Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Med Chem ; 67(9): 7516-7538, 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38686671

RESUMO

The NLRP3 inflammasome has been recognized as a promising therapeutic target in drug discovery for inflammatory diseases. Our initial research identified a natural sesquiterpene isoalantolactone (IAL) as the active scaffold targeting NLRP3 inflammasome. To improve its activity and metabolic stability, a total of 64 IAL derivatives were designed and synthesized. Among them, compound 49 emerged as the optimal lead, displaying the most potent inhibitory efficacy on nigericin-induced IL-1ß release in THP-1 cells, with an IC50 value of 0.29 µM, approximately 27-fold more potent than that of IAL (IC50: 7.86 µM), and exhibiting higher metabolic stability. Importantly, 49 remarkably improved DSS-induced ulcerative colitis in vivo. Mechanistically, we demonstrated that 49 covalently bound to cysteine 279 in the NACHT domain of NLRP3, thereby inhibiting the assembly and activation of NLRP3 inflammasome. These results provided compelling evidence to further advance the development of more potent NLRP3 inhibitors based on this scaffold.


Assuntos
Desenho de Fármacos , Inflamassomos , Proteína 3 que Contém Domínio de Pirina da Família NLR , Sesquiterpenos , Proteína 3 que Contém Domínio de Pirina da Família NLR/antagonistas & inibidores , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Humanos , Inflamassomos/metabolismo , Inflamassomos/antagonistas & inibidores , Animais , Sesquiterpenos/farmacologia , Sesquiterpenos/síntese química , Sesquiterpenos/química , Camundongos , Relação Estrutura-Atividade , Interleucina-1beta/metabolismo , Células THP-1 , Colite Ulcerativa/tratamento farmacológico , Colite Ulcerativa/metabolismo , Camundongos Endogâmicos C57BL
2.
J Agric Food Chem ; 2023 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-37931326

RESUMO

Onions are versatile and nutritious food widely used in various cuisines around the world. In our ongoing pursuit of bioactive substances with health benefits from red onion (Allium cepa L.) skin, a comprehensive chemical investigation was undertaken. Consequently, a total of 44 compounds, including three previously unidentified chalcones (1-3) were extracted from red onion skin. Of these isolates, chalcones 1-4 showed high affinity to A2A adenosine receptor (A2AAR), and chalcone 2 displayed the best binding affinity to A2AAR, with the IC50 value of 33.5 nM, good A2AAR selectivity against A1AR, A2BAR, and A3AR, and high potency in the cAMP functional assay (IC50 of 913.9 nM). Importantly, the IL-2 bioassay and the cell-mediated cytotoxicity assay demonstrated that chalcone 2 could boost T-cell activation. Furthermore, the binding mechanism of chalcone 2 with hA2AAR was elucidated by molecular docking. This work highlighted that the active chalcones in red onion might have the potential to be developed as A2AAR antagonists used in cancer immunotherapy.

3.
Front Endocrinol (Lausanne) ; 14: 920548, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36824359

RESUMO

Background: ISL LIM homeobox 2, also known as insulin gene enhancer protein ISL-2 (ISL2), is a transcription factor gene that participates in a wide range of developmental events. However, the role of ISL2 in the hypothalamus-pituitary-thyroid axis is largely unknown. In the present study, we characterized the expression patterns of ISL2 and revealed its regulative role during embryogenesis using zebrafish. Methods: We used the CRISPR/Cas9 system to successfully establish homozygous ISL2-orthologue (isl2a and isl2b) knockout zebrafish. Moreover, we utilized these knockout zebrafish to analyze the pituitary and thyroid phenotypes in vivo. For further molecular characterization, in situ hybridization and immunofluorescence were performed. Results: The isl2a mutant zebrafish presented with thyroid hypoplasia, reduced whole-body levels of thyroid hormones, increased early mortality, gender imbalance, and morphological retardation during maturity. Additionally, thyrotropes, a pituitary cell type, was notably decreased during development. Importantly, the transcriptional levels of pituitary-thyroid axis hormones-encoding genes, such as tshba, cga, and tg, were significantly decreased in isl2a mutants. Finally, the thyroid dysplasia in isl2a mutant larvae may be attributed to a reduction in proliferation rather than changes in apoptosis. Conclusions: In summary, isl2a regulates the transcriptional levels of marker genes in hypothalamus-pituitary-thyroid axis, and isl2a knockout causing low thyroid hormone levels in zebrafish. Thus, isl2a identified by the present study, is a novel regulator for pituitary cell differentiation in zebrafish, resulting in thyroid gland hypoplasia and phenotypes of hypothyroidism.


Assuntos
Fatores de Transcrição , Proteínas de Peixe-Zebra , Peixe-Zebra , Animais , Hipófise/metabolismo , Hormônios Tireóideos/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Peixe-Zebra/metabolismo , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo
4.
J Nat Prod ; 83(10): 2950-2959, 2020 10 23.
Artigo em Inglês | MEDLINE | ID: mdl-32989985

RESUMO

Eight new flavonoids, including two ß-hydroxy/methoxychalcones, velutones A and B (1 and 2), two 1,3-diarylpropan-1-ols, velutols C and D (3 and 4), a dihydroxychalcone, velutone E (5), a chalcone, velutone F (6), a furanoflavanone, velutone G (7), and a furanoflavonol, velutone H (8), and 14 known compounds were isolated from Millettia velutina. Their structures were determined by high-resolution electrospray ionisation mass spectrometry (HR-ESIMS) and spectroscopic data analyses and time-dependent density functional theory electronic circular dichroism (TD-DFT-ECD) calculations. Among the isolated constituents, compound 6 exhibited the most potent inhibitory effect (IC50: 1.3 µM) against nigericin-induced IL-1ß release in THP-1 cells. The initial mechanism of action study revealed that compound 6 suppressed NLRP3 inflammasome activation via blocking ASC oligomerization without affecting the priming step, which subsequently inhibited caspase-1 activation and IL-1ß secretion. Most importantly, compound 6 exerted potent protective effects in the LPS-induced septic shock mice model by improving the survival rate of mice and suppressing serum IL-1ß release. These results demonstrated that compound 6 had the potential to be developed as a broad-spectrum NLRP3 inflammasome inhibitor for the treatment of NLRP3-related disease.


Assuntos
Flavonoides/farmacologia , Millettia , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Animais , Caspase 1 , Humanos , Inflamassomos , Inflamação , Lipopolissacarídeos , Macrófagos , Camundongos , Estrutura Molecular , Células THP-1
5.
Bioorg Chem ; 97: 103693, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32120079

RESUMO

Millettia pulchra is a renowned anti-inflammatory herbal medicine in southeast provinces of China. However, the underlying anti-inflammation mechanism remained incompletely understood. Herein, four new isoflavones, pulvones A-D and eleven reported constituents were isolated from the stems of Millettia pulchra with their structures being elucidated by HRMS and NMR analysis. The anti-inflammatory activities of pulvones A and C were further evaluated due to the better inhibitory activity on nitric oxide production in LPS-stimulated RAW264.7 cells and no obvious cytotoxicity to RAW264.7 cells. Western blot showed that pulvones A significantly decreased the levels of iNOS and COX-2 proteins and pulvones C only decreased the level of iNOS protein. ELISA analysis demonstrated that pulvones A inhibited the production of both interleukin-6 (IL-6) and IL-1ß while pulvones C showed better suppression effect on IL-1ß production in LPS-stimulated RAW264.7 cells. Then, their potential inhibitory effects on NF-κB pathway were tested in LPS-stimulated RAW264.7 cells. Immunofluorescence and western blot assay showed that pulvones A and C reduced the nuclear translocation of NF-κB(p65) and interrupted IκB phosphorylation. The ADP-Glo™ kinase assay showed pulvones A and C could directedly inhibit the IKKß kinase activity with the inhibitory rate of 40%, which were also verified by docking study. Collectively, these results suggested that pulvones A and C's anti-inflammatory effects were relevant to the interruption of NF-κB activation by inhibiting IKKß kinase.


Assuntos
Anti-Inflamatórios/farmacologia , Inflamação/tratamento farmacológico , Isoflavonas/farmacologia , Macrófagos/efeitos dos fármacos , Millettia/química , Animais , Anti-Inflamatórios/química , Inflamação/imunologia , Inflamação/patologia , Isoflavonas/química , Lipopolissacarídeos/imunologia , Macrófagos/imunologia , Macrófagos/patologia , Camundongos , Simulação de Acoplamento Molecular , NF-kappa B , Células RAW 264.7 , Transdução de Sinais/efeitos dos fármacos
6.
Oncotarget ; 8(56): 96126-96138, 2017 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-29221192

RESUMO

BACKGROUND: Studies have shown an association of the UNC5D gene with kidney and bladder cancer and neuroblastoma. We investigated whether UNC5D acts as a tumor suppressor in papillary thyroid carcinoma (PTC). METHODS: Primary PTC tumors and matched normal thyroid tissues were obtained from 112 patients to detect UNC5D mRNA by real-time PCR. Genomic DNA sequencing was performed to detect BRAF mutation in PTC tumors. The association between UNC5D expression and clinicopathological data from PTC patients was reviewed retrospectively. PTC-derived cancer cell lines TPC-1 and K1 with stable transfection of UNC5D were used to investigate the functions of UNC5D. Flow cytometry, CCK-8, Transwell assay and scratch tests were used to examine cell cycle distribution, proliferation and migration. RESULTS: The expression of UNC5D was significantly decreased in PTC compared with adjacent normal thyroid tissues. Lower UNC5D expression was significantly associated with aggressive tumor behaviors, such as lymph node metastasis and BRAF mutation. Overexpression of UNC5D significantly suppressed malignant cell behaviors, including cell proliferation and migration, as well as tumor growth in vivo. CONCLUSIONS: These findings suggest a potential tumor suppressor role of UNC5D in PTC progression; and provide insight into potential clinical relevance for the prognosis of PTC.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA