Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Cell Prolif ; 53(9): e12868, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32656909

RESUMO

OBJECTIVES: Wedelolactone exhibits regulatory effects on some inflammatory diseases. However, the anti-inflammatory mechanism of wedelolactone has not been entirely unravelled. Therefore, the present study focuses on investigating the mechanism of wedelolactone on NLRP3 inflammasome in macrophages and its influence on MSU-induced inflammation. MATERIALS AND METHODS: BMDM, J774A.1 and PMA-differentiated THP-1 macrophages were primed with LPS and then stimulated with ATP or nigericin or MSU crystal in the presence or absence of wedelolactone. The cell lysates and supernatants were collected to detect NLRP3 inflammasome components such as NLRP3, ASC and caspase 1, as well as pyroptosis and IL-1ß production. In addition, the anti-inflammatory effects of wedelolactone on MSU-induced peritonitis and arthritis mice were also evaluated. RESULTS: We found that wedelolactone broadly inhibited NLRP3 inflammasome activation and pyroptosis and IL-1ß secretion. Wedelolactone also block ASC oligomerization and speck formation. The inhibitory effects of wedelolactone were abrogated by PKA inhibitor H89, which also attenuated wedelolactone-enhanced Ser/Thr phosphorylation of NLRP3 at PKA-specific sites. Importantly, wedelolactone could abate MSU-induced IL-1ß production and neutrophils migration into peritoneal cavity, and reduced caspase 1 (p20) and IL-1ß expression in the joint tissue of MSU-induced arthritis. CONCLUSION: Our results indicate that wedelolactone promotes the Ser/Thr phosphorylation of NLRP3 to inhibit inflammasome activation and pyroptosis partly through potentiating PKA signalling, thus identifying its potential use for treating MSU-induced peritonitis and gouty arthritis.


Assuntos
Anti-Inflamatórios/farmacologia , Cumarínicos/farmacologia , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Piroptose/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Animais , Linhagem Celular , Humanos , Inflamassomos/antagonistas & inibidores , Inflamassomos/metabolismo , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Macrófagos/efeitos dos fármacos , Masculino , Camundongos Endogâmicos C57BL , Fosforilação/efeitos dos fármacos
2.
Artigo em Inglês | MEDLINE | ID: mdl-31781288

RESUMO

Shenfu injection (SFI), a Chinese herbal medicine with substances extracted from Ginseng Radix et Rhizoma Rubra and Aconiti Lateralis Radix Praeparata, is widely used as an anti-inflammatory reagent to treat endotoxin shock in China. However, the mechanism of SFI in endotoxin shock remains to be illuminated. High mobility group box 1 (HMGB1), a vital inflammatory factor in the late stage of endotoxin shock, may stimulate multiple signalling cascades, including κB (NF-κB), a nuclear transcription factor, as well as tumour necrosis factor (TNF)-α and interleukin (IL)-1ß, among others in the overexpression of downstream proinflammatory cytokines. An investigation into the effects of SFI on the inhibition of the HMGB1-NF-κB pathway revealed the contribution of SFI to acute lung injury (ALI) in a rat model of endotoxin shock. To assess the anti-inflammatory activity of SFI, 5 ml/kg, 10 ml/kg, or 15 ml/kg of SFI was administered to different groups of rats following an injection of LPS, and the mean arterial pressure (MAP) at 5 h and the survival rate at 72 h were measured. 24 h after LPS injection, we observed pathological changes in the lung tissue and measured the mRNA expression, production, translocation, and secretion of HMGB1, as well as the expression of the NF-κB signal pathway-related proteins inhibitor of NF-κB (IκB)-α, P50, and P65. We also evaluated the regulation of SFI on the secretion of inflammatory factors including interleukin-1 beta (IL-1ß) and TNF-α. SFI effectively prevented the drop in MAP, relieved lung tissue damage, and increased the survival rate in the endotoxin shock model in dose-dependent manner. SFI inhibited the transcription, expression, translocation, and secretion of HMGB1, increased the expression of toll-like receptor (TLR4), increased the production of IκB-α, and decreased the levels of P65, P50, and TNF-α in the lung tissue of endotoxin shock rats in a dose-dependent manner. Furthermore, SFI decreased the secretion of proinflammatory cytokines TNF-α and IL-1ß. In summary, SFI improves the survival rate of endotoxin shock, perhaps through inhibiting the HMGB1-NF-κB pathway and thus preventing cytokine storm.

3.
Int J Mol Med ; 43(3): 1452-1466, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30747210

RESUMO

Under harmful environmental conditions, stress granules (SGs), macromolecular aggregates that are associated with cell survival and death, are produced in the eukaryotic cytoplasm. However, whether and how microRNAs (miRNAs/miRs) modulate SG formation induced by acute ischemic stroke has not been investigated. In the present study, a rat model of middle cerebral artery occlusion (MCAO) was utilized and miRNA array profiling and reverse transcription­quantitative polymerase chain reaction were performed. The results revealed that miR­335 was downregulated during acute ischemic stroke, which was concomitant with reduced SG formation, enhanced apoptosis levels and increased Rho associated protein kinase 2 (ROCK2) expression. In the MCAO rat and serum­free cell models, miR­335 treatment upregulated SG formation, alleviated the ischemia­induced infarction, and decreased ROCK2 protein expression and apoptosis levels. By contrast, when compared with miR­335 treatment, the inhibition of miR­335 resulted in reduced SG formation and higher ROCK2 expression and apoptosis levels. Target prediction analysis and luciferase 3'­untranslated region reporter assay identified ROCK2 as the direct target of miR­335. Furthermore, ROCK2 silencing enhanced SG formation and attenuated the level of apoptosis in the serum­free cell model. In addition, ROCK2 silencing markedly inhibited the effect of miR­335 on SG formation and apoptosis levels. Unexpectedly, the phosphorylation of T­cell intracellular antigen­1 was significantly inhibited by miR­335 in the MCAO rat model, which provides a reasonable explanation for the promotional effect of miR­335 on SG formation by specifically targeting ROCK2. In conclusion, these results demonstrate that miR­335 promotes SG formation and inhibits apoptosis by reducing ROCK2 expression in acute ischemic stroke, which provides a possible therapeutic target for brain injury.


Assuntos
Apoptose/genética , Isquemia Encefálica/genética , Grânulos Citoplasmáticos/metabolismo , MicroRNAs/metabolismo , Acidente Vascular Cerebral/genética , Quinases Associadas a rho/metabolismo , Regiões 3' não Traduzidas/genética , Animais , Isquemia Encefálica/patologia , Meios de Cultura Livres de Soro , Modelos Animais de Doenças , Regulação da Expressão Gênica , Inativação Gênica , Infarto da Artéria Cerebral Média/genética , Infarto da Artéria Cerebral Média/patologia , Masculino , MicroRNAs/genética , Células PC12 , Fosforilação , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ratos , Ratos Sprague-Dawley , Reperfusão , Acidente Vascular Cerebral/patologia
4.
Anat Rec (Hoboken) ; 302(6): 954-963, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30369084

RESUMO

Genomic DNA demethylation is important for mammalian embryonic development and organ function. 5-Hydroxymethylcytosine (5hmC) is considered a novel epigenetic marker. Ten-eleven translocation (TET) enzymes convert 5-methylcytosine (5mC) to 5hmC. To explore the dynamic changes of epigenetic modifications during organogenesis in the late mouse fetus, the regional distribution and histological localization of 5hmC and TET enzymes was investigated by immunohistochemical method. The liver of mouse fetus gradually matured from embryonic day (E) 12.5 to E18.5.5mC was positive in developing liver at E16.5 and E18.5. 5hmC, TET2 and TET3 were strongly positive in hepatocytes and oval cells at E18.5. The small intestinal villi were formed at E16.5. The striate border and goblet cells appeared at E18.5. 5mC was detectable from E12.5 to E18.5. 5hmC and TET2 were positive in small intestine at E12.5, E14.5, and E18.5. The alveolar was formed at E18.5. 5mC and 5hmC were detectable from E12.5 to E18.5. Only TET2 was positive in the lung of the late Kunming mouse fetus. For vertebra, mesenchymal cells formed hyaline cartilage at E15.5 and then ossify at E16.5 and E18.8. 5mC, 5hmC, and TET2 were detectable in chondrocytes and osteocytes during the late Kunming mouse fetal; TET1 expressed from E14.5 to E16.5 and TET3 expressed in bone matrix at E18.5. In summary, TET2 was strongly expressed in liver, small intestinal, lung, and vertebra in the late Kunming mouse fetus. These findings suggested that TET2 may play a more critical role than TET1 and TET3 during organogenesis in the late stage of Kunming mouse embryo. Anat Rec, 302:954-963, 2019. © 2018 Wiley Periodicals, Inc.


Assuntos
5-Metilcitosina/análogos & derivados , Encéfalo/metabolismo , Proteínas de Ligação a DNA/metabolismo , Feto/metabolismo , Coração/fisiologia , Organogênese , Proteínas Proto-Oncogênicas/metabolismo , 5-Metilcitosina/metabolismo , Animais , Encéfalo/embriologia , Metilação de DNA , Proteínas de Ligação a DNA/genética , Dioxigenases , Epigenômica , Feminino , Feto/citologia , Coração/embriologia , Camundongos , Gravidez , Proteínas Proto-Oncogênicas/genética , Análise Espaço-Temporal
5.
BMC Genomics ; 19(1): 783, 2018 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-30373531

RESUMO

BACKGROUND: Our previous study showed that (+)-cholesten-3-one (CN) has the potential to induce the osteoblastic differentiation of mesenchymal stem cells (MSCs). However, the roles of CN in targeting miRNA-mRNA-lncRNA interactions to regulate osteoblast differentiation remain poorly understood. RESULTS: A total of 77 miRNAs (36 upregulated and 41 downregulated) and 295 lncRNAs (281 upregulated and 14 downregulated) were significantly differentially expressed during CN-induced MSC osteogenic differentiation. Bioinformatic analysis identified that several pathways may play vital roles in MSC osteogenic differentiation, such as the vitamin D receptor signalling, TNF signalling, PI3K-Akt signalling, calcium signalling, and mineral absorption pathways. Further bioinformatic analysis revealed 16 core genes, including 6 mRNAs (Vdr, Mgp, Fabp3, Fst, Cd38, and Col1a1), 5 miRNAs (miR-483, miR-298, miR-361, miR-92b and miR-155) and 5 lncRNAs (NR_046246.1, NR_046239.1, XR_086062.1, XR_145872.1 and XR_146737.1), that may play important roles in regulating the CN-induced osteogenic differentiation of MSCs. Verified by the luciferase reporter, AR-S, qRT-PCR and western blot assays, we identified one miRNA (miR-298) that may enhance the osteogenic differentiation potential of MSCs via the vitamin D receptor signalling pathway. CONCLUSIONS: This study revealed the global expression profile of miRNAs and lncRNAs involved in the Chinese medicine active ingredient CN-induced osteoblast differentiation of MSCs for the first time and provided a foundation for future investigations of miRNA-mRNA-lncRNA interaction networks to completely illuminate the regulatory role of CN in MSC osteoblast differentiation.


Assuntos
Diferenciação Celular/genética , Regulação da Expressão Gênica no Desenvolvimento , Redes Reguladoras de Genes , MicroRNAs/genética , Osteoblastos/citologia , Osteoblastos/metabolismo , RNA Longo não Codificante/genética , RNA Mensageiro/genética , Animais , Diferenciação Celular/efeitos dos fármacos , Colestenos/farmacologia , Biologia Computacional/métodos , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Redes Reguladoras de Genes/efeitos dos fármacos , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/efeitos dos fármacos , Células-Tronco Mesenquimais/metabolismo , Osteoblastos/efeitos dos fármacos , Osteogênese/genética , Interferência de RNA , Ratos , Transcriptoma
6.
Int Immunopharmacol ; 61: 169-177, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29883962

RESUMO

High-mobility group box 1 (HMGB1) is a highly conserved DNA-binding nuclear protein that facilitates gene transcription and the DNA repair response. However, HMGB1 may be released by necrotic cells as well as activated monocytes and macrophages following stimulation with lipopolysaccharide (LPS), interleukin-1ß (IL-1ß), or tumor necrosis factor-α (TNF-α). Extracellular HMGB1 plays a critical role in the pathogenesis of acute lung injury (ALI) through activating the nuclear transcription factor κB (NF-κB) P65 pathway, thus, it may be a promising therapeutic target in shock-induced ALI. Paeonol (Pae) is the main active component of Paeonia suffruticosa, which has been used to inhibit the inflammatory response in traditional Chinese medicine. We have proven that Pae inhibits the expression, relocation and secretion of HMGB1 in vitro. However, the role of Pae in the HMGB1-NF-κB pathway remains unknown. We herein investigated the role of Pae in LPS-induced ALI rats. In this study, LPS induced a marked decrease in the mean arterial pressure (MAP) and survival rate (only 25% after 72 h), and induced severe pathological changes in the lung tissue of rats, which was accompanied by elevated expression of HMGB1 and its downstream protein NF-κB P65. Treatment with Pae significantly improved the survival rate (>60%) and MAP, and attenuated the pathological damage to the lung tissue in ALI rats. Western blotting revealed that Pae also inhibited the total expression of HMGB1, NF-κB P65 and TNF-α in the lung tissue of ALI rats. Moreover, Pae increased the expression of HMGB1 in the nucleus, inhibited the production of HMGB1 in the cytoplasm, and decreased the expression of P65 both in the nucleus and cytoplasm of lung tissue cells in LPS-induced ALI rats. The results were in agreement with those observed in the in vitro experiment. These findings indicate that Pae may be a potential treatment for ALI through its repression of the HMGB1-NF-κB P65 signaling pathway.


Assuntos
Acetofenonas/uso terapêutico , Lesão Pulmonar Aguda/tratamento farmacológico , Anti-Inflamatórios/uso terapêutico , Proteína HMGB1/metabolismo , Pulmão/patologia , Medicina Tradicional Chinesa , Lesão Pulmonar Aguda/imunologia , Animais , Reparo do DNA/genética , Modelos Animais de Doenças , Regulação da Expressão Gênica , Proteína HMGB1/genética , Humanos , Lipopolissacarídeos/imunologia , Pulmão/efeitos dos fármacos , Masculino , Ratos , Ratos Sprague-Dawley , Transdução de Sinais , Fator de Transcrição RelA/metabolismo , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/metabolismo
7.
Exp Ther Med ; 13(5): 1841-1849, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28565776

RESUMO

In our previous reports, it was revealed that steroids in traditional Chinese medicine (TCM) have the therapeutic potential to treat bone disease. In the present study, an in vitro model of a vitamin D receptor response element (VDRE) reporter gene assay in mesenchymal stem cells (MSCs) was used to identify steroids that enhanced osteogenic differentiation of MSCs. (+)-cholesten-3-one (CN), which possesses a ketone group that is modified in cholesterol and cholesterol myristate, effectively promoted the activity of the VDRE promoter. Phenotypic cellular analysis indicated that CN induced differentiation of MSCs into osteogenic cells and increased expression of specific osteogenesis markers, including alkaline phosphatase, collagen II and Runt-related transcription factor 2. Furthermore, CN significantly increased the expression of osteopontin, the target of the vitamin D receptor (VDR), which indicated that CN may activate vitamin D receptor signaling. Over-expression of VDR or knockdown studies with VDR-small interfering RNA revealed that the pro-differentiation effects induced by CN required VDR. Furthermore, the present study determined that the C-terminal region of the VDR is responsible for the action of CN. Taken together, the present findings demonstrated that CN induced osteogenic differentiation of MSCs by activating VDR. The present study explored the regulation of stem cells by using a series of similar steroids and provided evidence to support a potential strategy for the screening of novel drugs to treat bone disease in the future.

8.
Inflammation ; 39(3): 1177-87, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-27106477

RESUMO

Transport of high-mobility group box 1 (HMGB1), a highly conserved non-histone DNA-binding protein, from the nucleus to the cytoplasm is induced by lipopolysaccharide (LPS). Secretion of HMGB1 appears to be a key lethal factor in sepsis, so it is considered to be a therapeutic target. Previous studies have suggested that paeonol (2'-hydroxy-4'-methoxyacetophenone), an active compound of Paeonia lactiflora Pallas, exerts anti-inflammatory effects. However, the effect of paeonol on HMGB1 is unknown. Here, we investigated the effect of paeonol on the expression, location, and secretion of HMGB1 in LPS-induced murine RAW264.7 cells. ELISA revealed HMGB1 supernatant concentrations of 615 ± 30 ng/mL in the LPS group and 600 ± 45, 560 ± 42, and 452 ± 38 ng/mL in cells treated with 0.2, 0.6, or 1 mM paeonol, respectively, suggesting that paeonol inhibits HMGB1 secretion induced by LPS. Immunohistochemistry and Western blotting revealed that paeonol decreased cytoplasmic HMGB1 and increased nuclear HMGB1. Chromatin immunoprecipitation microarrays suggested that HMGB1 relocation to the nucleus induced by paeonol might depress the action of Janus kinase/signal transducers and activators of transcription, chemokine, and mitogen-activated protein kinase pro-inflammatory signaling pathways. Paeonol was also found to inhibit tumor necrosis factor-α promoter activity in a dose-dependent manner. These results indicate that paeonol has the potential to be developed as a novel HMGB1-targeting therapeutic drug for the treatment of inflammatory diseases.


Assuntos
Acetofenonas/farmacologia , Proteína HMGB1/metabolismo , Transporte Proteico/efeitos dos fármacos , Animais , Anti-Inflamatórios/farmacologia , Núcleo Celular/metabolismo , Citoplasma/metabolismo , Proteína HMGB1/efeitos dos fármacos , Lipopolissacarídeos/farmacologia , Camundongos , Regiões Promotoras Genéticas/efeitos dos fármacos , Células RAW 264.7 , Fator de Necrose Tumoral alfa/genética
9.
J Alzheimers Dis ; 33(3): 863-80, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23064259

RESUMO

ß-Asarone, an active component of the Acori graminei rhizome that has been used as traditional Chinese herb, has been reported to be capable of inhibiting neuronal apoptosis. However, the signaling mechanism underlying the inhibitory effect of ß-asarone has remained elusive. This study was aimed to investigate whether the CaMKII signaling pathway is involved in the ß-asarone mediated neuroprotection. Using PC12 cells and primary cultures of cortical neurons treated with amyloid-ß (Aß)(1-40) or Aß(1-42) peptide, we demonstrated that ß-asarone can protect PC12 cells and cortical neurons and inhibit neuronal apoptosis by activating the CaMKII-α/p-CREB/Bcl-2 pathway. Moreover, CaMKII-α overexpression enhanced the ß-asarone-induced p-CREB-Bcl-2 expression and anti-apoptotic effects. Interestingly, suppression of CaMKII-α by siRNA or a specific inhibitor can significantly reduce the ß-asarone-induced p-CREB and Bcl-2 expression and Aß(1-40) induced neuronal apoptosis in PC12 cells. AßPP/PS1 mice at the age of 3 months and age-matched wild-type mice were intragastrically administered ß-asarone (7 mg/kg/day, 21 mg/kg/day) or a vehicle daily for 4 months. ß-asarone improved cognitive function of the AßPP/PS1 mice and reduced neuronal apoptosis in the cortex of the AßPP/PS1 mice. A significant increase in CaMKII/CREB/Bcl-2 expression was observed in the cortex of the AßPP/PS1 mice treated with ß-asarone. In summary, our observations demonstrated that ß-asarone can inhibit neuronal apoptosis via the CaMKII/CREB/Bcl-2 signaling pathway in in vitro models and in AßPP/PS1 mice. Therefore, ß-asarone can be used as a potential therapeutic agent in the long-term treatment of Alzheimer's disease.


Assuntos
Doença de Alzheimer , Apoptose/efeitos dos fármacos , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Fibrinolíticos/farmacologia , Neurônios/efeitos dos fármacos , Transdução de Sinais/fisiologia , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Precursor de Proteína beta-Amiloide/genética , Animais , Anexina A5/metabolismo , Apoptose/genética , Proteína de Ligação a CREB/metabolismo , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/genética , Células Cultivadas , Córtex Cerebral/citologia , Modelos Animais de Doenças , Regulação da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica/genética , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Humanos , Aprendizagem em Labirinto/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Mutação , Neurônios/metabolismo , Fosfopiruvato Hidratase/metabolismo , Presenilina-1/genética , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Ratos , Ratos Sprague-Dawley , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Fatores de Tempo
10.
Nat Prod Commun ; 7(8): 1069-74, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22978231

RESUMO

Identifying small molecules that are neuroprotective against stroke injury will be highly beneficial for treatment therapies. A cell viability assay and gas chromatography-mass spectrometry were used to identify active small molecules in XingNaoJing, which is a well known Chinese medicine prescribed for the effective treatment of stroke. Studies have found that muscone is the active compound that prevents PC12 cell and cortical neuron damage following various injuries. Analysis of apoptosis indicated that muscone inhibited glutamate-induced apoptotic cell death of PC12 cells and cortical neurons. Fas and caspase-8 expression were upregulated following glutamate treatment in cortical neurons, and was markedly attenuated in the presence of muscone. Furthermore, muscone significantly reduced cerebral infarct volume, neurological dysfunction and inhibited cortical neuron apoptosis in middle cerebral artery occluded (MCAO) rats in a dose-dependent manner. Moreover, a significant decrease in Fas and caspase-8 expression in the rat cortex was observed in MCAO rats treated with muscone. Our results demonstrate that muscone may be a small active molecule with neuroprotective properties, and that inhibition of apoptosis and Fas is an important mechanism of neuroprotection by muscone. These findings suggest a potential therapeutic role for muscone in the treatment of stroke.


Assuntos
Cicloparafinas/farmacologia , Fármacos Neuroprotetores/farmacologia , Acidente Vascular Cerebral/tratamento farmacológico , Receptor fas/antagonistas & inibidores , Animais , Encéfalo/efeitos dos fármacos , Encéfalo/patologia , Lesões Encefálicas/tratamento farmacológico , Masculino , Células PC12 , Ratos , Ratos Sprague-Dawley , Reação em Cadeia da Polimerase em Tempo Real , Traumatismo por Reperfusão , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Acidente Vascular Cerebral/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA