Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Biol Chem ; 288(20): 14320-14331, 2013 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-23564457

RESUMO

Collagen VI is a ubiquitously expressed extracellular microfibrillar protein. Its most common molecular form is composed of the α1(VI), α2(VI), and α3(VI) collagen α chains encoded by the COL6A1, COL6A2, and COL6A3 genes, respectively. Mutations in any of the three collagen VI genes cause congenital muscular dystrophy types Bethlem and Ullrich as well as intermediate phenotypes characterized by muscle weakness and connective tissue abnormalities. The α3(VI) collagen α chain has much larger N- and C-globular domains than the other two chains. Its most C-terminal domain can be cleaved off after assembly into microfibrils, and the cleavage product has been implicated in tumor angiogenesis and progression. Here we characterize a Col6a3 mutant mouse that expresses a very low level of a non-functional α3(VI) collagen chain. The mutant mice are deficient in extracellular collagen VI microfibrils and exhibit myopathic features, including decreased muscle mass and contractile force. Ultrastructurally abnormal collagen fibrils were observed in tendon, but not cornea, of the mutant mice, indicating a distinct tissue-specific effect of collagen VI on collagen I fibrillogenesis. Overall, the mice lacking normal α3(VI) collagen chains displayed mild musculoskeletal phenotypes similar to mice deficient in the α1(VI) collagen α chain, suggesting that the cleavage product of the α3(VI) collagen does not elicit essential functions in normal growth and development. The Col6a3 mouse mutant lacking functional α3(VI) collagen chains thus serves as an animal model for COL6A3-related muscular dystrophy.


Assuntos
Colágeno Tipo VI/deficiência , Colágeno Tipo VI/genética , Músculo Esquelético/metabolismo , Tendões/metabolismo , Animais , Colágeno Tipo VI/fisiologia , Modelos Animais de Doenças , Matriz Extracelular/metabolismo , Genótipo , Masculino , Camundongos , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Microfibrilas/metabolismo , Músculo Esquelético/fisiopatologia , Mutação , Fenótipo , Tendões/fisiopatologia
2.
Surgery ; 150(2): 306-15, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21719059

RESUMO

BACKGROUND: Pancreatic ductal adenocarcinoma (PDA) is a highly lethal disease; a prominent desmoplastic reaction is a defining characteristic. Fibrillar collagens, such as collagen I and to a lesser extent, collagens III and V, comprise the majority of this stromal fibrosis. Type VI collagen (COL6) forms a microfibrillar network associated with type I collagen fibrils. The expression of COL6 has been linked with inflammation and survival. Importantly, tumor-specific alternative splicing in COL6A3 has been identified in several cancers by genome exon arrays. We evaluated the expression and localization of COL6A3 in PDA and premalignant lesions and explored the presence of alternative splicing events. METHODS: We analyzed paired PDA-normal (n = 18), intraductal papillary mucinous neoplasms (IPMN; n = 5), pancreatic cystadenoma (n = 5), and 8 PDA cell lines with reverse transcriptase polymerase chain reaction, using unique primers that identify total COL6A3 gene and alternative splicing sites in several of its exons. Western blot analysis and immunohistochemistry were used to analyze the expression levels and localization of COL6A3 protein in the different lesions, and in 2 animal models of PDA. RESULTS: COL6A3 protein levels were significantly upregulated in 77% of the paired PDA-adjacent tissue examined. COL6A3 was mainly present in the desmoplastic stroma of PDA, with high deposition around the malignant ducts and in between the sites of stromal fatty infiltration. Analysis of the COL6A3 splice variants showed tumor-specific consistent inclusion of exons 3 and 6 in 17 of the 18 (94%) paired PDA-adjacent tissues. Inclusion of exon 4 was exclusively tumor specific, with barely detectable expression in the adjacent tissues. IPMN and pancreatic cystadenomas showed no expression of any of the examined exons. Total COL6A3 mRNA and exon 6 were identified in 6 PDA cell lines, but only 2 cell lines (MIA PACA-2 and ASPC-1) expressed exons 3 and 4. In both the xenograft and transgenic models of PDA, COL6A3 immunoreactivity was present in the stroma and some PDA cells. CONCLUSION: We have described, for the first time, a dynamic process of tumor-specific alternative splicing in several exons of stromal COL6A3. Alternatively spliced proteins may contribute to the etiology or progression of cancer and may serve as markers for cancer diagnosis. Identification of COL6A3 isoforms as PDA-specific provides the basis for future studies to explore the oncogenic and diagnostic potential of these alternative splicing events.


Assuntos
Processamento Alternativo , Carcinoma Ductal Pancreático/genética , Colágeno Tipo VI/genética , Neoplasias Pancreáticas/genética , Idoso , Animais , Feminino , Humanos , Masculino , Camundongos , Camundongos Nus , Pessoa de Meia-Idade , Lesões Pré-Cancerosas/genética
3.
J Biol Chem ; 285(13): 10005-10015, 2010 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-20106987

RESUMO

Ullrich congenital muscular dystrophy (UCMD) is a disabling and life-threatening disorder resulting from either recessive or dominant mutations in genes encoding collagen VI. Although the majority of the recessive UCMD cases have frameshift or nonsense mutations in COL6A1, COL6A2, or COL6A3, recessive structural mutations in the COL6A2 C-globular region are emerging also. However, the underlying molecular mechanisms have remained elusive. Here we identified a homozygous COL6A2 E624K mutation (C1 subdomain) and a homozygous COL6A2 R876S mutation (C2 subdomain) in two UCMD patients. The consequences of the mutations were investigated using fibroblasts from patients and cells stably transfected with the mutant constructs. In contrast to expectations based on the clinical severity of these two patients, secretion and assembly of collagen VI were moderately affected by the E624K mutation but severely impaired by the R876S substitution. The E624K substitution altered the electrostatic potential of the region surrounding the metal ion-dependent adhesion site, resulting in a collagen VI network containing thick fibrils and spots with densely packed microfibrils. The R876S mutation prevented the chain from assembling into triple-helical collagen VI molecules. The minute amount of collagen VI secreted by the R876S fibroblasts was solely composed of a faster migrating chain corresponding to the C2a splice variant with an alternative C2 subdomain. In transfected cells, the C2a splice variant was able to assemble into short microfibrils. Together, the results suggest that the C2a splice variant may functionally compensate for the loss of the normal COL6A2 chain when mutations occur in the C2 subdomain.


Assuntos
Processamento Alternativo , Colágeno Tipo VI/genética , Genes Recessivos , Distrofias Musculares/congênito , Distrofias Musculares/genética , Mutação de Sentido Incorreto , Adulto , Sequência de Aminoácidos , Biópsia , Criança , Colágeno/química , Feminino , Fibroblastos/metabolismo , Homozigoto , Humanos , Íons , Masculino , Dados de Sequência Molecular , Homologia de Sequência de Aminoácidos
4.
Mol Cancer Res ; 5(10): 1041-51, 2007 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-17951404

RESUMO

Multiple endocrine neoplasia type 1 (MEN1) is an autosomal dominant familial cancer syndrome characterized primarily by endocrine tumors of the parathyroids, anterior pituitary, and enteropancreatic endocrine tissues. Affected individuals carry a germ-line loss-of-function mutation of the MEN1 gene, and tumors arise after loss of the second allele. Homozygous loss of Men1 in the germ line of mice results in early embryonic lethality, with defective development of neural tube, heart, liver, and craniofacial structures. We generated immortalized wild-type (WT) and menin-null mouse embryo fibroblast (MEF) cell lines and evaluated their characteristics, including global expression patterns. The WT and menin-null cell lines were aneuploid, and the nulls did not display tumorigenic characteristics in soft agar assay. Expression arrays in menin-null MEFs revealed altered expression of several extracellular matrix proteins that are critical in organogenesis. Specifically, transcripts for fibulin 2 (Fbln2), periostin (Postn), and versican [chondroitin sulfate proteoglycan (Cspg2)], genes critical for the developing heart and known to be induced by transforming growth factor-beta (TGF-beta), were decreased in their expression in menin-null MEFs. Fbln2 expression was the most affected, and the reduction in menin-null MEFs for Fbln2, Postn, and Cspg2 was 16.18-, 5.37-, and 2.15-fold, respectively. Menin-null MEFs also showed poor response to TGF-beta-induced Smad3-mediated transcription in a reporter assay, supporting a role for menin in this pathway. Postn and Cspg2 expression in WT, unlike in null MEFs, increased on TGF-beta treatment. The expression changes associated with the loss of the tumor suppressor menin provide insights into the defective organogenesis observed during early embryonic development in Men1-null mouse embryos.


Assuntos
Embrião de Mamíferos/metabolismo , Proteínas da Matriz Extracelular/genética , Regulação da Expressão Gênica no Desenvolvimento , Proteínas Proto-Oncogênicas/fisiologia , Proteínas Supressoras de Tumor/fisiologia , Animais , Embrião de Mamíferos/citologia , Embrião de Mamíferos/efeitos dos fármacos , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Camundongos , Organogênese/genética , Proteínas Proto-Oncogênicas/genética , Fator de Crescimento Transformador beta/farmacologia , Proteínas Supressoras de Tumor/genética
5.
Ann Neurol ; 59(1): 190-5, 2006 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-16278855

RESUMO

We have identified highly similar heterozygous COL6A1 genomic deletions, spanning from intron 8 to exon 13 or intron 13, in two patients with Ullrich congenital muscular dystrophy and the milder Bethlem myopathy. The 5' breakpoints of both deletions are located within a minisatellite in intron 8. The mutations cause in-frame deletions of 66 and 84 amino acids in the amino terminus of the triple-helical domain, leading to intracellular accumulation of mutant polypeptides and reduced extracellular collagen VI microfibrils. Our studies identify a deletion-prone region in COL6A1 and suggest that similar mutations can lead to congenital muscle disorders of different clinical severity.


Assuntos
Colágeno Tipo VI/genética , Deleção de Genes , Doenças Musculares/genética , Distrofias Musculares/genética , Mutação , Adulto , Sequência de Aminoácidos , Sequência de Bases , Células Cultivadas , Criança , Pré-Escolar , Análise Mutacional de DNA , Éxons , Feminino , Fibroblastos/citologia , Fibroblastos/metabolismo , Humanos , Lactente , Íntrons , Masculino , Dados de Sequência Molecular
6.
Am J Hum Genet ; 73(2): 355-69, 2003 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-12840783

RESUMO

Recessive mutations in two of the three collagen VI genes, COL6A2 and COL6A3, have recently been shown to cause Ullrich congenital muscular dystrophy (UCMD), a frequently severe disorder characterized by congenital muscle weakness with joint contractures and coexisting distal joint hyperlaxity. Dominant mutations in all three collagen VI genes had previously been associated with the considerably milder Bethlem myopathy. Here we report that a de novo heterozygous deletion of the COL6A1 gene can also result in a severe phenotype of classical UCMD precluding ambulation. The internal gene deletion occurs near a minisatellite DNA sequence in intron 8 that removes 1.1 kb of genomic DNA encompassing exons 9 and 10. The resulting mutant chain contains a 33-amino acid deletion near the amino-terminus of the triple-helical domain but preserves a unique cysteine in the triple-helical domain important for dimer formation prior to secretion. Thus, dimer formation and secretion of abnormal tetramers can occur and exert a strong dominant negative effect on microfibrillar assembly, leading to a loss of normal localization of collagen VI in the basement membrane surrounding muscle fibers. Consistent with this mechanism was our analysis of a patient with a much milder phenotype, in whom we identified a previously described Bethlem myopathy heterozygous in-frame deletion of 18 amino acids somewhat downstream in the triple-helical domain, a result of exon 14 skipping in the COL6A1 gene. This deletion removes the crucial cysteine, so that dimer formation cannot occur and the abnormal molecule is not secreted, preventing the strong dominant negative effect. Our studies provide a biochemical insight into genotype-phenotype correlations in this group of disorders and establish that UCMD can be caused by dominantly acting mutations.


Assuntos
Colágeno Tipo VI/genética , Distrofias Musculares/congênito , Distrofias Musculares/genética , Sequência de Aminoácidos , Sequência de Bases , Criança , Colágeno Tipo VI/química , DNA Complementar/genética , Dimerização , Éxons , Matriz Extracelular/química , Fibroblastos/química , Genes Dominantes , Genótipo , Heterozigoto , Humanos , Íntrons , Masculino , Dados de Sequência Molecular , Músculos/metabolismo , Músculos/patologia , Distrofias Musculares/patologia , Fenótipo , Estrutura Terciária de Proteína , RNA Mensageiro/genética , Deleção de Sequência , Homologia de Sequência do Ácido Nucleico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA