Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 104
Filtrar
1.
Adv Healthc Mater ; : e2401646, 2024 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-39001628

RESUMO

The synergistic effect of apoptosis and cuproptosis, along with the activation of the immune system, presents a promising approach to enhance the efficacy against triple-negative breast cancer (TNBC). Here, two prodrugs are synthesized: a reactive oxygen species (ROS)-responsive prodrug PEG-TK-DOX and a glutathione (GSH)-responsive prodrug PEG-DTPA-SS-CPT. These prodrugs are self-assembled and chelated Cu2+ to prepare nanoparticle PCD@Cu that simultaneously loaded doxorubicin (DOX), camptothecin (CPT), and Cu2+. The elevated levels of ROS and GSH in TNBC cells disrupted the PCD@Cu structure, leading to the release of Cu+, DOX, and CPT and the depletion of GSH. DOX and CPT triggered apoptosis with immunogenic cell death (ICD) in TNBC cells. Simultaneously, PCD@Cu downregulated the expression of copper transporting ATPase 2 (ATP7B), causing a significant accumulation of copper ions in TNBC cells. This further induced the aggregation of lipoylated dihydrolipoamide S-acetyltransferase (DLAT) and downregulation of iron-sulfur (Fe-S) cluster proteins, ultimately leading to cuproptosis and ICD in TNBC. In vitro and in vivo experiments confirmed that PCD@Cu induced apoptosis and cuproptosis in TNBC and activated the immune system, demonstrating strong anti-tumor capabilities. Moreover, PCD@Cu exhibited an excellent biosafety profile. Overall, this study provides a promising strategy for effective TNBC therapy.

2.
Mol Carcinog ; 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38888205

RESUMO

The search for novel tumor biomarkers and targets is of significant importance for the early clinical diagnosis and treatment of Hepatocellular Carcinoma (HCC). The mechanisms by which ATP citrate lyase (ACLY) promotes HCC progression remain unclear, and the connection between ACLY and REGγ has not been reported in the literature. In vitro, we will perform overexpression/knockdown of ACLY or overexpression/knockdown of REGγ to investigate the impact of ACLY on HCC cells and its underlying mechanisms. In vivo, we will establish mouse tumor models with overexpression/knockdown of ACLY or overexpression/knockdown of REGγ to study the effect of ACLY on mouse tumors and its mechanisms. Firstly, ACLY overexpression upregulated REGγ expression and activated the REGγ-proteasome pathway, leading to changes in the expression of downstream signaling pathway proteins. This promoted HCC cell proliferation, invasion, and migration in vitro, as well as tumor growth and metastasis in vivo. Secondly, ACLY overexpression increased acetyl-CoA production, upregulated the acetylation level of the REGγ promoter region histone H3K27ac, and subsequently induced REGγ expression. Lastly, enhanced acetylation of the REGγ promoter region histone H3K27ac resulted in upregulated REGγ expression, activation of the REGγ-proteasome pathway, changes in downstream signaling pathway protein expression, and promotion of HCC cell proliferation, invasion, and migration in vitro, as well as tumor growth and metastasis in vivo. Conversely, REGγ knockdown reversed these effects. ACLY and REGγ may serve as potential biomarkers and clinical therapeutic targets for HCC.

3.
Gland Surg ; 13(2): 164-177, 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38455348

RESUMO

Background: Postoperative pancreatic fistula (POPF) is a perilous complication that may arise subsequent to pancreaticoduodenectomy (PD). In recent times, there has been an escalating interest in employing machine learning (ML) techniques to aid in treatment decision-making. The purpose of this research is to assess the effectiveness of ML in comparison to conventional models, while also conducting an initial evaluation of the predictive capability of skeletal muscle index (SMI) concerning POPF. Methods: This retrospective observational study was carried out at The First Affiliated Hospital of Wenzhou Medical University from January 2012 to January 2021, encompassing data from 269 patients who underwent PD. After identifying independent factors associated with the condition, a logistic regression model was employed to construct a nomogram, alongside the establishment of five ML models. To assess their effectiveness, the best-performing ML model and nomogram were evaluated on a separate test group comprising 77 additional patients. The evaluation involved comparing the area under the curve (AUC) and Brier score. Results: Among the 269 patients studied, the incidence of POPF was found to be 56.9%, with 106 patients (69.3%) experiencing clinically-relevant POPF. We identified six independent factors associated with POPF, including body mass index (BMI), SMI, pancreatic duct dilatation, tumor size, triglyceride levels, and the ratio of aspartate aminotransferase to alanine aminotransferase (AST/ALT) on the first postoperative day. When evaluated on the test set, the Gaussian Naive Bayes (GNB) model, which was the best-performing ML model, achieved an AUC of 0.824 and a Brier score of 0.175. The corresponding performance indicators for the nomogram were 0.844 for AUC and 0.165 for the Brier score. Conclusions: This study found that there is minimal difference between ML and the nomogram based on logistic regression in predicting POPF. Additionally, SMI shows promise as a potential and practical tool for assessing the risk of POPF.

4.
Carbohydr Polym ; 329: 121795, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38286559

RESUMO

Triple-negative breast cancer (TNBC) poses a serious threat to women's life and health due to its high malignancy, strong invasiveness, and propensity for early recurrence and metastasis. Therefore, there is an urgent need to develop a highly effective and low-toxic TNBC treatment scheme to enhance the anti-cancer efficacy and prolong the survival of patients. In this work, we designed and synthesized a chemodynamic therapy (CDT) agent (HA-Fc-Mal). The chemo/chemodynamic (CT/CDT) nanoparticle (HCM@DOX) based on hyaluronic acid induces ferroptosis and apoptotic for TNBC therapy was constructed via self-assembled of HA-Fc-Mal and doxorubicin (DOX). HCM@DOX orderly realized the TNBC targeting, controlled DOX release, GSH depletion and induce ROS erupt. In vivo and in vitro experiments confirmed that HCM@DOX inhibited the growth of 4 T1 tumors through ferroptosis and apoptosis, and the tumor inhibition rate was as high as 81.87 %. In addition, HCM@DOX significantly inhibited lung metastasis and exhibited excellent biosafety. Overall, our findings offer a new strategy for TNBC therapy using a CT/CDT nanoparticle that induces ferroptosis and apoptosis.


Assuntos
Ferroptose , Nanopartículas , Neoplasias de Mama Triplo Negativas , Humanos , Feminino , Ácido Hialurônico/farmacologia , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Doxorrubicina/farmacologia , Doxorrubicina/uso terapêutico , Apoptose , Linhagem Celular Tumoral
5.
Clin Transl Oncol ; 26(4): 951-965, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37848695

RESUMO

BACKGROUND: Patients with pancreatic cancer have a dismal prognosis due to tumor cell infiltration and metastasis. Many reports have documented that EMT and PI3K-AKT-mTOR axis control pancreatic cancer cell infiltration and metastasis. Chloroxine is an artificially synthesized antibacterial compound that demonstrated anti-pancreatic cancer effects in our previous drug-screening trial. We have explored the impact of chloroxine on pancreatic cancer growth, infiltration, migration, and apoptosis. METHODS: The proliferation of pancreatic cancer cell lines (PCCs) treated with chloroxine was assessed through real-time cell analysis (RTCA), colony formation assay, CCK-8 assay, as well as immunofluorescence. Chloroxine effects on the infiltrative and migratory capacities of PCCs were assessed via Transwell invasion and scratch experiments. To assess the contents of EMT- and apoptosis-associated proteins in tumor cells, we adopted Western immunoblotting as well as immunofluorescence assays, and flow cytometry to determine chloroxine effects on PCCs apoptosis. The in vivo chloroxine antineoplastic effects were explored in nude mice xenografts. RESULTS: Chloroxine repressed pancreatic cancer cell growth, migration, and infiltration in vitro, as well as in vivo, and stimulated apoptosis of the PCCs. Chloroxine appeared to inhibit PCC growth by Ki67 downregulation; this targeted and inhibited aberrant stimulation of the PI3K-AKT-mTOR signaling cascade, triggered apoptosis in PCC via mitochondria-dependent apoptosis, and modulated the EMT to inhibit PCC infiltration and migration. CONCLUSIONS: Chloroxine targeted and inhibited the PI3K-AKT-mTOR cascade to repress PCCs growth, migration, as well as invasion, and triggered cellular apoptosis. Therefore, chloroxine may constitute a potential antineoplastic drug for the treatment of pancreatic cancer.


Assuntos
Antineoplásicos , Cloroquinolinóis , Neoplasias Pancreáticas , Animais , Humanos , Camundongos , Antineoplásicos/uso terapêutico , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Cloroquinolinóis/farmacologia , Cloroquinolinóis/uso terapêutico , Camundongos Nus , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/patologia , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais , Serina-Treonina Quinases TOR/metabolismo
6.
J Fish Biol ; 103(6): 1289-1299, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37596702

RESUMO

When dams discharge floodwaters, the river downstream often becomes supersaturated in total dissolved gases (TDG) and contains high volumes of suspended sediments (SS). Supersaturated TDG and high SS concentrations in water may affect fish physiologically in ways that manifest in swimming performance. Despite increasing awareness of the separate effects of TDG supersaturation and SS, knowledge about their synergistic effects remains unknown. To explore the interactive effects of TDG and SS on the swimming performance of bighead carp, the juveniles were exposed to 100, 110, 115, 120, 125, 130, 135, and 140% of TDG-supersaturated water with SS concentrations of 0, 50, 100, and 150 mg/L, respectively, and the critical swimming ability speed (Ucrit ) and burst swimming ability speed (Uburst ) were measured. The results indicated that the swimming ability (Ucrit and Uburst ) decreased when TDG levels and SS concentrations increased. TDG and SS did not interact significantly to decrease both Ucrit and Uburst . In contrast, exposure to TDG alone significantly decreased both Ucrit and Uburst , whereas exposure to SS alone decreased only Uburst . In addition, our results suggested that there was a negative linear relationship between TDG and fatigue time. Swimming ability can decline significantly due to high TDG levels (>130%). Therefore, high TDG levels (>130%) should be restricted during reservoir operation to prevent the stress caused by TDG.


Assuntos
Carpas , Cyprinidae , Animais , Natação/fisiologia , Cyprinidae/fisiologia , Água , Gases , Sedimentos Geológicos
7.
Bioengineering (Basel) ; 10(7)2023 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-37508855

RESUMO

This study aims to investigate the reliability of radiomic features extracted from contrast-enhanced computer tomography (CT) by AX-Unet, a pancreas segmentation model, to analyse the recurrence of pancreatic ductal adenocarcinoma (PDAC) after radical surgery. In this study, we trained an AX-Unet model to extract the radiomic features from preoperative contrast-enhanced CT images on a training set of 205 PDAC patients. Then we evaluated the segmentation ability of AX-Unet and the relationship between radiomic features and clinical characteristics on an independent testing set of 64 patients with clear prognoses. The lasso regression analysis was used to screen for variables of interest affecting patients' post-operative recurrence, and the Cox proportional risk model regression analysis was used to screen for risk factors and create a nomogram prediction model. The proposed model achieved an accuracy of 85.9% for pancreas segmentation, meeting the requirements of most clinical applications. Radiomic features were found to be significantly correlated with clinical characteristics such as lymph node metastasis, resectability status, and abnormally elevated serum carbohydrate antigen 19-9 (CA 19-9) levels. Specifically, variance and entropy were associated with the recurrence rate (p < 0.05). The AUC for the nomogram predicting whether the patient recurred after surgery was 0.92 (95% CI: 0.78-0.99) and the C index was 0.62 (95% CI: 0.48-0.78). The AX-Unet pancreas segmentation model shows promise in analysing recurrence risk factors after radical surgery for PDAC. Additionally, our findings suggest that a dynamic nomogram model based on AX-Unet can provide pancreatic oncologists with more accurate prognostic assessments for their patients.

8.
J Biochem Mol Toxicol ; 36(11): e23192, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35929395

RESUMO

To investigate the potential antitumor activity of synthetic triterpenoid, methyl-2-cyano-3,12-dioxooleana-1,9(11)-dien-28-oate (CDDO-Me) in pancreatic ductal adenocarcinoma (PDAC), MTT cytotoxicity assay, and xenograft nude mice assay were performed to evaluate tumor growth in vitro and in vivo. Seahorse XFe96 bioenergetics analyzer was applied to determine aerobic glycolysis and mitochondrial respiration. Western blot and quantitative reverse transcription-polymerase chain reactions are used to detect protein and messenger RNA transcripts of SLC1A5 and metabolic enzymes. We confirmed the strong antitumor activity of CDDO-Me in suppressing PDAC growth. Mechanistically, we demonstrated CDDO-Me induced mitochondrial respiration and aerobic glycolysis dysfunction. We also verified CDDO-Me downregulated glutamine transporter SLC1A5, resulting in excessive reactive oxygen species (ROS) levels that suppressed tumor growth. Moreover, we confirmed that SLC1A5 depletion reduced the ratio of glutathione/oxidized glutathione. We also found CDDO-Me could inhibit N-linked glycosylation of SLC1A5, which promotes protease-mediated degradation. Finally, we confirmed SLC1A5 was significantly overexpressed in PDAC and closely correlated with the poor prognosis of PDAC patients. Our work uncovers CDDO-Me is effective at suppressing PDAC cell growth in vitro and in vivo and illuminates CDDO-Me caused excessive ROS and cellular bioenergetics disruption which contributed to CDDO-Me inhibited PDAC growth. Our data highlights CDDO-Me could be considered a potential compound for PDAC therapy, and SLC1A5 could be a novel biomarker for PDAC patients.


Assuntos
Adenocarcinoma , Ácido Oleanólico , Neoplasias Pancreáticas , Triterpenos , Camundongos , Animais , Humanos , Triterpenos/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Camundongos Nus , Apoptose , Ácido Oleanólico/farmacologia , Neoplasias Pancreáticas/metabolismo , Linhagem Celular Tumoral , Metabolismo Energético , Antígenos de Histocompatibilidade Menor/metabolismo , Antígenos de Histocompatibilidade Menor/farmacologia , Sistema ASC de Transporte de Aminoácidos/metabolismo , Neoplasias Pancreáticas
9.
Exp Biol Med (Maywood) ; 247(16): 1397-1409, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35666032

RESUMO

Activin receptor-like kinase 7 (ALK7) is associated with lipometabolism and insulin sensitivity. Our previous study demonstrated that ALK7 participated in high glucose-induced cardiomyocyte apoptosis. The aim of our study was to investigate whether ALK7 plays an important role in modulating diabetic cardiomyopathy (DCM) and the mechanisms involved. The model of diabetes was induced in male Sprague-Dawley rats (120-140 g) by high-fat diet and intraperitoneal injections of low-dose streptozotocin (30 mg/kg). Animals were separated into four groups: control, DCM, DCM with ALK7 silencing, and DCM with vehicle control. The cardiac function was assessed by catheterization. Histopathologic analyses of collagen content and apoptosis rate, and protein analyses of ALK7, Smad2/3, Akt, Caspase3, and Bax/Bcl2 were performed. This study showed a rat model of DCM with hyperglycemia, severe insulin resistance, left ventricular dysfunction, and structural remodeling. With ALK7 silencing, the apoptotic cell death (apoptosis rate assessed by TUNEL, ratio of Bax/Bcl2 and expression of cleaved Caspase3), fibrosis areas, and Collagen I-to-III ratio decreased significantly. The insulin resistance and diastolic dysfunction were also ameliorated by ALK7 silencing. Furthermore, the depressed phosphorylation of Akt was restored while elevated phosphorylation of Smad2/3 decreased after the silencing of ALK7. The results suggest ALK7 silencing plays a protective role in DCM and may serve as a potential target for the treatment of human DCM.


Assuntos
Diabetes Mellitus Experimental , Cardiomiopatias Diabéticas , Resistência à Insulina , Receptores de Ativinas Tipo I , Animais , Apoptose/genética , Colágeno , Diabetes Mellitus Experimental/metabolismo , Cardiomiopatias Diabéticas/tratamento farmacológico , Fibrose , Glucose , Humanos , Masculino , Miócitos Cardíacos/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos , Ratos Sprague-Dawley , Estreptozocina , Proteína X Associada a bcl-2
11.
Front Oncol ; 12: 654449, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35402224

RESUMO

Background: Hepatocellular carcinoma (HCC) is the most common and deadly type of liver cancer. Autophagy is the process of transporting damaged or aging cellular components into lysosomes for digestion and degradation. Accumulating evidence implies that autophagy is a key factor in tumor progression. The aim of this study was to determine a panel of novel autophagy-related prognostic markers for liver cancer. Methods: We conducted a comprehensive analysis of autophagy-related gene (ARG) expression profiles and corresponding clinical information based on The Cancer Genome Atlas (TCGA) and International Cancer Genome Consortium (ICGC) databases. The univariate Cox proportional regression model was used to screen candidate autophagy-related prognostic genes. In addition, a multivariate Cox proportional regression model was used to identify five key prognostic autophagy-related genes (ATIC, BAX, BIRC5, CAPNS1, and FKBP1A), which were used to construct a prognostic signature. Real-time qPCR analysis was used to evaluate the expression levels of ARGs in 20 surgically resected HCC samples and matched tumor-adjacent normal tissue samples. In addition, the effect of FKBP1A on autophagy and tumor progression was determined by performing in vitro and in vivo experiments. Results: Based on the prognostic signature, patients with liver cancer were significantly divided into high-risk and low-risk groups in terms of overall survival (OS). A subsequent multivariate Cox regression analysis indicated that the prognostic signature remained an independent prognostic factor for OS. The prognostic signature possessing a better area under the curve (AUC) displayed better performance in predicting the survival of patients with HCC than other clinical parameters. Furthermore, FKBP1A was overexpressed in HCC tissues, and knockdown of FKBP1A impaired cell proliferation, migration, and invasion through the PI3K/AKT/mTOR signaling pathway. Conclusion: This study provides a prospective biomarker for monitoring outcomes of patients with HCC.

12.
Cell Death Discov ; 8(1): 116, 2022 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-35288541

RESUMO

Patients with pancreatic cancer (PC) show dismal prognosis and high mortality. The development of PC is associated with the overactivation of STAT3. Here, we have determined that the non-peptide small molecule Stattic inhibits PC development by targeting STAT3. In vitro, Stattic treatment time- and dose-dependently inhibited proliferation of pancreatic cancer cells (PCCs) by reducing c-Myc expression and enhancing p53 activity. Consequently, p-Rb, cyclin D1, Chk1, and p21 (cell cycle proteins) were downregulated, and PCCs were arrested at the G1 phase, which was also confirmed by decreased Ki67 expression and unaltered PCNA expression. In addition, Stattic-induced mitochondrial-dependent apoptosis by elevating cleaved caspase-3, and Bax, cytochrome C levels, while reducing expression of Bcl-2, which may be regulated by reduced survivin expression. Further studies showed that Stattic exerts its anti-tumor effect via inhibition of STAT3Y705 phosphorylation and nuclear localization in PCCs. In a nude mouse tumorigenesis model, Stattic inhibited PC growth by antagonizing STAT3Y705 phosphorylation. Interleukin-6 used as a molecule agonist to activate STAT3, as well as overexpression of STAT3, could partially reverse Stattic-mediated anti-proliferation and pro-apoptotic effects of PCCs. Thus, these findings indicate that inhibition of STAT3Y705 phosphorylation by Stattic suppresses PCC proliferation and promotes mitochondrial-mediated apoptosis.

13.
Cell Death Dis ; 13(2): 112, 2022 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-35115509

RESUMO

Niclosamide, a cell-permeable salicylanilide, was approved by the Food and Drug Administration for its anthelmintic efficiency. A growing body of evidence in recent years suggests that niclosamide exhibits potential tumor-suppressive activity. However, the role and molecular mechanism of niclosamide in pancreatic cancer remain unclear. In this study, niclosamide inhibited proliferation of pancreatic cancer cells (PCCs), induced apoptosis via the mitochondrial-mediated pathway, and suppressed cell migration and invasion by antagonizing epithelial-to-mesenchymal transition. Also, niclosamide inhibited tumor growth and metastasis in pancreatic cancer xenograft mouse models. Mechanistically, niclosamide exerted these therapeutic effects via targeting ß-catenin. Niclosamide did not reduce ß-catenin mRNA expression in PCCs, but significantly downregulated its protein level. Moreover, niclosamide induced ß-catenin phosphorylation and protein degradation. Interestingly, niclosamide also induced GSK-3ß phosphorylation, which is involved in the ubiquitination degradation of ß-catenin. Pharmacological activation of ß-catenin by methyl vanillate and ß-catenin overexpression abolished the inhibitory effects of niclosamide. Furthermore, niclosamide potentiated the antitumor effect of the chemotherapy drug gemcitabine and reduced the ability of cancer immune evasion by downregulating the expression levels of PD-L1, which is involved in T cell immunity. Thus, our study indicated that niclosamide induces GSK-ß-mediated ß-catenin degradation to potentiate gemcitabine activity, reduce immune evasion ability, and suppress pancreatic cancer progression. Niclosamide may be a potential therapeutic candidate for pancreatic cancer.


Assuntos
Anti-Helmínticos , Neoplasias Pancreáticas , Animais , Anti-Helmínticos/farmacologia , Linhagem Celular Tumoral , Proliferação de Células , Desoxicitidina/análogos & derivados , Glicogênio Sintase Quinase 3 beta/metabolismo , Humanos , Evasão da Resposta Imune , Camundongos , Niclosamida/farmacologia , Neoplasias Pancreáticas/metabolismo , Via de Sinalização Wnt , beta Catenina/metabolismo , Gencitabina , Neoplasias Pancreáticas
14.
J Gene Med ; 24(2): e3343, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-33871149

RESUMO

INTRODUCTION: Chemotherapy and radiotherapy have been reported to be basically ineffective for pancreatic ductal adenocarcinoma patients; thus, gene therapy might provide a novel approach. CDK14, a new oncogenic member of the CDK family involved in the pancreatic cancer cell response to gemcitabine treatment, has been reported to be regulated by microRNAs. In the present study, we aimed to investigate whether miR-26b regulated CDK14 expression to affect the phenotype of pancreatic cancer cells. METHODS: Overexpression or knockdown of CDK14 or miR-26b was generated in pancreatic cancer cell lines and the function of CDK14 and miR-26b on cell phenotype and the Wnt signaling pathway was determined using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide, 5-ethynyl-2'-deoxyuridine and transwell assays, as well as a xenograft model and western blotting. The predicted binding site between the 3'-untranslated region of CDK14 and miR-26b, miR-26b promoter and TCF4 was verified by luciferase or chromatin immunoprecipitation assays. RESULTS: CDK14 overexpression inhibited p-GSK3ß, whereas it promoted p-LRP6, the nuclear translocation of ß-catenin and the transactivation of TCF4 transcription factor, thus promoting pancreatic cancer cell aggressiveness. miR-26b directly targeted CDK14 and inhibited CDK14 expression. In vitro and in vivo, miR-26b overexpression inhibited, and CDK14 overexpression promoted, cancer cell aggressiveness; CDK14 overexpression partially attenuated the miR-26b overexpression effects on cancer cells. The effects of miR-26b overexpression on tumor growth and the Wnt/ß-catenin/TCF4 signaling were partially reversed by CDK14 overexpression. TCF4 inhibited the expression of miR-26b by targeting its promoter region. CONCLUSIONS: CDK14, ß-catenin, TCF4 and miR-26b form a positive feedback regulation for modulating pancreatic cancer cell phenotypes in vitro and tumor growth in vivo.


Assuntos
MicroRNAs , Neoplasias Pancreáticas , Regiões 3' não Traduzidas , Animais , Linhagem Celular Tumoral , Proliferação de Células/genética , Quinases Ciclina-Dependentes/genética , Quinases Ciclina-Dependentes/metabolismo , Modelos Animais de Doenças , Retroalimentação , Regulação Neoplásica da Expressão Gênica , Humanos , Camundongos , MicroRNAs/genética , MicroRNAs/metabolismo , Neoplasias Pancreáticas/genética , Fenótipo , Fator de Transcrição 4/genética , Fator de Transcrição 4/metabolismo , beta Catenina/genética , Neoplasias Pancreáticas
15.
Front Oncol ; 11: 784925, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34970496

RESUMO

Gastric cancer (GC) is an aggressive malignant tumor and causes a significant number of deaths every year. With the coming of the age of cancer immunotherapy, search for a new target in gastric cancer may benefit more advanced patients. Melanoma-associated antigen-A3 (MAGEA3), one of the members of the cancer-testis antigen (CTA) family, was considered an important part of cancer immunotherapy. We evaluate the potential role of MAGEA3 in GC through the TCGA database. The result revealed that MAGEA3 is upregulated in GC and linked to poor OS and lymph node metastasis. MAGEA3 was also correlated with immune checkpoints, TMB, and affected the tumor immune microenvironment and the prognosis of GC through CIBERSORT, TIMER, and Kaplan-Meier plotter database analysis. In addition, GSEA-identified MAGEA3 is involved in the immune regulation of GC. Moreover, the protein-protein interaction (PPI) networks of MAGEA3 were constructed through STRING database and MAGEA3-correlated miRNAs were screened based on the joint analysis of multiple databases. In terms of experimental verification, we constructed pET21a (+)/MAGEA3 restructuring plasmids and transformed to Escherichia coli Rosetta. MAGEA3 protein was used as an antigen after being expressed and purified and can effectively detect the specific IgG in 93 GC patients' serum specimens with 44.08% sensitivity and 92.54% specificity. Through further analysis, the positive rate of MAGEA3 was related to the stage and transfer number of lymph nodes. These results indicated that MAGEA3 is a novel biomarker and correlated with lymph node metastasis and immune infiltrates in GC, which could be a new target for immunotherapy.

16.
Am J Transl Res ; 13(10): 11209-11222, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34786052

RESUMO

OBJECTIVE: Colorectal cancer is a common malignancy worldwide. This research aimed to investigate the role of α-ketoglutarate-dependent dioxygenase alkB homologue 5 (ALKBH5), a N6-methyladenosine (m(6)A) demethylase, on the cell proliferation and metastasis of colorectal cancer. METHODS: The interaction relationship between FOXO3, miR-21, and SPRY2 were predicted by starBase 2.0 and determined using RIP, CHIP, and dual-luciferase reporter assays. Quantitative reverse transcription PCR (RT-qPCR) and western blot were used to measure the gene and miRNA expressions of ALKBH5, FOXO3, miR-21, and SPRY2. The cell proliferation was determined using CCK8 and colony formation assays. The metastatic abilities were measured using wound healing and transwell assays. RESULTS: In colorectal cancer, downregulated ALKBH5 is related to poor prognosis. Rescued ALKBH5 suppresses the proliferation and metastasis of colorectal cancer cells. The role of ALKBH5 is achieved by reducing the m(6)A modification of forkhead box O3 (FOXO3), which enhances its stability. FOXO3 targets miR-21 and increases the SPRY2 expressions. The antitumor effects of ALKBH5 can be blocked by FOXO3 knockdown, which is reversed by the miR-21 inhibitor. CONCLUSION: ALKBH5 plays an antitumor role in colorectal cancer by regulating the FOXO3/miR-21/SPRY2 axis, providing a new direction for colorectal cancer therapy.

17.
Adv Sci (Weinh) ; 8(21): e2101936, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34605226

RESUMO

The neurokinin-1 receptor (NK-1R) antagonists are approved as treatment for chemotherapy-associated nausea and vomiting in cancer patients. The emerging role of the substance P-NK-1R system in oncogenesis raises the possibility of repurposing well-tolerated NK-1R antagonists for cancer treatment. This study reports that human colorectal cancer (CRC) patients with high NK-1R expression have poor survival, and NK-1R antagonists SR140333 and aprepitant induce apoptotic cell death in CRC cells and inhibit CRC xenograft growth. This cytotoxicity induced by treatment with NK-1R antagonists is mediated by induction of endoplasmic reticulum (ER) stress. ER stress triggers calcium release, resulting in the suppression of prosurvival extracellular signal-regulated kinase (ERK)-c-Myc signaling. Along with ER calcium release, one ER stress pathway mediated by protein kinase RNA-like ER kinase (PERK) is specifically activated, leading to increased expression of proapoptotic C/EBP-homologous protein (CHOP). Moreover, NK-1R antagonists enhance the efficacy of chemotherapy by increasing the sensitivity and overcoming resistance to 5-fluorouracil in CRC cells through the induction of sustained ER stress and the consequent suppression of ERK-c-Myc signaling both in vitro and in vivo. Collectively, the findings provide novel mechanistic insights into the efficacy of NK-1R antagonists either as a single agent or in combination with chemotherapy for cancer treatment.


Assuntos
Apoptose/efeitos dos fármacos , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Antagonistas dos Receptores de Neurocinina-1/farmacologia , Proteínas Proto-Oncogênicas c-myc/metabolismo , Transdução de Sinais/efeitos dos fármacos , Animais , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Aprepitanto/farmacologia , Aprepitanto/uso terapêutico , Linhagem Celular Tumoral , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/mortalidade , Neoplasias Colorretais/patologia , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Humanos , Camundongos , Camundongos Nus , Antagonistas dos Receptores de Neurocinina-1/uso terapêutico , Piperidinas/farmacologia , Piperidinas/uso terapêutico , Quinuclidinas/farmacologia , Quinuclidinas/uso terapêutico , Taxa de Sobrevida , Transplante Heterólogo
18.
Epigenomics ; 13(18): 1497-1514, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34581636

RESUMO

Aims: To develop a ferroptosis gene-based survival-predictor model for predicting the prognosis of patients with digestive tract tumors, a pan-caner analysis was performed. Materials & methods: Based on unsupervised clustering and the expression levels of ferroptosis genes, patients with cancer were divided into two clusters. The least absolute shrinkage and selection operator method Cox regression analysis was used to establish the survival-predictor model. Results: Based on the pan-cancer analysis, a 20 gene-based survival-predictor model for predicting survival rates was developed, which was validated in patients with hepatocellular carcinoma. Conclusion: The survival-predictor model accurately predicted the prognosis of patients with digestive tract tumors.


Assuntos
Transformação Celular Neoplásica/genética , Suscetibilidade a Doenças , Ferroptose/genética , Neoplasias Gastrointestinais/etiologia , Neoplasias Gastrointestinais/metabolismo , Adulto , Idoso , Biomarcadores Tumorais , Transformação Celular Neoplásica/metabolismo , Biologia Computacional/métodos , Feminino , Neoplasias Gastrointestinais/mortalidade , Neoplasias Gastrointestinais/patologia , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Redes Reguladoras de Genes , Predisposição Genética para Doença , Humanos , Masculino , Pessoa de Meia-Idade , Anotação de Sequência Molecular , Gradação de Tumores , Estadiamento de Neoplasias , Prognóstico , Transcriptoma
19.
Mil Med Res ; 8(1): 48, 2021 09 09.
Artigo em Inglês | MEDLINE | ID: mdl-34496967

RESUMO

The management of bacterial infections is becoming a major clinical challenge due to the rapid evolution of antibiotic resistant bacteria. As an excellent candidate to overcome antibiotic resistance, antimicrobial peptides (AMPs) that are produced from the synthetic and natural sources demonstrate a broad-spectrum antimicrobial activity with the high specificity and low toxicity. These peptides possess distinctive structures and functions by employing sophisticated mechanisms of action. This comprehensive review provides a broad overview of AMPs from the origin, structural characteristics, mechanisms of action, biological activities to clinical applications. We finally discuss the strategies to optimize and develop AMP-based treatment as the potential antimicrobial and anticancer therapeutics.


Assuntos
Infecções Bacterianas/tratamento farmacológico , Proteínas Citotóxicas Formadoras de Poros/farmacologia , Proteínas Citotóxicas Formadoras de Poros/farmacocinética , Antibacterianos/efeitos adversos , Antibacterianos/farmacocinética , Antibacterianos/farmacologia , Humanos
20.
Cancer Cell Int ; 21(1): 502, 2021 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-34537070

RESUMO

BACKGROUND: Accumulating evidence demonstrates that tRFs (tRNA-derived small RNA fragments) and tiRNAs (tRNA-derived stress-induced RNA), an emerging category of regulatory RNA molecules derived from transfer RNAs (tRNAs), are dysregulated in in various human cancer types and play crucial roles. However, their roles and mechanisms in hepatocellular carcinoma (HCC) and liver cancer stem cells (LCSCs) are still unknown. METHODS: The expression of glycine tRNA-derived fragment (Gly-tRF) was measured by qRT-PCR. Flow cytometric analysis and sphere formation assays were used to determine the properties of LCSCs. Transwell assays and scratch wound assays were performed to detect HCC cell migration. Western blotting was conducted to evaluate the abundance change of Epithelial-mesenchymal transition (EMT)-related proteins. Dual luciferase reporter assays and signalling pathway analysis were performed to explore the underlying mechanism of Gly-tRF functions. RESULTS: Gly-tRF was highly expressed in HCC cell lines and tumour tissues. Gly-tRF mimic increased the LCSC subpopulation proportion and LCSC-like cell properties. Gly-tRF mimic promoted HCC cell migration and EMT. Loss of Gly-tRF inhibited HCC cell migration and EMT. Mechanistically, Gly-tRF decreased the level of NDFIP2 mRNA by binding to the NDFIP2 mRNA 3' UTR. Importantly, overexpression of NDFIP2 weakened the promotive effects of Gly-tRF on LCSC-like cell sphere formation and HCC cell migration. Signalling pathway analysis showed that Gly-tRF increased the abundance of phosphorylated AKT. CONCLUSIONS: Gly-tRF enhances LCSC-like cell properties and promotes EMT by targeting NDFIP2 and activating the AKT signalling pathway. Gly-tRF plays tumor-promoting role in HCC and may lead to a potential therapeutic target for HCC.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA