado de Plaquetas/genética , Receptor beta de Fator de Crescimento Derivado de Plaquetas/metabolismo , Transdução de Sinais
19.
Cell Death Dis ; 9(2): 247, 2018 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-29445148

RESUMO

Malformations of the sympathetic nervous system have been associated with cardiovascular instability, gastrointestinal dysfunction, and neuroblastoma. A better understanding of the factors regulating sympathetic nervous system development is critical to the development of potential therapies. Here, we have uncovered a temporal requirement for the LIM homeodomain transcription factor ISL1 during sympathetic nervous system development by the analysis of two mutant mouse lines: an Isl1 hypomorphic line and mice with Isl1 ablated in neural crest lineages. During early development, ISL1 is required for sympathetic neuronal fate determination, differentiation, and repression of glial differentiation, although it is dispensable for initial noradrenergic differentiation. ISL1 also plays an essential role in sympathetic neuron proliferation by controlling cell cycle gene expression. During later development, ISL1 is required for axon growth and sympathetic neuron diversification by maintaining noradrenergic differentiation, but repressing cholinergic differentiation. RNA-seq analyses of sympathetic ganglia from Isl1 mutant and control embryos, together with ISL1 ChIP-seq analysis on sympathetic ganglia, demonstrated that ISL1 regulates directly or indirectly several distinct signaling pathways that orchestrate sympathetic neurogenesis. A number of genes implicated in neuroblastoma pathogenesis are direct downstream targets of ISL1. Our study revealed a temporal requirement for ISL1 in multiple aspects of sympathetic neuron development, and suggested Isl1 as a candidate gene for neuroblastoma.


Assuntos
Neurônios Adrenérgicos/metabolismo , Neurônios Colinérgicos/metabolismo , Gânglios Simpáticos/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Proteínas com Homeodomínio LIM/genética , Neuroblastoma/genética , Fatores de Transcrição/genética , Neurônios Adrenérgicos/citologia , Animais , Sequência de Bases , Ciclo Celular/genética , Diferenciação Celular , Linhagem da Célula/genética , Proliferação de Células , Neurônios Colinérgicos/citologia , Embrião de Mamíferos , Gânglios Simpáticos/citologia , Humanos , Proteínas com Homeodomínio LIM/metabolismo , Camundongos , Camundongos Transgênicos , Crista Neural/citologia , Crista Neural/metabolismo , Neuroblastoma/metabolismo , Neuroblastoma/patologia , Neurogênese/genética , Cultura Primária de Células , Transdução de Sinais , Fatores de Tempo , Fatores de Transcrição/metabolismo
20.
ACS Sens ; 2(1): 80-86, 2017 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-28722442

RESUMO

Developing highly sensitive and highly selective assays for monitoring heparin levels in blood is required during and after surgery. In previous studies, electrostatic interactions are exploited to recognize heparin and changes in light signal intensity are used to sense heparin. In the present study, we developed a quantum dot (QD) aggregation-based detection strategy to quantify heparin. When cationic micelles and fluorescence QDs modified with anti-thrombin III (AT III) are added into heparin sample solution, the AT III-QDs, which specifically bind with heparin, aggregate around the micelles. The aggregated QDs are recorded by spectral imaging fluorescence microscopy and differentiated from single QDs based on the asynchronous process of blue shift and photobleaching. The ratio of aggregated QD spots to all counted QD spots is linearly related to the amount of heparin in the range of 4.65 × 10 -4 U/mL to 0.023 U/mL. The limit of detection is 9.3 × 10 -5 U/mL (∼0.1 nM), and the recovery of the spiked heparin at 0.00465 U/mL (∼5 nM) in 0.1% human plasma is acceptable.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA