Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
1.
Artigo em Inglês | MEDLINE | ID: mdl-38750898

RESUMO

BACKGROUND & AIMS: Hepatocellular carcinoma (HCC) is a heterogeneous cancer with varying levels of liver tumor initiating or cancer stem cells in the tumors. We aimed to investigate the expression of different liver cancer stem cell (LCSC) markers in human HCCs, and identify their regulatory mechanisms in stemness-related cells. METHODS: We used an unbiased, single-marker sorting approach by flow cytometry, fluorescence-activated cell sorting, and transcriptomic analyses on HCC patients' resected specimens. Knockdown approach was employed and relevant functional assays were conducted on the identified targets of interest. RESULTS: Flow cytometry on a total of 60 HCC resected specimens showed significant heterogeneity in the expression of LCSC markers, with CD24, CD13, and EpCAM mainly contributing to this heterogeneity. Concomitant expression of CD24, CD13 and EpCAM was detected in 32 HCC samples, and this was associated with advanced tumor stages. Transcriptomic sequencing on the HCC cells sorted for these individual markers identified EPS8L3 as a common gene associated with the three markers and was functionally validated in HCC cells. Knocking down EPS8L3 suppressed the expression of all three markers. To search for the upstream regulation of EPS8L3, we found SP1 bound to EPS8L3 promoter to drive EPS8L3 expression. Furthermore, using Akt inhibitor MK2206, we showed that Akt-signaling-driven SP1 drove the expression of the three LCSC markers CONCLUSIONS: Our findings suggest that Akt-signaling-driven SP1 promotes EPS8L3 expression, which is critical in maintaining the downstream expression of CD24, CD13 and EpCAM. The findings provide insight into potential LCSC-targeting therapeutic strategies.

2.
Chem Sci ; 15(17): 6421-6431, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38699264

RESUMO

Photodynamic immunotherapy (PDI) is an innovative approach to cancer treatment that utilizes photodynamic therapy (PDT) and photosensitizers (PSs) to induce immunogenic cell death (ICD). However, currently most commonly used PSs have restricted capabilities to generate reactive oxygen species (ROS) via a type-II mechanism under hypoxic environments, which limits their effectiveness in PDI. To overcome this, we propose a novel approach for constructing oxygen independent PSs based on stable organic free-radical molecules. By fine-tuning the characteristics of tris(2,4,6-trichlorophenyl)-methyl (TTM) radicals through the incorporation of electron-donating moieties, we successfully found that TTMIndoOMe could produce substantial amounts of ROS even in hypoxic environments. In vitro experiments showed that TTMIndoOMe could effectively produce O2˙-, kill tumor cells and trigger ICD. Moreover, in vivo experiments also demonstrated that TTMIndoOMe could further trigger anti-tumor immune response and exhibit a superior therapeutic effect compared with PDT alone. Our study offers a promising approach towards the development of next-generation PSs functioning efficiently even under hypoxic conditions and also paves the way for the creation of more effective PSs for PDI.

3.
Liver Cancer ; 13(1): 70-88, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38344450

RESUMO

Introduction: Immunotherapy has resulted in pathologic responses in hepatocellular carcinoma (HCC), but the benefits and molecular mechanisms of neoadjuvant immune checkpoint blockade are largely unknown. Methods: In this study, we evaluated the efficacy and safety of preoperative nivolumab (anti-PD-1) in patients with intermediate and locally advanced HCC and determined the molecular markers for predicting treatment response. Results: Between July 2020 and November 2021, 20 treatment-naive HCC patients with intermediate and locally advanced tumors received preoperative nivolumab at 3 mg/kg for 3 cycles prior to surgical resection. Nineteen patients underwent surgical resection on trial. Seven (36.8%) of the 19 patients had major pathologic tumor necrosis (≥60%) in the post-nivolumab resection specimens, with 3 having almost complete (>90%) tumor necrosis. The tumor necrosis was hemorrhagic and often accompanied by increased or dense immune cell infiltrate at the border of the tumors. None of the patients developed major adverse reactions contradicting hepatectomy. RNA-sequencing analysis on both pre-nivolumab tumor biopsies and post-nivolumab resected specimens showed that, in cases with major pathologic necrosis, the proportion of CD8 T cells in the HCC tissues predominantly increased after treatment. Moreover, to investigate noninvasive biomarker for nivolumab response, we evaluated the copy number variation (CNV) using target-panel sequencing on plasma cell-free DNA of the patients and derived a CNV-based anti-PD-1 score. The score correlated with the extent of tumor necrosis and was validated in a Korean patient cohort with anti-PD-1 treatment. Conclusion: Neoadjuvant nivolumab demonstrated promising clinical activity in intermediate and locally advanced HCC patients. We also identified useful noninvasive biomarker predicting responsiveness.

4.
Theranostics ; 14(2): 892-910, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38169544

RESUMO

Background: The tumor microenvironment of cancers has emerged as a crucial component in regulating cancer stemness and plays a pivotal role in cell-cell communication. However, the specific mechanisms underlying these phenomena remain poorly understood. Methods: We performed the single-cell RNA sequencing (scRNA-seq) on nine HBV-associated hepatocellular carcinoma (HCC) patients. The heterogeneity of the malignant cells in pathway functions, transcription factors (TFs) regulation, overall survival, stemness, as well as ligand-receptor-based intercellular communication with macrophages were characterized. The aggressive and stemness feature for the target tumor subclone was validated by the conduction of in vitro assays including sphere formation, proliferation, Annexin V apoptosis, flow cytometry, siRNA library screening assays, and multiple in vivo preclinical mouse models including mouse hepatoma cell and human HCC cell xenograft models with subcutaneous or orthotopic injection. Results: Our analysis yielded a comprehensive atlas of 31,664 cells, revealing a diverse array of malignant cell subpopulations. Notably, we identified a stemness-related subclone of HCC cells with concurrent upregulation of CD24, CD47, and ICAM1 expression that correlated with poorer overall survival. Functional characterization both in vitro and in vivo validated S100A11 as one of the top downstream mediators for tumor initiation and stemness maintenance of this subclone. Further investigation of cell-cell communication within the tumor microenvironment revealed a propensity for bi-directional crosstalk between this stemness-related subclone and tumor-associated macrophages (TAMs). Co-culture study showed that this interaction resulted in the maintenance of the expression of cancer stem cell markers and driving M2-like TAM polarization towards a pro-tumorigenic niche. We also consolidated an inverse relationship between the proportions of TAMs and tumor-infiltrating T cells. Conclusions: Our study highlighted the critical role of stemness-related cancer cell populations in driving an immunosuppressive tumor microenvironment and identified the S100A11 gene as a key mediator for stemness maintenance in HCC. Moreover, our study provides support that the maintenance of cancer stemness is more attributed to M2 polarization than the recruitment of the TAMs.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Animais , Camundongos , Carcinoma Hepatocelular/patologia , Vírus da Hepatite B , Neoplasias Hepáticas/patologia , Macrófagos/metabolismo , Técnicas de Cocultura , Linhagem Celular Tumoral , Microambiente Tumoral
5.
Pharm Stat ; 23(3): 325-338, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38152873

RESUMO

With the advent of cancer immunotherapy, some special features including delayed treatment effect, cure rate, diminishing treatment effect and crossing survival are often observed in survival analysis. They violate the proportional hazard model assumption and pose a unique challenge for the conventional trial design and analysis strategies. Many methods like cure rate model have been developed based on mixture model to incorporate some of these features. In this work, we extend the mixture model to deal with multiple non-proportional patterns and develop its geometric average hazard ratio (gAHR) to quantify the treatment effect. We further derive a sample size and power formula based on the non-centrality parameter of the log-rank test and conduct a thorough analysis of the impact of each parameter on performance. Simulation studies showed a clear advantage of our new method over the proportional hazard based calculation across different non-proportional hazard scenarios. Moreover, the mixture modeling of two real trials demonstrates how to use the prior information on the survival distribution among patients with different biomarker and early efficacy results in practice. By comparison with a simulation-based design, the new method provided a more efficient way to compute the power and sample size with high accuracy of estimation. Overall, both theoretical derivation and empirical studies demonstrate the promise of the proposed method in powering future innovative trial designs.


Assuntos
Simulação por Computador , Modelos de Riscos Proporcionais , Projetos de Pesquisa , Humanos , Tamanho da Amostra , Projetos de Pesquisa/estatística & dados numéricos , Análise de Sobrevida , Neoplasias/terapia , Neoplasias/tratamento farmacológico , Neoplasias/mortalidade , Modelos Estatísticos , Imunoterapia/métodos
6.
Clin Transl Med ; 13(12): e1512, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-38073586

RESUMO

As the most prominent RNA modification, N6-methyladenosine (m6 A) participates in the regulation of tumour initiation and progression. Circular RNAs (circRNAs) also play crucial roles in ubiquitous life processes. Whether circRNAs are required for m6 A regulation in renal cell carcinoma (RCC) remains unclear. Meta-analysis and bioinformatics identified that IGF2BP3 was upregulated in RCC and indicated a worse prognosis. IGF2BP3 significantly promoted RCC progression in vitro and in vivo. Mechanistically, circRARS bound to KH1-KH2 domains of IGF2BP3 to enhance m6 A modification recognition. A 12-nt sequence (GUCUUCCAGCAA) was proven to be the IGF2BP3-binding site of circRARS. Additionally, CAPN15, CD44, HMGA2, TNRC6A and ZMIZ2 were screened to be the target genes regulated by the IGF2BP3/circRARS complex in an m6 A-dependent manner. Stabiliser proteins, including HuR, Matrin3 and pAbPC1, were recruited by circRARS, thereby increasing the mRNA stability of the forementioned five target genes. Consequently, the IGF2BP3/circRARS complex facilitated the lipid accumulation of RCC cells and promoted sunitinib resistance via target genes. circRARS synergised with IGF2BP3 to facilitate m6 A recognition, thereby promoting RCC progression. Thus, IGF2BP3 could be a potential biomarker for RCC diagnosis and prognosis and a therapeutic target.


Assuntos
Carcinoma de Células Renais , Neoplasias Renais , Humanos , Calpaína , Carcinoma de Células Renais/genética , Transformação Celular Neoplásica , Neoplasias Renais/genética , Proteínas Inibidoras de STAT Ativados , Metilação de RNA , RNA Circular/genética
7.
Mol Cell ; 83(23): 4239-4254.e10, 2023 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-38065062

RESUMO

A common mRNA modification is 5-methylcytosine (m5C), whose role in gene-transcript processing and cancer remains unclear. Here, we identify serine/arginine-rich splicing factor 2 (SRSF2) as a reader of m5C and impaired SRSF2 m5C binding as a potential contributor to leukemogenesis. Structurally, we identify residues involved in m5C recognition and the impact of the prevalent leukemia-associated mutation SRSF2P95H. We show that SRSF2 binding and m5C colocalize within transcripts. Furthermore, knocking down the m5C writer NSUN2 decreases mRNA m5C, reduces SRSF2 binding, and alters RNA splicing. We also show that the SRSF2P95H mutation impairs the ability of the protein to read m5C-marked mRNA, notably reducing its binding to key leukemia-related transcripts in leukemic cells. In leukemia patients, low NSUN2 expression leads to mRNA m5C hypomethylation and, combined with SRSF2P95H, predicts poor outcomes. Altogether, we highlight an unrecognized mechanistic link between epitranscriptomics and a key oncogenesis driver.


Assuntos
Leucemia , Síndromes Mielodisplásicas , Neoplasias , Metilação de RNA , Fatores de Processamento de Serina-Arginina , Humanos , Leucemia/genética , Síndromes Mielodisplásicas/genética , Neoplasias/genética , RNA Mensageiro/genética , Proteínas de Ligação a RNA/genética , Fatores de Processamento de Serina-Arginina/genética , Metilação de RNA/genética
8.
Front Vet Sci ; 10: 1302801, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38144468

RESUMO

The objective of this study was to examine the effects of dietary Chinese herbal medicine (CHM) consisting of Astragalus membranaceus (Fisch.) Bunge (AMT) and Codonopsis pilosula (Franch.) Nannf (CPO) extracts on growth performance, antioxidant capacity, immune status, and intestinal health of broiler chickens. Two groups were formed, each consisting of six replicates of 12 one-day-old healthy male 817 white feather broilers. Broilers were fed either a basal diet (CON group) or a basal diet supplemented with 500 mg/kg CHM. The trial lasted 50 days. The results showed that CHM supplementation resulted in enhanced feed efficiency and antioxidant capacity in both the serum and liver, while it reduced uric acid and endotoxin levels, as well as diamine oxidase activity (p < 0.05). Additionally, CHM treatment increased the height of jejunum villi and upregulated Claudin-1 expression in the jejunal mucosa accompanied by an increase in the mRNA levels of interleukin-6 (IL-6), interferon-γ (IFN-γ), interferon-ß (IFN-ß), tumor necrosis factor-α (TNF-α), and anti-inflammatory cytokine interleukin-10 (IL-10) (p < 0.05). The presence of dietary CHM caused an increase in the proportions of Bacteroidetes and unclassified Bacteroidales but led to a decrease in those of Firmicutes and Alistipes (p < 0.05). The composition of the jejunal mucosa microbiota was correlated with the feed conversion ratio, serum metabolites, and gene expression based on Spearman correlation analysis. The findings indicated that the consumption of dietary CHM improved the utilization of feed, increased the mRNA expression of pro-inflammatory cytokines in the jejunal mucosa, and decreased the endotoxin level and activities of diamine oxidase and lactate dehydrogenase in the serum, which could potentially be linked to changes in the gut microbiota of broiler chickens.

9.
J Clin Invest ; 133(23)2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37824211

RESUMO

An immunosuppressive microenvironment causes poor tumor T cell infiltration and is associated with reduced patient overall survival in colorectal cancer. How to improve treatment responses in these tumors is still a challenge. Using an integrated screening approach to identify cancer-specific vulnerabilities, we identified complement receptor C5aR1 as a druggable target, which when inhibited improved radiotherapy, even in tumors displaying immunosuppressive features and poor CD8+ T cell infiltration. While C5aR1 is well-known for its role in the immune compartment, we found that C5aR1 is also robustly expressed on malignant epithelial cells, highlighting potential tumor cell-specific functions. C5aR1 targeting resulted in increased NF-κB-dependent apoptosis specifically in tumors and not normal tissues, indicating that, in malignant cells, C5aR1 primarily regulated cell fate. Collectively, these data revealed that increased complement gene expression is part of the stress response mounted by irradiated tumors and that targeting C5aR1 could improve radiotherapy, even in tumors displaying immunosuppressive features.


Assuntos
Complemento C5a , Receptores de Complemento , Humanos , Complemento C5a/genética , Receptores de Complemento/genética
10.
Clin Exp Med ; 23(8): 4219-4235, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37759042

RESUMO

Angioimmunoblastic T-cell lymphoma (AITL) is an aggressive subtype of peripheral T-cell lymphomas with its cell origin determined to be follicular helper T-cells. AITL is characterized by a prominent tumor microenvironment involving dysregulation of immune cells, signaling pathways, and extracellular matrix. Significant progress has been made in the molecular pathophysiology of AITL, including genetic mutations, immune metabolism, hematopoietic-derived microenvironment, and non-hematopoietic microenvironment cells. Early diagnosis, detection of severe complications, and timely effective treatment are crucial for managing AITL. Treatment typically involves various combination chemotherapies, but the prognosis is often poor, and relapsed and refractory AITL remains challenging, necessitating improved treatment strategies. Therefore, this article provides an overview of the pathogenesis and latest advances in the treatment of AITL, with a focus on potential therapeutic targets, novel treatment strategies, and emerging immunotherapeutic approaches.


Assuntos
Linfadenopatia Imunoblástica , Linfoma de Células T Periférico , Humanos , Linfadenopatia Imunoblástica/terapia , Linfadenopatia Imunoblástica/tratamento farmacológico , Linfoma de Células T Periférico/metabolismo , Linfoma de Células T Periférico/terapia , Mutação , Transdução de Sinais , Microambiente Tumoral
11.
ACS Appl Bio Mater ; 6(10): 4413-4420, 2023 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-37772974

RESUMO

Optical imaging holds great promise for monitoring bacterial infectious processes and drug resistance with high temporal-spatial resolution. Currently, the diagnosis of deep-seated bacterial infections in vivo with fluorescence imaging, including near-infrared (NIR) fluorescence imaging technology, remains a significant challenge due to its limited tissue penetration depth. In this study, we developed a highly specific targeting probe, Cy7-Neo-NO2, by conjugating a bacterial 16S rRNA-targeted moiety, neomycin, with a bacterial nitroreductase (NTR)-activated NIR photoacoustic (PA) scaffold using our previously developed caged photoinduced electron transfer (a-PeT) approach. This conjugation effectively resolved probe aggregation issues in physiological conditions and substantially enhanced its reactivity toward bacterial NTR. Notably, Cy7-Neo-NO2 enabled the first in situ photoacoustic imaging of pneumonia induced by methicillin-resistant Staphylococcus aureus (MRSA), as well as the detection of bacteria within tumors. Furthermore, upon NIR irradiation, Cy7-Neo-NO2 successfully inhibited MRSA growth through a synergistic effect combining photothermal therapy and photodynamic therapy. Our results provided an effective tool for obtaining exceptional PA agents for accurate diagnosis, therapeutic evaluation of deep-seated bacterial infections in vivo, and intratumoral bacteria-specific recognition.

12.
Int J Biol Sci ; 19(13): 4020-4035, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37705743

RESUMO

Triple-negative breast cancer (TNBC) is an aggressive type of breast cancer where no effective therapy has been developed. Here, we report that the natural product ER translocon inhibitor ipomoeassin F is a selective inhibitor of TNBC cell growth. A proteomic analysis of TNBC cells revealed that ipomoeassin F significantly reduced the levels of ER molecular chaperones, including PDIA6 and PDIA4, and induced ER stress, unfolded protein response (UPR) and autophagy in TNBC cells. Mechanistically, ipomoeassin F, as an inhibitor of Sec61α-containing ER translocon, blocks ER translocation of PDIA6, inducing its proteasomal degradation. Silencing of PDIA6 or PDIA4 by RNA interferences or treatment with a small molecule inhibitor of the protein disulfide isomerases in TNBC cells successfully recapitulated the ipomoeassin F phenotypes, including the induction of ER stress, UPR and autophagy, suggesting that the reduction of PDIAs is the key mediator of the pharmacological effects of ipomoeassin F. Moreover, ipomoeassin F significantly suppressed TNBC growth in a mouse tumor xenograft model, with a marked reduction in PDIA6 and PDIA4 levels in the tumor samples. Our study demonstrates that Sec61α-containing ER translocon and PDIAs are potential drug targets for TNBC and suggests that ipomoeassin F could serve as a lead for developing ER translocon-targeted therapy for TNBC.


Assuntos
Neoplasias de Mama Triplo Negativas , Humanos , Animais , Camundongos , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Proteômica , Glicoconjugados , Modelos Animais de Doenças , Chaperonas Moleculares
13.
Hum Cell ; 36(4): 1564-1577, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37222919

RESUMO

Currently, therapy for Chronic Myeloid Leukemia (CML) patients with the T315I mutation is a major challenge in clinical practice due to its high degree of resistance to first- and second-generation Tyrosine Kinase Inhibitors (TKIs). Chidamide, a Histone Deacetylase Inhibitor (HDACi) drug, is currently used to treat peripheral T-cell lymphoma. In this study, we investigated the anti-leukemia effects of chidamide on the CML cell lines Ba/F3 P210 and Ba/F3 T315I and primary tumor cells from CML patients with the T315I mutation. The underlying mechanism was investigated, and we found that chidamide could inhibit Ba/F3 T315I cells at G0/G1 phase. Signaling pathway analysis showed that chidamide induced H3 acetylation, downregulated pAKT expression and upregulated pSTAT5 expression in Ba/F3 T315I cells. Additionally, we found that the antitumor effect of chidamide could be exerted by regulating the crosstalk between apoptosis and autophagy. When chidamide was used in combination with imatinib or nilotinib, the antitumor effects were enhanced compared with chidamide alone in Ba/F3 T315I and Ba/F3 P210 cells. Therefore, we conclude that chidamide may overcome T315I mutation-related drug resistance in CML patients and works efficiently if used in combination with TKIs.


Assuntos
Inibidores de Histona Desacetilases , Leucemia Mielogênica Crônica BCR-ABL Positiva , Humanos , Inibidores de Histona Desacetilases/farmacologia , Inibidores de Histona Desacetilases/uso terapêutico , Proteínas Proto-Oncogênicas c-akt/genética , Resistencia a Medicamentos Antineoplásicos/genética , Proteínas de Fusão bcr-abl/genética , Proteínas de Fusão bcr-abl/metabolismo , Leucemia Mielogênica Crônica BCR-ABL Positiva/tratamento farmacológico , Leucemia Mielogênica Crônica BCR-ABL Positiva/genética , Leucemia Mielogênica Crônica BCR-ABL Positiva/patologia , Mutação , Autofagia/genética , Apoptose/genética , Linhagem Celular Tumoral , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Proliferação de Células
14.
Front Plant Sci ; 14: 1144326, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37056511

RESUMO

Natural antioxidants are more attractive than synthetic chemical oxidants because of their non-toxic and non-harmful properties. Microalgal bioactive components such as carotenoids, polysaccharides, and phenolic compounds are gaining popularity as very effective and long-lasting natural antioxidants. Few articles currently exist that analyze microalgae from a bibliometric and visualization point of view. This study used a bibliometric method based on the Web of Science Core Collection database to analyze antioxidant research on bioactive compounds in microalgae from 1996 to 2022. According to cluster analysis, the most studied areas are the effectiveness, the antioxidant mechanism, and use of bioactive substances in microalgae, such as carotene, astaxanthin, and tocopherols, in the fields of food, cosmetics, and medicine. Using keyword co-occurrence and keyword mutation analysis, future trends are predicted to improve extraction rates and stability by altering the environment of microalgae cultures or mixing extracts with chemicals such as nanoparticles for commercial and industrial applications. These findings can help researchers identify trends and resources to build impactful investigations and expand scientific frontiers.

15.
PLoS Pathog ; 19(4): e1011316, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-37058447

RESUMO

The presence of human cytomegalovirus (HCMV) in glioblastoma (GBM) and improved outcomes of GBM patients receiving therapies targeting the virus have implicated HCMV in GBM progression. However, a unifying mechanism that accounts for the contribution of HCMV to the malignant phenotype of GBM remains incompletely defined. Here we have identified SOX2, a marker of glioma stem cells (GSCs), as a key determinant of HCMV gene expression in gliomas. Our studies demonstrated that SOX2 downregulated promyelocytic leukemia (PML) and Sp100 and consequently facilitated viral gene expression by decreasing the amount of PML nuclear bodies in HCMV-infected glioma cells. Conversely, the expression of PML antagonized the effects of SOX2 on HCMV gene expression. Furthermore, this regulation of SOX2 on HCMV infection was demonstrated in a neurosphere assay of GSCs and in a murine xenograft model utilizing xenografts from patient-derived glioma tissue. In both cases, SOX2 overexpression facilitated the growth of neurospheres and xenografts implanted in immunodeficient mice. Lastly, the expression of SOX2 and HCMV immediate early 1 (IE1) protein could be correlated in tissues from glioma patients, and interestingly, elevated levels of SOX2 and IE1 were predictive of a worse clinical outcome. These studies argue that HCMV gene expression in gliomas is regulated by SOX2 through its regulation of PML expression and that targeting molecules in this SOX2-PML pathway could identify therapies for glioma treatment.


Assuntos
Glioma , Proteínas Imediatamente Precoces , Animais , Humanos , Camundongos , Citomegalovirus/fisiologia , Regulação para Baixo , Expressão Gênica , Glioma/genética , Glioma/patologia , Proteínas Imediatamente Precoces/metabolismo , Fatores de Transcrição SOXB1/genética , Fatores de Transcrição SOXB1/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
16.
Acta Pharm Sin B ; 13(3): 1204-1215, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36970202

RESUMO

Fluorescence-guided surgery (FGS) with tumor-targeted imaging agents, particularly those using the near-infrared wavelength, has emerged as a real-time technique to highlight the tumor location and margins during a surgical procedure. For accurate visualization of prostate cancer (PCa) boundary and lymphatic metastasis, we developed a new approach involving an efficient self-quenched near-infrared fluorescence probe, Cy-KUE-OA, with dual PCa-membrane affinity. Cy-KUE-OA specifically targeted the prostate-specific membrane antigen (PSMA), anchored into the phospholipids of the cell membrane of PCa cells and consequently showed a strong Cy7-de-quenching effect. This dual-membrane-targeting probe allowed us to detect PSMA-expressing PCa cells both in vitro and in vivo and enabled clear visualization of the tumor boundary during fluorescence-guided laparoscopic surgery in PCa mouse models. Furthermore, the high PCa preference of Cy-KUE-OA was confirmed on surgically resected patient specimens of healthy tissues, PCa, and lymph node metastases. Taken together, our results serve as a bridge between preclinical and clinical research in FGS of PCa and lay a solid foundation for further clinical research.

17.
J Med Chem ; 66(4): 2498-2505, 2023 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-36745976

RESUMO

High levels of steady-state mitochondrial reactive oxygen species (ROS) and glycolysis are hallmarks of cancer. An improved understanding of interactions between tumor energetics and mitochondrial ROS modulation is useful for the development of new anticancer strategies. Here, we show that the natural product chlorogenic acid (CGA) specifically scavenged abnormally elevated mitochondrial O2•- and exhibited a two-photon fluorescence turn-on response to tumor cells under hypoxia and tumor tissues in vivo. Furthermore, we illustrated that CGA treatment reduced O2•- levels in cells, hampered activation of AMP-activated protein kinase (AMPK), and shifted metabolism from glycolysis to oxidative phosphorylation (OXPHOS), resulting in inhibition of tumor growth under hypoxia. This study demonstrates an efficient two-photon fluorescent tool for real-time assessment of mitochondrial O2•- and a clear link between reducing intracellular ROS levels by CGA treatments and regulating metabolism, as well as undeniably helpful insights for the development of new anticancer strategies.


Assuntos
Ácido Clorogênico , Neoplasias , Humanos , Espécies Reativas de Oxigênio/metabolismo , Ácido Clorogênico/farmacologia , Glicólise , Fosforilação Oxidativa , Neoplasias/patologia , Hipóxia
18.
Front Cardiovasc Med ; 9: 995275, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36407434

RESUMO

Background: Ventricular septal rupture (VSR) is a type of cardiac rupture, usually complicated by acute myocardial infarction (AMI), with a high mortality rate and often poor prognosis. The aim of our study was to investigate the factors influencing the long-term prognosis of patients with VSR from different aspects, comparing the evaluation performance of the Gensini score, Sequential Organ Failure Assessment (SOFA) score and European Heart Surgery Risk Assessment System II (EuroSCORE II) score systems. Methods: This study retrospectively enrolled 188 patients with VSR between Dec 9, 2011 and Nov 21, 2021at the First Affiliated Hospital of Zhengzhou University. All patients were followed up until Jan 27, 2022 for clinical data, angiographic characteristics, echocardiogram outcomes, intraoperative, postoperative characteristics and major adverse cardiac events (MACEs) (30-day mortality, cardiac readmission). Cox proportional hazard regression analysis was used to explore the predictors of long-term mortality. Results: The median age of 188 VSR patients was 66.2 ± 9.1 years and 97 (51.6%) were males, and there were 103 (54.8%) patients in the medication group, 34 (18.1%) patients in the percutaneous transcatheter closure (TCC) group, and 51 (27.1%) patients in the surgical repair group. The average follow-up time was 857.4 days. The long-term mortality of the medically managed group, the percutaneous TCC group, and the surgical repair group was 94.2, 32.4, and 35.3%, respectively. Whether combined with cardiogenic shock (OR 0.023, 95% CI 0.001-0.054, P = 0.019), NT-pro BNP level (OR 0.027, 95% CI 0.002-0.34, P = 0.005), EuroSCORE II (OR 0.530, 95% CI 0.305-0.918, P = 0.024) and therapy group (OR 3.518, 95% CI 1.079-11.463, P = 0.037) were independently associated with long-term mortality in patients with VSR, and this seems to be independent of the therapy group. The mortality rate of surgical repair after 2 weeks of VSR was much lower than within 2 weeks (P = 0.025). The cut-off point of EuroSCORE II was determined to be 14, and there were statistically significant differences between the EuroSCORE II < 14 group and EuroSCORE II≥14 group (HR = 0.2596, 95%CI: 0.1800-0.3744, Logrank P < 0.001). Conclusion: Patients with AMI combined with VSR have a poor prognosis if not treated surgically, surgical repair after 2 weeks of VSR is a better time. In addition, EuroSCORE II can be used as a scoring system to assess the prognosis of patients with VSR.

19.
Cell Mol Gastroenterol Hepatol ; 14(3): 513-525, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35577269

RESUMO

Hepatocellular carcinoma (HCC) is characterized by its high degrees of both inter- and intratumoral heterogeneity. Its complex tumor microenvironment is also crucial in promoting tumor progression. Recent advances in single-cell RNA sequencing provide an important highway to characterize the underlying pathogenesis and heterogeneity of HCC in an unprecedented degree of resolution. This review discusses the up-to-date discoveries from the latest studies of HCC with respect to the strength of single-cell RNA sequencing. We discuss its use in the dissection of the landscape of the intricate HCC ecosystem and highlight the major features at cellular levels, including the malignant cells, different immune cell types, and the various cell-cell interactions, which are crucial for developing effective immunotherapies. Finally, its translational applications will be discussed. Altogether, these explorations may give us some hints at the tumor growth and progression and drug resistance and recurrence, particularly in this era of personalized medicine.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Carcinoma Hepatocelular/patologia , Ecossistema , Humanos , Neoplasias Hepáticas/patologia , Transcriptoma/genética , Microambiente Tumoral/genética
20.
Biosens Bioelectron ; 210: 114281, 2022 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-35487136

RESUMO

Probing nuclear protein expression while correlating cellular behavior is crucial for deciphering underlying causes of cellular disorders, such as tumor metastasis. Despite efforts to access nuclear proteins by trafficking the double barriers of cell membrane and nuclear membrane, they mostly fall short of the capacity for analyzing various proteins in different cells. Herein, we introduce a Companion-Probe & Race (CPR) platform that enables interrogating nuclear proteins in living cells, while guiding and tracking cellular behaviors (e.g., migration) in real time. The Companion-Probe consists of two polypeptide complexes that were structured with nuclear localization signal (NLS) for entering nucleus, recognition polypeptide for targeting different sites of nuclear proteins, and fragments of green fluorescent protein (GFP) that can recover a whole fluorescent GFP once the two polypeptide complexes combine with a same target protein. The two polypeptide complexes were expressed by two plasmids (named "probe plasmids") that were uniformly and efficiently delivered into cells by nano-electroporation (NEP), a high-performance delivery method for cell focal-poration and accelerated intracellular delivery. To track cell migration, multiple radial microchannels were designed with micro-landmarks on the platform to serve as addressable runways for cells. The proof-of-concept of CPR platform was validated with clinical primary cells that indicated the positive-correlation between nuclear protein murine double minute 2 (MDM2) expression level and cell migration velocity. This platform shows great promises to interrogate nuclear proteins in live cells, and to decode their roles in determining cellular behaviors on a chip.


Assuntos
Técnicas Biossensoriais , Proteínas Nucleares , Animais , Núcleo Celular , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Camundongos , Sinais de Localização Nuclear/genética , Sinais de Localização Nuclear/metabolismo , Proteínas Nucleares/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA