Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Zhongguo Shi Yan Xue Ye Xue Za Zhi ; 27(5): 1387-1394, 2019 Oct.
Artigo em Chinês | MEDLINE | ID: mdl-31607288

RESUMO

OBJECTIVE: To investigate the effect of metformin on the proliferation, apoptosis and energy metabolism of acute myeloid leukemia (AML) K562 cells and the possible mechanism. METHODS: Different doses (0, 5, 10, 20 and 30 mmol/L) of metformin was added into the K562 cells, which were cultivated for 24 h, 48 h and 72 h. The inverted optical microscope was used to observe the cell growth, CCK 8 was used to detect the cell vitality. The appropriate metformin doses (0, 10, 20 and 30 mmol/L) and the best time (48 h) were selected for subsequent experiments. The flow cytometer with Annexin V-FITC /PI doulde staining was used to detect apoptosis; the glucose detection kit and lactate detection kit were used to detect glucose consumption and lactate production; fluorescence quantitative PCR was used to detect glycolysis-related gene expression, and Western blot was used to detect protein expression. RESULTS: Metformin inhibited the proliferation of K562 cells in a dose-dependent manner (r=0.92), and the relative survival in the 30 mmol/L group was as low as 19.84% at 72 h. When treated with metformin for 48 h, the apoptosis rates of 0, 10, 20 and 30 mmol/L groups were 5.14%, 12.19%, 26.29% and 35.5%, respectively. Compared with the control group, the glucose consumption and lactate secretion of K562 cells treated with metformin were significantly reduced (P<0.05), and showed a dose-dependent effect(r=0.94,r=0.93,respectively). Metformin inhibited the expression of GLUT1, LDHA, ALDOA, PDK1, and PGK1 genes of K562 cells (P<0.05) showing a dose-dependent manner(r=0.83,r=0.80,r=0.72,r=0.76,r=0.73,respectively). Metformin inhibited the expression of P-Akt, P-S6, GLUT1, LDHA proteins of K562 cells(P<0.05), showing a dose-dependent relationship(r=0.80,r=0.92,r=0.83,r=0.92,respectively). CONCLUSION: Metformin can inhibit the growth and proliferation of K562 cells and promote the apoptosis of K562 cells by inhibiting glycolysis energy metabolism. PI3K/Akt/mTOR signaling pathway may be one of the molecular mechanisms of metformin on k562 cells.


Assuntos
Metformina/farmacologia , Apoptose , Proliferação de Células , Glicólise , Humanos , Células K562 , Fosfatidilinositol 3-Quinases
2.
Parasitol Res ; 118(7): 2287-2293, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31168702

RESUMO

Schistosomiasis is a devastating disease caused by Schistosoma infection. Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) has emerged as a candidate vaccine component against Schistosoma japonicum, but only confers partial protection. Cytotoxic T lymphocyte antigen-4 (CTLA-4) regulates T cell activation and shows negative effects on vaccine-induced immune protection; however, its potential influence on the protective effects of a GAPDH vaccine against S. japonicum and the underlying mechanism remain unclear. In this study, we established a mouse model of S. japonicum infection, and the mice were randomly divided into uninfected, infected control, anti-CTLA-4 monoclonal antibody (anti-CTLA-4 mAb), GAPDH, and GAPDH combined with anti-CTLA-4 mAb groups to compare the protective effects against infection and the consequent tissue damage. The worm reduction rate in the GAPDH-treated infected mice was 26.58%, which increased to 54.61% when combined with anti-CTLA-4 mAb. The frequency of regulatory T cells (Tregs) was significantly higher in the anti-CTLA-4 mAb group and was lower in the GAPDH group. However, both anti-CTLA-4 mAb and GAPDH elevated the levels of the cytokines IFN-γ, IL-2, IL-4, and IL-5 in the spleens of infected mice, and their combination further enhanced cytokine production. The diameter of egg granuloma in the anti-CTLA-4 mAb group and combined treatment group increased significantly compared to that of the other groups. These results suggest that anti-CTLA-4 mAb can be used as an adjuvant to enhance the immune protection of the GAPDH vaccine via inducing the Th1 immune response, although this comes at the cost of enhanced body injury.


Assuntos
Antígenos de Helmintos/imunologia , Antígeno CTLA-4/imunologia , Gliceraldeído-3-Fosfato Desidrogenases/imunologia , Schistosoma japonicum/imunologia , Esquistossomose Japônica/imunologia , Vacinas/imunologia , Animais , Anticorpos Monoclonais/imunologia , Citocinas/metabolismo , Modelos Animais de Doenças , Feminino , Camundongos , Camundongos Endogâmicos BALB C , Esquistossomose Japônica/parasitologia , Esquistossomose Japônica/prevenção & controle , Baço/imunologia , Linfócitos T Reguladores/imunologia
3.
Front Immunol ; 10: 1022, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31134084

RESUMO

The present study evaluated the impact of blocking cytotoxic T-lymphocyte antigen-4 (CTLA-4) activity on the protective effect elicited by the fatty acid binding protein (FABP) vaccine against Schistosoma japonicum infection. Mice were randomly divided into uninfected, infected control, anti-CTLA-4 monoclonal antibody (anti-CTLA-4 mAb), FABP, and combination (anti-CTLA-4 mAb and FABP) groups. An assessment of the S. japonicum worm and egg burden in the infected mice revealed that the worm reduction-rate induced by FABP administration was increased from 26.58 to 54.61% by co-administration of the monoclonal anti-CTLA antibody (anti-CTLA-4 mAb). Furthermore, the regulatory T cell (Treg) percentage was significantly increased in mice after administration of the anti-CTLA-4 mAb, but not the FABP vaccine, and elevated levels of the cytokines interferon (IFN)-γ, interleukin (IL)-2, IL-4, and IL-5 were observed in infected mice that were administered the anti-CTLA-4 mAb. Notably, the diameter of egg granulomas in the anti-CTLA-4 mAb and combination groups was significantly increased compared to that observed in the infected control group. Together, these results suggest that co-administering the FABP vaccine and anti-CTLA-4 treatment may have synergistically increased the immunoprotective effect of the FABP vaccine by promoting T-helper 1-type immune responses, while incurring increased tissue damage.


Assuntos
Anticorpos Monoclonais/imunologia , Antígeno CTLA-4/imunologia , Proteínas de Ligação a Ácido Graxo/imunologia , Schistosoma japonicum/imunologia , Esquistossomose Japônica/imunologia , Vacinas/imunologia , Animais , Anticorpos Monoclonais/administração & dosagem , Citocinas/imunologia , Citocinas/metabolismo , Sinergismo Farmacológico , Feminino , Interações Hospedeiro-Parasita/efeitos dos fármacos , Interações Hospedeiro-Parasita/imunologia , Camundongos Endogâmicos BALB C , Schistosoma japonicum/efeitos dos fármacos , Schistosoma japonicum/fisiologia , Esquistossomose Japônica/parasitologia , Esquistossomose Japônica/prevenção & controle , Linfócitos T Reguladores/efeitos dos fármacos , Linfócitos T Reguladores/imunologia , Linfócitos T Reguladores/parasitologia , Células Th1/efeitos dos fármacos , Células Th1/imunologia , Células Th1/parasitologia , Vacinas/administração & dosagem
4.
Parasitol Res ; 118(4): 1087-1094, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30758662

RESUMO

Type 1 diabetes (T1D) is an autoimmune disease in which cells of the immune system destroy pancreatic ß cells, which secrete insulin. The high prevalence of T1D in developed societies may be explained by environmental changes, including lower exposure to helminths. Indeed, infection by helminths such as Schistosoma, Filaria, and Heligmosomoides polygyrus and their by-products has been reported to ameliorate or prevent the development of T1D in human and animal models. Helminths can trigger distinct immune regulatory pathways, often involving adaptive immune cells that include T helper 2 (Th2) cells and regulatory T cells (Tregs) and innate immune cells that include dendritic cells, macrophages, and invariant natural killer T cells, which may act synergistically to induce Tregs in a Toll-like receptor-dependent manner. Cytokines such as interleukin (IL)-4, IL-10, and transforming growth factor (TGF)-ß also play an important role in protection from T1D. Herein, we provide a comprehensive review of the effects and mechanisms underlying protection against T1D by helminths.


Assuntos
Diabetes Mellitus Tipo 1/prevenção & controle , Helmintos/imunologia , Células Secretoras de Insulina/imunologia , Células Secretoras de Insulina/patologia , Linfócitos T Reguladores/imunologia , Animais , Células Dendríticas/imunologia , Diabetes Mellitus Tipo 1/patologia , Humanos , Interleucina-10/imunologia , Interleucina-4/imunologia , Macrófagos/imunologia , Células T Matadoras Naturais/imunologia , Células Th2/imunologia , Fator de Crescimento Transformador beta/imunologia
5.
Zhongguo Shi Yan Xue Ye Xue Za Zhi ; 25(2): 334-339, 2017 Apr.
Artigo em Chinês | MEDLINE | ID: mdl-28446271

RESUMO

OBJECTIVE: To explore the mRNA expression of Aurora-A,B,C(AUR-A,B,C) in acute leukemia(AL) and their correlations with the clinical indications. METHODS: The mRNA expression levels of AUR-A,B,C in 73 cases of newly diagnosed AL (untreated group), 20 cases of AL with remission (remission group) and 14 healthy volunteers as control (healthy group) were detected by QRT-PCR, and the difference of expression levels in difference groups, their correlations with clinical indicators and the correlation between the AUR-A,B,C mRNA expression levels themselves were analyzed. RESULTS: The mRNA expression levels of AUR-A,B,C in untreated group were all higher than those in healthy group and remission group(P<0.01), but there was not significant difference between healthy group and remission group(P>0.05); the mRNA expressions of AUR-A,B,C in acute lymphoblastic leukemia(ALL) group were all significantly higher than that in AML group(P<0.01). The mRNA expression of AUR-A,B,C in high risk group was higher than that in low risk group(P<0.05), but there was no difference in mRNA expression of AUR-A,B,C between high risk group and middle risk group as well as between middle risk group and low risk group(P>0.05). The mRNA expression of AUR-A, B, C in CD34, CD71 and CD56 negative group was not statistically different from that in CD34,CD71 and CD56 positive group(P>0.05). In 73 cases of newly diagnosed AL, the mRNA expression levels of AUR-A, B significantly were positively correlated with lactate dehydrogenase(LDH) level and risk stratification (r=0.279, P=0.017; r=0.314, P=0.007 and r=0.277, P=0.018; r=0.349, P=0.002), while the mRNA expression levels of AUR-A, B were not significantly correlated with age, WBC count, blast ratio in bone marrow at initial diagnosis and remission or no-remission after 1 cours of chemotherapy; the mRNA expression level of AUR-C was significantly positively correlated with WBC count (r=0.263, P=0.025), and LDH level (r=0.348, P=0.003) at initial diagnosis and risk stratificantion(r=0.376, P=0.001), and negatively correlated with age (r=-0.241, P=0.040), and was not significantly correlated with blast ratio in bone marrow at initial diagnosis and remission or noremission after 1 course of chemotherapy. There were significant positive correlations in the mRNA expression between AUR-A and B (r=0.444, P=0.000), AUR-B and C (r=0.763, P=0.000) as well as AUR-A and C (r=0.616, P=0.000). CONCLUSION: Aur-A, B, C mRNA were highly expressed in patients with newly diagnosed AL, moreover the mRNA expression levels of Aur-A,B,C were positively correlated with each other, the high expression of Aur-A, B, C are associated with leukemia types, risk stratification, WBC count and LDH level at initial diagnosis, so they all maybe used as the prognostic markers and potential therapeutic targets.


Assuntos
Aurora Quinase A/genética , Aurora Quinase B/genética , Aurora Quinase C/genética , Leucemia Mieloide Aguda/genética , Doença Aguda , Medula Óssea , Humanos , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Prognóstico , RNA Mensageiro/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA