RESUMO
Extracellular vesicles, including exosomes, are small extracellular vesicles that range in size from 30 nm to 10 µm in diameter and have specific membrane markers. They are naturally secreted and are present in various bodily fluids, including blood, urine, and saliva, and through the variety of their internal cargo, they contribute to both normal physiological and pathological processes. These processes include immune modulation, neuronal synapse formation, cell differentiation, cancer metastasis, angiogenesis, lymphangiogenesis, progression of infectious disease, and neurodegenerative disorders like Alzheimer's and Parkinson's disease. In recent years, interest has grown in the use of exosomes as a potential drug delivery system for various diseases and injuries. Importantly, exosomes originating from a patient's own cells exhibit minimal immunogenicity and possess remarkable stability along with inherent and adjustable targeting capabilities. This review explores the roles of exosomes in angiogenesis, lymphangiogenesis, and nerve repair with a specific emphasis on these processes within the cornea. Furthermore, it examines exosomes derived from specific cell types, discusses the advantages of exosome-based therapies in modulating these processes, and presents some of the most established methods for exosome isolation. Exosome-based treatments are emerging as potential minimally invasive and non-immunogenic therapies that modulate corneal angiogenesis and lymphangiogenesis, as well as enhance and accelerate endogenous corneal nerve repair.
RESUMO
Hamartoma is a congenital benign lesion commonly found in the lungs, kidneys, colon, and other regions, but it is seldom seen in the oral cavity. Multiple hamartoma occurrences in the tongue are particularly rare. This article describes a 7-day-old female infant with multiple tongue tumors and a cleft palate, who had difficulty feeding and subsequently underwent tumor removal under general anesthesia. Nine months later, a cleft palate repair was performed. No genetic abnormalities were detected in the genetic testing. After the tumor removal, follow-ups were conducted every year to observe any recurrence of the tumors, the morphology and function of the tongue, and any systemic abnormalities. After 7 years of follow-up, there was no recurrence of the tumors, and the morphology and function of the tongue were normal, with no systemic diseases found. It is crucial to conduct multidisciplinary consultations for children diagnosed with multiple tongue hamartomas and to monitor their overall development while addressing oral lesions.
RESUMO
The emergence of perturbation transcriptomics provides a new perspective for drug discovery, but existing analysis methods suffer from inadequate performance and limited applicability. In this work, we present PertKGE, a method designed to deconvolute compound-protein interactions from perturbation transcriptomics with knowledge graph embedding. By considering multi-level regulatory events within biological systems that share the same semantic context, PertKGE significantly improves deconvoluting accuracy in two critical "cold-start" settings: inferring targets for new compounds and conducting virtual screening for new targets. We further demonstrate the pivotal role of incorporating multi-level regulatory events in alleviating representational biases. Notably, it enables the identification of ectonucleotide pyrophosphatase/phosphodiesterase-1 as the target responsible for the unique anti-tumor immunotherapy effect of tankyrase inhibitor K-756 and the discovery of five novel hits targeting the emerging cancer therapeutic target aldehyde dehydrogenase 1B1 with a remarkable hit rate of 10.2%. These findings highlight the potential of PertKGE to accelerate drug discovery.
Assuntos
Transcriptoma , Humanos , Tanquirases/metabolismo , Tanquirases/antagonistas & inibidores , Tanquirases/genética , Descoberta de Drogas/métodos , Diester Fosfórico Hidrolases/metabolismo , Diester Fosfórico Hidrolases/genética , Perfilação da Expressão Gênica/métodos , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêuticoRESUMO
INTRODUCTION: The morbidity and mortality of spinal cord injury (SCI) are increasing year by year. It is of vital importance to ascertain the mechanism of SCI. Phosphoglycerate mutase family member 5 (PGAM5) is viewed as a molecular marker of SCI, but its specific role in SCI is elusive. MATERIAL AND METHODS: Following establishment of the SCI mouse model, the pathological examination of the spinal cord was initially assessed using H&E staining. PGAM5 expression in spinal cord tissues was appraised utilizing immunohistochemistry and RT-qPCR. Subsequently, after the expression of PGAM5 in SCI mice was inhibited by adenovirus transfection, the degree of SCI was determined, and the motor ability of hind limbs was estimated with the BBB score. In addition, the apoptosis of neurons, microglia activation and the generation of inflammatory cytokines in the spinal cord of mice were detected. Next, at the cellular level, PGAM5 expression was inhibited in the BV2 microglial cells induced by lipopolysaccharide (LPS), so as to explore the effects of down-regulation of PGAM5 on the activation, inflammation and apoptosis of neurons. Finally, western blot was applied for the appraisement of apoptosis signal-regulating kinase-1 (ASK-1)/p38/nuclear factor-kappa B (NF-kB) signaling-associated proteins. RESULTS: PGAM5 expression in SCI mice was found to be raised. Inhibition of PGAM5 expression in SCI mice can significantly reduce spinal cord pathological injury, SCI-induced neuronal apoptosis, microglial cell activation and inflammation. The above regulatory process might be realized through the ASK-1/p38/NF-kB signaling pathway mediated by PGAM5. CONCLUSIONS: Down-regulation of PGAM5 attenuated SCI-induced neuronal injury by inhibiting ASK-1/p38/NF-kB signaling.
RESUMO
BACKGROUND: Radiotherapy is a primary local treatment for tumors, yet it may lead to complications such as radiation-induced heart disease (RIHD). Currently, there is no standardized approach for preventing RIHD. Dexmedetomidine (Dex) is reported to have cardio-protection effects, while its role in radiation-induced myocardial injury is unknown. In the current study, we aimed to evaluate the radioprotective effect of dexmedetomidine in X-ray radiation-treated mice. METHODS: 18 male mice were randomized into 3 groups: control, 16 Gy, and 16 Gy + Dex. The 16 Gy group received a single dose of 16 Gy X-ray radiation. The 16 Gy + Dex group was pretreated with dexmedetomidine (30 µg/kg, intraperitoneal injection) 30 min before X-ray radiation. The control group was treated with saline and did not receive X-ray radiation. Myocardial tissues were collected 16 weeks after X-ray radiation. Hematoxylin-eosin staining was performed for histopathological examination. Terminal deoxynucleotidyl transferase dUTP nick-end labeling staining was performed to assess the state of apoptotic cells. Immunohistochemistry staining was performed to examine the expression of CD34 molecule and von Willebrand factor. Besides, western blot assay was employed for the detection of apoptosis-related proteins (BCL2 apoptosis regulator and BCL2-associated X) as well as autophagy-related proteins (microtubule-associated protein 1 light chain 3, beclin 1, and sequestosome 1). RESULTS: The findings demonstrated that 16 Gy X-ray radiation resulted in significant changes in myocardial tissues, increased myocardial apoptosis, and activated autophagy. Pretreatment with dexmedetomidine significantly protects mice against 16 Gy X-ray radiation-induced myocardial injury by inhibiting apoptosis and autophagy. CONCLUSION: In summary, our study confirmed the radioprotective effect of dexmedetomidine in mitigating cardiomyocyte apoptosis and autophagy induced by 16 Gy X-ray radiation.
Assuntos
Apoptose , Autofagia , Dexmedetomidina , Miócitos Cardíacos , Lesões Experimentais por Radiação , Animais , Autofagia/efeitos dos fármacos , Autofagia/efeitos da radiação , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/patologia , Miócitos Cardíacos/efeitos da radiação , Miócitos Cardíacos/metabolismo , Apoptose/efeitos dos fármacos , Masculino , Dexmedetomidina/farmacologia , Lesões Experimentais por Radiação/prevenção & controle , Lesões Experimentais por Radiação/patologia , Lesões Experimentais por Radiação/metabolismo , Lesões Experimentais por Radiação/tratamento farmacológico , Protetores contra Radiação/farmacologia , Modelos Animais de Doenças , Transdução de Sinais/efeitos dos fármacos , Camundongos , Proteínas Relacionadas à Autofagia/metabolismo , Camundongos Endogâmicos C57BL , Proteínas Reguladoras de Apoptose/metabolismoRESUMO
The fetus and infants are particularly vulnerable to Cadmium (Cd) due to the immaturity of the blood-brain barrier. In utero and early life exposure to Cd is associated with cognitive deficits. Although such exposure has attracted widespread attention, its gender-specificity remains controversial, and there are no reports disclosing the underlying mechanism of genderspecific neurotoxicity. We extensively evaluated the learning and cognitive functions and synaptic plasticity of male and female rats exposed to maternal Cd. Maternal Cd exposure induced learning and memory deficits in male offspring rats, but not in female offspring rats. PLCß4 was identified as a critical protein, which might be related to the genderspecific cognitive deficits in male rats. The up-regulated PLCß4 competed with PLCγ1 to bind to PIP2, which counteracted the hydrolysis of PIP2 by PLCγ1. The decreased activation of PLCγ1 inhibited the phosphorylation of CREB to reduce BDNF transcription, which consequently resulted in the damage of hippocampal neurons and cognitive deficiency. Moreover, the low level of BDNF promoted AEP activation to induce Aß deposition in the hippocampus. These findings highlight that PLCß4 might be a potential target for the therapy of learning and cognitive deficits caused by Cd exposure in early life.
Assuntos
Fator Neurotrófico Derivado do Encéfalo , Cádmio , Disfunção Cognitiva , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico , Hipocampo , Lactação , Fosfolipase C gama , Efeitos Tardios da Exposição Pré-Natal , Transdução de Sinais , Animais , Feminino , Masculino , Gravidez , Cádmio/toxicidade , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Fosfolipase C gama/metabolismo , Transdução de Sinais/efeitos dos fármacos , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Disfunção Cognitiva/induzido quimicamente , Fosfolipase C beta/metabolismo , Ratos Sprague-Dawley , Fosfatidilinositol 4,5-Difosfato/metabolismo , Exposição Materna , RatosRESUMO
Intestine damage is an acute abdominal disease that usually requires emergency sealing. However, traditional surgical suture not only causes secondary damage to the injured tissue, but also results in adhesion with other tissues in the abdominal cavity. To this end, a thermally reversible injectable gelatin-based hydrogel adhesive (GTPC) is constructed by introducing transglutaminase (TGase) and proanthocyanidins (PCs) into a gelatin system. By reducing the catalytic activity of TGase, the density of covalent and hydrogen bond crosslinking in the hydrogel can be regulated to tune the sol-gel transition temperature of gelatin-based hydrogels above the physiological temperature (42 °C) without introducing any synthetic small molecules. The GTPC hydrogel exhibits good tissue adhesion, antioxidant, and antibacterial properties, which can effectively seal damaged intestinal tissues and regulate the microenvironment of the damaged site, promoting tissue repair and regeneration. Intriguingly, temperature-induced hydrogen bond disruption and reformation confer the hydrogel with asymmetric adhesion properties, preventing tissue adhesion when applied in vivo. Animal experiment outcomes reveal that the GTPC hydrogel can seal the damaged intestinal tissue firmly, accelerate tissue healing, and efficiently prevent postoperative adhesion.
Assuntos
Gelatina , Hidrogéis , Intestinos , Temperatura , Animais , Hidrogéis/química , Hidrogéis/administração & dosagem , Hidrogéis/farmacologia , Aderências Teciduais/prevenção & controle , Intestinos/efeitos dos fármacos , Gelatina/química , Gelatina/administração & dosagem , Transglutaminases/metabolismo , Adesivos Teciduais/farmacologia , Adesivos Teciduais/química , Adesivos Teciduais/administração & dosagem , Proantocianidinas/farmacologia , Proantocianidinas/química , Proantocianidinas/administração & dosagem , Cicatrização/efeitos dos fármacos , Camundongos , Antibacterianos/farmacologia , Antibacterianos/química , Antibacterianos/administração & dosagem , Injeções , Antioxidantes/farmacologia , Antioxidantes/química , Antioxidantes/administração & dosagemRESUMO
Fetal and neonatal exposures to perinatal oxidative stress (OS) are key mediators of bronchopulmonary dysplasia (BPD). To characterize these exposures, adductomics is an exposure science approach that captures electrophilic addition products (adducts) in blood protein. Adducts are bound to the nucleophilic cysteine loci of human serum albumin (HSA), which has a prolonged half-life. We conducted targeted and untargeted adductomics to test the hypothesis that adducts of OS vary with BPD. We studied 205 preterm infants (≤28 weeks) and 51 full-term infants from an ongoing birth cohort. Infant plasma was collected at birth (cord blood), 1-week, 1-month, and 36-weeks postmenstrual age. HSA was isolated from plasma, trypsin digested, and analyzed using high-performance liquid chromatography-mass spectrometry to quantify previously annotated (known) and unknown adducts. We identified 105 adducts in cord and postnatal blood. A total of 51 known adducts (small thiols, direct oxidation products, and reactive aldehydes) were increased with BPD. Postnatally, serial concentrations of several known OS adducts correlated directly with supplemental oxygen exposure. The application of large-scale adductomics elucidated OS-mediated pathways of BPD. This is the first study to investigate the "neonatal-perinatal exposome" and to identify oxidative stress-related exposure biomarkers that may inform antioxidant strategies to protect the health of future generations of infants.
RESUMO
The present study assessed the effects of oligosaccharide-chelated organic trace minerals (OTM) on the growth performance, digestive enzyme activity, blood parameters, slaughter performance, and meat quality indexes of mutton sheep. A total of 60 East Ujumuqin × small-tailed Han crossbred mutton sheep were assigned to two groups (10 duplicates per group) by body weight (26.12 ± 3.22 kg) according to a completely randomized design. Compared to the CON group, the results of the OTM group showed: (1) no significant changes in the initial body weight, final body weight, dry matter intake, average daily gain, and feed conversion ratio (p > 0.05); (2) the activities of trypsin, lipase, and amylase in the jejunum were significantly increased (p < 0.05); (3) serum total protein, albumin, and globulin of the blood were significantly increased (p < 0.05), and the growth factor interleukin IL-10 was significantly higher (p < 0.05), while IL-2, IL-6, and γ-interferon were significantly lower (p < 0.05). Immunoglobulins A, M, and G were significantly higher (p < 0.05); (4) the live weight before slaughter, carcass weights, dressing percentage, eye muscle areas, and GR values did not differ significantly (p > 0.05); (5) shear force of mutton was significantly lower (p < 0.05), while the pH45min, pH24h, drip loss, and cooking loss did not show a significant difference (p > 0.05). The content of crude protein was significantly higher (p < 0.05), while the ether extract content was significantly reduced (p < 0.05), but no significant difference was detected between moisture and ash content; (6) the total amino acids, essential amino acids, semi-essential amino acids, and umami amino acids were significantly increased (p < 0.05). Although umami amino acids were not significant, the total volume increased (p > 0.05). Among these, the essential amino acids, threonine, valine, leucine, lysine in essential amino acids and arginine were significantly increased (p < 0.05). Also, non-essential amino acids, glycine, serine, proline, tyrosine, cysteine, and aspartic acid, were significantly higher (p < 0.05). The content of alanine, aspartate, glutamic acid, phenylalanine, and tyrosine in umami amino acids was significantly higher (p < 0.05).
RESUMO
Speckle-type POZ protein (SPOP) acts as a cullin3-RING ubiquitin ligase adaptor, which facilitates the recognition and ubiquitination of substrate proteins. Previous research suggests that targeting SPOP holds promise in the treatment of clear cell renal cell carcinoma (ccRCC). On the basis of the reported SPOP inhibitor 230D7, a series of ß-lactam derivatives were synthesized in this study. The biological activity assessment of these compounds revealed E1 as the most potent inhibitor, which can disrupt the SPOP-substrate interactions in vitro and suppress the colony formation of ccRCC cells. Taken together, this study provided compound E1 as a potent inhibitor against ccRCC and offered insight into the development of the ß-lactam SPOP inhibitor.
RESUMO
GNASis a complex locus characterized by multiple transcripts and an imprinting effect. It orchestrates a variety of physiological processes via numerous signaling pathways. Human diseases associated with the GNAS gene encompass fibrous dysplasia (FD), Albright's Hereditary Osteodystrophy (AHO), parathyroid hormone(PTH) resistance, and Progressive Osseous Heteroplasia (POH), among others. To facilitate the study of the GNAS locus and its associated diseases, researchers have developed a range of mouse models. In this review, we will systematically explore the GNAS locus, its related signaling pathways, the bone diseases associated with it, and the mouse models pertinent to these bone diseases.
Assuntos
Doenças Ósseas Metabólicas , Ossificação Heterotópica , Pseudo-Hipoparatireoidismo , Animais , Camundongos , Humanos , Subunidades alfa Gs de Proteínas de Ligação ao GTP/genética , Cromograninas/genética , Pseudo-Hipoparatireoidismo/complicações , Pseudo-Hipoparatireoidismo/genética , Ossificação Heterotópica/genéticaRESUMO
Strain-induced precipitation (SIP) behaviors of 7Mo super-austenitic stainless steel (SASS) under various deformation conditions were studied by stress relaxation tests. The research demonstrates that sigma phases are the primary SIP phases of 7Mo SASS. Generally, SIP is mainly distributed in granular shape at the boundaries of deformed grains or recrystallized grains, as well as around the deformed microstructure, such as deformation twin layers/matrix interfaces. The variation of deformation parameters can lead to changes in microstructure, therefore influencing the distribution of SIP. For instance, with the temperature increases, the SIP distribution gradually evolves from deformed grain boundaries to recrystallized grain boundaries. The average size of SIP increases with increasing temperature and strain, as well as decreasing strain rate. The SIP content also increases with increasing strain and decreasing strain rate, while exhibiting an initial rise followed by a decline with increasing temperature, reaching its maximum value at 850 °C. The presence of SIP can promote recrystallization by particle-induced nucleation (PSN) mechanism during the hot deformation process. Moreover, the boundaries of these recrystallized grains can also serve as nucleation sites for SIP, therefore promoting SIP. This process can be simplified as SIPâPSNRecrystallizationâNucleation sitesSIP. With the increase in holding time and the consumption of stored energy, the process gradually slows down, leading to the formation of a multi-layer structure, namely SIPs/Recrystallized grains/SIPs structure. Moreover, SIP at recrystallized grain boundaries can hinder the growth of recrystallized grains. Through this study, a comprehensive understanding of the SIP behaviors in 7Mo SASS under different deformation conditions has been achieved, as well as the interaction between SIP and recrystallization. This finding provides valuable insights for effective control or regulation of SIP and optimizing the hot working processes of 7Mo SASS.
RESUMO
Cadmium (Cd) exposure damages the reproductive system. Lipid droplets (LDs) play an important role in steroid-producing cells to provide raw material for steroid hormone. We have found that the LDs of Leydig cells exposed to Cd are bigger than those of normal cells, but the effects on steroidogenesis and its underlying mechanism remains unclear. Using Isobaric tag for relative and absolute quantitation (iTARQ) proteomics, phosphodiesterase beta-2 (PLCß2) was identified as the most significantly up-regulated protein in immature Leydig cells (ILCs) and adult Leydig cells (ALCs) derived from male rats exposed to maternal Cd. Consistent with high expression of PLCß2, the size of LDs was increased in Leydig cells exposed to Cd, accompanied by reduction in cholesterol and progesterone (P4) levels. However, the high PLCß2 did not result in high diacylglycerol (DAG) level, because Cd exposure up-regulated diacylglycerol kinases ε (DGKε) to promote the conversion from DAG to phosphatidic acid (PA). Exogenous PA, which was consistent with the intracellular PA concentration induced by Cd, facilitated the formation of large LDs in R2C cells, followed by reduced P4 level in the culture medium. When PLCß2 expression was knocked down, the increased DGKε caused by Cd was reversed, and then the PA level was decreased to normal. As results, large LDs returned to normal size, and the level of total cholesterol was improved to restore steroidogenesis. The accumulation of PA regulated by PLCß2-DAG-DGKε signal pathway is responsible for the formation of large LDs and insufficient steroid hormone synthesis in Leydig cells exposed to Cd. These data highlight that LD is an important target organelle for Cd-induced steroid hormone deficiency in males.
Assuntos
Cádmio , Células Intersticiais do Testículo , Ratos , Masculino , Animais , Células Intersticiais do Testículo/metabolismo , Cádmio/toxicidade , Cádmio/metabolismo , Gotículas Lipídicas/metabolismo , Fosfolipase C beta/metabolismo , Ácidos Fosfatídicos/metabolismo , Diglicerídeos/metabolismo , Transdução de Sinais , Esteroides/metabolismo , Progesterona/metabolismo , Colesterol/metabolismoRESUMO
BACKGROUND: Praziquantel (PZQ) has been the first line antischistosomal drug for all species of Schistosoma, and the only available drug for schistosomiasis japonica, without any alternative drugs since the 1980s. However, PZQ cannot prevent reinfection, and cannot cure schistosomiasis thoroughly because of its poor activity against juvenile schistosomes. In addition, reliance on a single drug is extremely dangerous, the development and spread of resistance to PZQ is becoming a great concern. Therefore, development of novel drug candidates for treatment and control of schistosomiasis is urgently needed. METHODOLOGYS/PRINCIPAL FINDINGS: One of the PZQ derivative christened P96 with the substitution of cyclohexyl by cyclopentyl was synthesized by School of Pharmaceutical Sciences of Shandong University. We investigated the in vitro and in vivo activities of P96 against different developmental stages of S. japonicum. Parasitological studies and scanning electron microscopy were used to study the primary action characteristics of P96 in vitro. Both mouse and rabbit models were employed to evaluate schistosomicidal efficacy of P96 in vivo. Besides calculation of worm reduction rate and egg reduction rate, quantitative real-time PCR was used to evaluate the in vivo antischistosomal activity of P96 at molecular level. In vitro, after 24h exposure, P96 demonstrated the highest activities against both juvenile and adult worm of S. japonicum in comparison to PZQ. The antischistosomal efficacy was concentration-dependent, with P96 at 50µM demonstrating the most evident schistosomicidal effect. Scanning electron microscopy demonstrated that P96 caused more severe damages to schistosomula and adult worm tegument compared to PZQ. In vivo, our results showed that P96 was effective against S. japonicum at all developmental stages. Notably, its efficacy against young stage worms was significantly improved compared to PZQ. Moreover, P96 retained the high activity comparable to PZQ against the adult worm of S. japonicum. CONCLUSIONS: P96 is a promising drug candidate for chemotherapy of schistosomiasis japonica, which has broad spectrum of action against various developmental stage, potentially addressing the deficiency of PZQ. It might be promoted as a drug candidate for use either alone or in combination with PZQ for the treatment of schistosomiasis.
Assuntos
Praziquantel , Esquistossomose Japônica , Esquistossomicidas , Animais , Camundongos , Coelhos , Microscopia Eletrônica de Varredura , Praziquantel/análogos & derivados , Praziquantel/farmacologia , Schistosoma japonicum/efeitos dos fármacos , Esquistossomose Japônica/tratamento farmacológico , Esquistossomicidas/farmacologiaRESUMO
Super austenitic stainless steels are expected to replace expensive alloys in harsh environments due to their superior corrosion resistance and mechanical properties. However, the ultra-high alloy contents drive serious segregation in cast steels, where the σ phase is difficult to eliminate. In this study, the microstructural evolution of 7Mo super austenitic stainless steels under different homogenization methods was investigated. The results showed that after isothermal treatment for 30 h at 1250 °C, the σ phase in steels dissolved, while the remelting morphologies appeared at the phase boundaries. Therefore, the stepped solution heat treatment was further conducted to optimize the homogenized microstructure. The samples were heated up to 1220 °C, 1235 °C and 1250 °C with a slow heating rate, and held at these temperatures for 2 h, respectively. The elemental segregation was greatly reduced without incipient remelting and the σ phase was eventually reduced to less than 0.6%. A prolonged incubation below the dissolution temperature will lead to a spontaneous compositional adjustment of the eutectic σ phase, resulting in uphill diffusion of Cr and Mn, and reducing the homogenization efficiency of ISHT, which is avoided by SSHT. The hardness reduced from 228~236 Hv to 220~232 Hv by adopting the cooling process of "furnace cooling + water quench". In addition, the study noticed that increasing the Ce content or decreasing the Mn content can both refine the homogenized grain size and accelerate diffusion processes. This study provides a theoretical and experimental basis for the process and composition optimization of super austenitic stainless steels.
RESUMO
The morphology adjustment and functional doping optimization of polypyrrole (PPy) are of great significance in improving its gas sensing performance. Here, the PPy-0.5TcCoPc nanorods with a uniform dispersed 3-D network were prepared using one-step in situ polymerization using the electrostatic interaction between dopant counterion substituents in tetra-ß-carboxylate cobalt phthalocyanine tetrasodium salt (TcCoPcTs) with larger space structure and pyrrole (Py) molecules, in which TcCoPcTs is not only used as a dopant molecule crosslinking PPy chains to obtain a 3-D network, thus improving the conductivity, but also as a sensor accelerator to improve the gas-sensing performance. The resulting PPy-TcCoPc hybrid exhibits superior NH3-sensing properties than PPy and tetra-ß-carboxylate cobalt phthalocyanine (TcCoPc) under the same test conditions, especially the PPy-0.5TcCoPc sensor shows ultrafast response/recovery time to 50 ppm NH3 (8.1 s/370.8 s), low detection limit of 8.1 ppb and excellent gas selectivity at room temperature (20 °C). Besides, the PPy-0.5TcCoPc sensor also maintains superior response (49.3% to 50 ppm NH3), humidity resistance and conspicuous stability over 45 days. The excellent NH3-sensing performance of the PPy-0.5TcCoPc hybrid arises from the excellent gas selectivity of TcCoPc, the remarkable response mechanism between PPy and NH3, the high electrical conductivity, abundant active sites and good electron transport ability of the unique 3-D network with large specific surface area. The morphology regulation and functional doping optimization strategy of TcCoPcTs doped PPy broaden the research direction of ideal gas sensor materials.
RESUMO
PURPOSE: To explore the optimal treatment strategy and relevant prognostic analysis for hypopharyngeal squamous-cell carcinoma patients (HSCC) with T3-T4 or node-positive. METHODS AND MATERIALS: From 2004 to 2018, data for 2574 patients from the Surveillance, Epidemiology, and End Results database (SEER) and 66 patients treated at our center from 2013 to 2022 with T3-T4 or N + HSCC were collected. Patients in the SEER cohort were randomly assigned to the training set or validation set at a 7:3 ratio. Variables with statistically significant (P < 0.05) in univariate COX regression analysis or clinical significance were included in the multivariate COX regression model and subsequently used to construct the nomogram. RESULTS: The 3-year OS (52.9%vs44.4%, P < 0.01) and 3-year CSS rate (58.7%vs51.5%, P < 0.01) rates in the surgery combined with postoperative adjuvant therapy (S + ADT) group were superior to the radiotherapy combined with chemotherapy (CRT) group. The multivariate Cox regression analysis of the training group showed that age, race, marital status, primary site, T stage, N stage, and treatment modalities were correlated with OS and CSS. Based on those variables, we constructed nomograms for OS and CSS. Both the internal and external validation showed high prediction accuracy of the nomogram. CONCLUSION: Among patients with T3-T4 or node-positive, S + ADT was associated with superior OS and CSS compared to those treated with primary CRT, while the survival rate in the CRT group was comparable to S + ADT group in T2-T3 disease. The internal and external verification shows that the prognostic model has good discrimination ability and accuracy.
Assuntos
Neoplasias de Cabeça e Pescoço , Nomogramas , Humanos , Prognóstico , Carcinoma de Células Escamosas de Cabeça e Pescoço , Modelos de Riscos Proporcionais , Programa de SEERRESUMO
CRISPR-Cas13 systems have recently been used for targeted RNA degradation in various organisms. However, collateral degradation of bystander RNAs has limited their in vivo applications. Here, we design a dual-fluorescence reporter system for detecting collateral effects and screening Cas13 variants in mammalian cells. Among over 200 engineered variants, several Cas13 variants including Cas13d and Cas13X exhibit efficient on-target activity but markedly reduced collateral activity. Furthermore, transcriptome-wide off-targets and cell growth arrest induced by Cas13 are absent for these variants. High-fidelity Cas13 variants show similar RNA knockdown activity to wild-type Cas13 but no detectable collateral damage in transgenic mice or adeno-associated-virus-mediated somatic cell targeting. Thus, high-fidelity Cas13 variants with minimal collateral effects are now available for targeted degradation of RNAs in basic research and therapeutic applications.
Assuntos
Sistemas CRISPR-Cas , RNA , Animais , Camundongos , Sistemas CRISPR-Cas/genética , RNA/genética , Estabilidade de RNA/genética , Camundongos Transgênicos , Transcriptoma , Mamíferos/genéticaRESUMO
Programmable RNA editing tools enable the reversible correction of mutant transcripts, reducing the potential risk associated with permanent genetic changes associated with the use of DNA editing tools. However, the potential of these RNA tools to treat disease remains unknown. Here, we evaluated RNA correction therapy with Cas13-based RNA base editors in the myosin VI p.C442Y heterozygous mutation (Myo6C442Y/+) mouse model that recapitulated the phenotypes of human dominant-inherited deafness. We first screened several variants of Cas13-based RNA base editors and guide RNAs (gRNAs) targeting Myo6C442Y in cultured cells and found that mini dCas13X.1-based adenosine base editor (mxABE), composed of truncated Cas13X.1 and the RNA editing enzyme adenosine deaminase acting on RNA 2 deaminase domain variant (ADAR2ddE488Q), exhibited both high efficiency of A > G conversion and low frequency of off-target edits. Single adeno-associated virus (AAV)-mediated delivery of mxABE in the cochlea corrected the mutated Myo6C442Y to Myo6WT allele in homozygous Myo6C442Y/C442Y mice and resulted in increased Myo6WT allele in the injected cochlea of Myo6C442Y/+ mice. The treatment rescued auditory function, including auditory brainstem response and distortion product otoacoustic emission up to 3 months after AAV-mxABE-Myo6 injection in Myo6C442Y/+ mice. We also observed increased survival rate of hair cells and decreased degeneration of hair bundle morphology in the treated compared to untreated control ears. These findings provide a proof-of-concept study for RNA editing tools as a therapeutic treatment for various semidominant forms of hearing loss and other diseases.
Assuntos
Surdez , Perda Auditiva , Animais , Camundongos , Genes Dominantes , Células Ciliadas Auditivas , Perda Auditiva/genética , Perda Auditiva/terapia , RNARESUMO
Ropivacaine, a common local anesthetic in the clinic, has anti-proliferative and pro-apoptotic effects in numerous cancers, however, the underlying regulatory mechanism of ropivacaine in hepatocellular carcinoma remains unclear. In the current study, human HepG2 cells were stimulated with different ropivacaine concentrations. Cell Counting Kit-8 assay, cell colony formation, and cell cycle were used to monitor cell viability. Cell apoptosis, migration, and invasion were determined by flow cytometry and transwell assays. Tumor xenograft experiments were performed to prove the anti-cancer effect of ropivacaine in vivo. A high dose of ropivacaine inhibited proliferation and promoted apoptosis of HepG2 cells in a dose-dependent manner. Ropivacaine challenge also arrested cells in the G2 phase, followed by a decline in the protein expression of cyclin D1 and cyclin-dependent kinase 2, and an increase in p27 levels in HepG2 cells. Additionally, different ropivacaine doses suppressed cell migration and invasion by upregulating E-cadherin expression and downregulating N-cadherin expression. Mechanically, ropivacaine challenge gradually restrained insulin-like growth factor-1 receptor (IGF-1 R) expression and the activities of phosphorylated-PI3K, AKT, and mTOR in HepG2 cells with increased ropivacaine doses. In the tumor xenograft experiment, ropivacaine was confirmed to inhibit tumor growth, accompanied by inhibition of the IGF-1 R/PI3K/AKT/mTOR signaling axis. In conclusion, ropivacaine suppressed tumor biological characteristics and promoted apoptosis, resulting in the suppression of hepatocellular carcinoma progression by targeting the IGF-1 R/PI3K/AKT/mTOR signaling pathway. It is possible that ropivacaine-mediated local anesthesia may be developed as a novel surgical adjuvant drug for treating hepatocellular carcinoma.