Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
1.
J Neurosurg ; : 1-11, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38608304

RESUMO

OBJECTIVE: Circulating tumor cell (CTC) detection is a promising noninvasive technique that can be used to diagnose cancer, monitor progression, and predict prognosis. In this study, the authors aimed to investigate the clinical utility of CTCs in the management of diffuse glioma. METHODS: Sixty-three patients with newly diagnosed diffuse glioma were included in this multicenter clinical cohort. The authors used a platform based on isolation by size of epithelial tumor cells (ISET) to detect and analyze CTCs and circulating tumor microemboli (CTMs) in the peripheral blood of patients both before and after surgery. Least absolute shrinkage and selector operation (LASSO) and Cox regression analyses were used to verify whether CTCs and CTMs are independent prognostic factors for diffuse glioma. RESULTS: CTC levels were closely related to the degree of malignancy, WHO grade, and pathological subtypes. Receiver operating characteristic curve analysis revealed that a high CTC level was a predictor for glioblastoma. The results also showed that CTMs originate from the parental tumor rather than from the circulation and are an independent prognostic factor for diffuse glioma. The postoperative CTC level is related to the peripheral immune system and patient survival. Cox regression analysis showed that postoperative CTC levels and CTM status are independent prognostic factors for diffuse glioma, and CTC- and CTM-based survival models had high accuracy in internal validation. CONCLUSIONS: The authors revealed a correlation between CTCs and clinical characteristics and demonstrated that CTCs and CTMs are independent predictors for the diagnosis and prognosis of diffuse glioma. Their CTC- and CTM-based survival models can enable clinicians to evaluate patients' response to surgery as well as their outcomes.

2.
J Exp Med ; 221(4)2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38442272

RESUMO

Meningeal lymphatic vessels (MLVs) promote tissue clearance and immune surveillance in the central nervous system (CNS). Vascular endothelial growth factor-C (VEGF-C) regulates MLV development and maintenance and has therapeutic potential for treating neurological disorders. Herein, we investigated the effects of VEGF-C overexpression on brain fluid drainage and ischemic stroke outcomes in mice. Intracerebrospinal administration of an adeno-associated virus expressing mouse full-length VEGF-C (AAV-mVEGF-C) increased CSF drainage to the deep cervical lymph nodes (dCLNs) by enhancing lymphatic growth and upregulated neuroprotective signaling pathways identified by single nuclei RNA sequencing of brain cells. In a mouse model of ischemic stroke, AAV-mVEGF-C pretreatment reduced stroke injury and ameliorated motor performances in the subacute stage, associated with mitigated microglia-mediated inflammation and increased BDNF signaling in brain cells. Neuroprotective effects of VEGF-C were lost upon cauterization of the dCLN afferent lymphatics and not mimicked by acute post-stroke VEGF-C injection. We conclude that VEGF-C prophylaxis promotes multiple vascular, immune, and neural responses that culminate in a protection against neurological damage in acute ischemic stroke.


Assuntos
AVC Isquêmico , Acidente Vascular Cerebral , Animais , Camundongos , Fator C de Crescimento do Endotélio Vascular , Doenças Neuroinflamatórias , Drenagem
3.
Quant Imaging Med Surg ; 13(12): 8326-8335, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-38106235

RESUMO

Background: The occurrence rate of distal anterior cerebral artery (DACA) aneurysms is relatively low, primarily due to their deep-seated location, which makes surgical clamping challenging. The objective of this study was to investigate the efficacy and safety of computed tomography (CT) navigation-assisted clipping of DACA aneurysms compared to traditional clipping without navigation. Methods: A retrospective cohort study involving retrospective data collection was performed. The retrospective analysis was conducted on 139 patients with ruptured DACA aneurysms who underwent clipping. From January 2013 to November 2021, 164 patients were retrieved at the Department of Neurosurgery, Renmin Hospital of Wuhan University. The inclusion criteria were patients diagnosed with DACA aneurysms via CT angiography (CTA) or digital subtraction angiography (DSA), those with complete clinical data, and those who underwent craniotomy for aneurysm clipping. Meanwhile, the exclusion criteria were as follows: aneurysm recurrence, traumatic brain injury or surgery history, blood disorders or recent anticoagulant use, and severe organ dysfunction. Data on gender, age, Hunt-Hess grade, Fisher grade, modified Rankin Scale (mRS) score, aneurysm location, hospitalization time, aneurysm found time (the duration from incision to aneurysm discovery), and intraoperative bleeding volume were collected from medical records and neurosurgical databases. Patients were followed up in the clinic or by telephone in May 2022. All patients were divided into a navigation group or a traditional group for statistical analysis. Results: No statistically significant differences were observed in age, sex, Fisher grade, Hunt-Hess grade, hospitalization time, or aneurysm site between the navigation group and traditional group (P>0.05). Intraoperative blood loss was lower in the navigation group than in the traditional group {370 [280-460] vs. 430 [310-610] mL, P=0.045}. Patients in the traditional group had a shorter aneurysm found time than did those in the navigation group {49 [42-53] vs. 79 [63-84] min, P<0.001}. There was no significant difference in the mRS score at hospital discharge (P=0.336) or follow-up (P=0.157) between the two groups. Conclusions: CT neuronavigation-assisted microsurgery for clipping DACA aneurysms may improve surgical accuracy, shorten the time to locate aneurysms, and reduce intraoperative blood loss. Although no significant difference in prognosis was observed, this technique shows promise as a safe and effective alternative to traditional clipping without navigation.

4.
bioRxiv ; 2023 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-37398128

RESUMO

Meningeal lymphatic vessels promote tissue clearance and immune surveillance in the central nervous system (CNS). Vascular endothelium growth factor-C (VEGF-C) is essential for meningeal lymphatic development and maintenance and has therapeutic potential for treating neurological disorders, including ischemic stroke. We have investigated the effects of VEGF-C overexpression on brain fluid drainage, single cell transcriptome in the brain, and stroke outcomes in adult mice. Intra-cerebrospinal fluid administration of an adeno-associated virus expressing VEGF-C (AAV-VEGF-C) increases the CNS lymphatic network. Post-contrast T1 mapping of the head and neck showed that deep cervical lymph node size and drainage of CNS-derived fluids were increased. Single nuclei RNA sequencing revealed a neuro-supportive role of VEGF-C via upregulation of calcium and brain-derived neurotrophic factor (BDNF) signaling pathways in brain cells. In a mouse model of ischemic stroke, AAV-VEGF-C pretreatment reduced stroke injury and ameliorated motor performances in the subacute stage. AAV-VEGF-C thus promotes CNS-derived fluid and solute drainage, confers neuroprotection, and reduces ischemic stroke damage. Short abstract: Intrathecal delivery of VEGF-C increases the lymphatic drainage of brain-derived fluids confers neuroprotection, and improves neurological outcomes after ischemic stroke.

5.
Cell Death Dis ; 14(3): 211, 2023 03 25.
Artigo em Inglês | MEDLINE | ID: mdl-36966152

RESUMO

Glioblastoma multiforme (GBM) is the most common and fatal primary malignant central nervous system tumor in adults. Although there are multiple treatments, the median survival of GBM patients is unsatisfactory, which has prompted us to continuously investigate new therapeutic strategies, including new drugs and drug delivery approaches. Ferroptosis, a kind of regulated cell death (RCD), has been shown to be dysregulated in various tumors, including GBM. Fatostatin, a specific inhibitor of sterol regulatory element binding proteins (SREBPs), is involved in lipid and cholesterol synthesis and has antitumor effects in a variety of tumors. However, the effect of fatostatin has not been explored in the field of ferroptosis or GBM. In our study, through transcriptome sequencing, in vivo experiments, and in vitro experiments, we found that fatostatin induces ferroptosis by inhibiting the AKT/mTORC1/GPX4 signaling pathway in glioblastoma. In addition, fatostatin inhibits cell proliferation and the EMT process through the AKT/mTORC1 signaling pathway. We also designed a p28-functionalized PLGA nanoparticle loaded with fatostatin, which could better cross the blood-brain barrier (BBB) and be targeted to GBM. Our research identified the unprecedented effects of fatostatin in GBM and presented a novel drug-targeted delivery vehicle capable of penetrating the BBB in GBM.


Assuntos
Neoplasias Encefálicas , Ferroptose , Glioblastoma , Humanos , Glioblastoma/tratamento farmacológico , Glioblastoma/patologia , Proteínas Proto-Oncogênicas c-akt , Alvo Mecanístico do Complexo 1 de Rapamicina , Linhagem Celular Tumoral , Transdução de Sinais , Neoplasias Encefálicas/tratamento farmacológico
6.
Quant Imaging Med Surg ; 13(1): 293-308, 2023 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-36620177

RESUMO

Background: Moyamoya disease (MMD) is a teratogenic and lethal disease. However, existing studies do not sufficiently indicate the impact factors. Therefore, we investigated the different impact factors on cerebral hemodynamics after revascularization in patients with MMD. Methods: We retrospectively collected the clinical data of 233 adult patients with MMD who underwent revascularization surgery in the Department of Neurosurgery, Renmin Hospital of Wuhan University, from January 2015 to June 2021 for this retrospective cohort study. We analyzed the effects on hemodynamic improvement of age, sex, stroke type, early symptoms, Suzuki stage, history of hypertension, history of diabetes, and history of hyperlipidemia in patients with MMD. We also evaluated the efficacy of different revascularization strategies and we verified the effect of computed tomography perfusion (CTP) in evaluating cerebral hemodynamics. Results: The CTP values demonstrated that δ cerebral blood volume (CBV) values were significantly higher in the combined group [1.01 (0.87-1.75)] relative to those in the indirect group [1.34 (1.01-1.63); P=0.027]. There was no statistical significance in the improvement of clinical symptoms and clinical prognosis between the indirect and combined groups. Patients with MMD with diabetes [δ mean transit time (MTT), 0.49 (0.35-0.70) vs. 0.72 (0.52-0.87); P<0.001] or calcium channel blocker (CCB) [δCBV, 1.46 (1.10-1.83) vs. 1.12 (0.93-1.54); P=0.001] had better cerebral hemodynamics than patients in non-diabetic group or non-CCB group after revascularization. Conclusions: We didn't find differences in clinical outcome between indirect and combined revascularization in patients with MMD. we demonstrated that CTP values can be used as a way to detect postoperative cerebral hemodynamic changes in MMD patients. Interestingly, we found that MMD patients with diabetes or CCB showed better cerebral perfusion after revascularization.

7.
Neuro Oncol ; 25(3): 482-494, 2023 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-35901838

RESUMO

BACKGROUND: Improved treatment of glioblastoma (GBM) needs to address tumor invasion, a hallmark of the disease that remains poorly understood. In this study, we profiled GBM invasion through integrative analysis of histological and single-cell RNA sequencing (scRNA-seq) data from 10 patients. METHODS: Human histology samples, patient-derived xenograft mouse histology samples, and scRNA-seq data were collected from 10 GBM patients. Tumor invasion was characterized and quantified at the phenotypic level using hematoxylin and eosin and Ki-67 histology stains. Crystallin alpha B (CRYAB) and CD44 were identified as regulators of tumor invasion from scRNA-seq transcriptomic data and validated in vitro, in vivo, and in a mouse GBM resection model. RESULTS: At the cellular level, we found that invasive GBM are less dense and proliferative than their non-invasive counterparts. At the molecular level, we identified unique transcriptomic features that significantly contribute to GBM invasion. Specifically, we found that CRYAB significantly contributes to postoperative recurrence and is highly co-expressed with CD44 in invasive GBM samples. CONCLUSIONS: Collectively, our analysis identifies differentially expressed features between invasive and nodular GBM, and describes a novel relationship between CRYAB and CD44 that contributes to tumor invasiveness, establishing a cellular and molecular landscape of GBM invasion.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Glioma , Humanos , Animais , Camundongos , Glioblastoma/genética , Glioblastoma/patologia , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Perfilação da Expressão Gênica , Invasividade Neoplásica , Linhagem Celular Tumoral , Modelos Animais de Doenças
8.
Front Oncol ; 12: 967159, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36059638

RESUMO

WHO 2/3 glioma is a common intracranial tumor that seriously affects the quality of life and survival time of patients. Previous studies have shown that the tricarboxylic acid (TCA) cycle is closely related to the occurrence and development of glioma, while recent studies have shown that cuproptosis, a novel programmed death pathway, is closely related to the inhibition of the TCA cycle. In our study, eight of ten cuproptosis-related genes (CRGs) were found to be differentially expressed between normal and WHO 2/3 glioma tissues. Through the LASSO algorithm, the cuproptosis-associated risk signatures (CARSs) were constructed, which can effectively predict the prognosis of WHO 2/3 glioma patients and are closely related to clinicopathological features. We analyzed the relationship between risk score and immune cell infiltration through Xcell, ssGSEA, TIMER database, and immune checkpoint molecules. In addition, the relationship between risk score and chemotherapeutic drug sensitivity was also investigated. The prognosis-related independent risk factors FDX1 and CDKN2A identified from CARSs are considered potential prognostic biomarkers for WHO 2/3 glioma. The clinical prognosis model based on cuproptosis is expected to provide an effective reference for the diagnosis and treatment of clinical WHO 2/3 glioma patients.

9.
Nanomedicine ; 44: 102581, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35811067

RESUMO

Glioblastoma multiforme (GBM) is the intracranial malignancy with the highest rates of morbidity and mortality. Chemotherapy is often ineffective against GBM due to the presence of the blood-brain barrier (BBB); however, the application of nanotechnology is expected to overcome this limitation. Poly(lactic-co-glycolic acid) (PLGA) is a degradable and nontoxic functional polymer with good biocompatibility that is widely used in the pharmaceutical industry. Previous studies have shown that the ability of PLGA nanoparticles (NPs) to penetrate the BBB is largely determined by their size; however, determination of the optimal PLGA NP size requires further research. Here, we report a tandutinib-based prodrug (proTan), which responds to the GBM microenvironment, that was combined with NPs to overcome the BBB. AMD3100-PLGA NPs loaded with proTan inhibited tumor growth and effectively prolonged the survival of tumor-bearing mice.


Assuntos
Glioblastoma , Nanopartículas , Pró-Fármacos , Animais , Linhagem Celular Tumoral , Portadores de Fármacos/uso terapêutico , Sistemas de Liberação de Medicamentos , Esterases/uso terapêutico , Glioblastoma/tratamento farmacológico , Glioblastoma/patologia , Ácido Láctico , Camundongos , Ácido Poliglicólico , Copolímero de Ácido Poliláctico e Ácido Poliglicólico , Pró-Fármacos/farmacologia , Pró-Fármacos/uso terapêutico , Microambiente Tumoral
10.
Med Oncol ; 39(5): 90, 2022 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-35568751

RESUMO

Transmembrane and coiled-coil domains 1 (TMCO1) is a recently discovered transmembrane protein of endoplasmic reticulum (ER), which plays a critical role in maintaining calcium homeostasis. TMCO1 dysfunction has been proved to be closely related to a variety of human diseases, including glaucoma, deformities, mental retardation and tumorigenesis. However, the role of TMCO1 in gliomas remains unclear. The purpose of this study was to detect the role of TMCO1 in the pathogenesis and progression of gliomas. This study demonstrated that TMCO1 was upregulated in gliomas and its overexpression predicted poor prognosis. We also revealed that the expression of TMCO1 was associated with the World Health Organization (WHO) grade of gliomas. Knockdown of TMCO1 inhibited the proliferation and induced apoptosis of U87 and U251 cells. In addition, TMCO1 induced GBM cell migration and invasion by promoting epithelial-mesenchymal transition (EMT). These date collectively proved the crucial role of TMCO1 as a novel prognostic factor and underlying therapeutic target for glioma patients.


Assuntos
Transição Epitelial-Mesenquimal , Glioma , Canais de Cálcio/genética , Canais de Cálcio/metabolismo , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Retículo Endoplasmático/metabolismo , Regulação Neoplásica da Expressão Gênica , Glioma/patologia , Humanos
11.
Nat Commun ; 13(1): 2196, 2022 04 22.
Artigo em Inglês | MEDLINE | ID: mdl-35459228

RESUMO

Glioblastoma (GBM) is a deadly disease without effective treatment. Because glioblastoma stem cells (GSCs) contribute to tumor resistance and recurrence, improved treatment of GBM can be achieved by eliminating GSCs through inducing their differentiation. Prior efforts have been focused on studying GSC differentiation towards the astroglial lineage. However, regulation of GSC differentiation towards the neuronal and oligodendroglial lineages is largely unknown. To identify genes that control GSC differentiation to all three lineages, we performed an image-based genome-wide RNAi screen, in combination with single-cell RNA sequencing, and identified ZNF117 as a major regulator of GSC differentiation. Using patient-derived GSC cultures, we show that ZNF117 controls GSC differentiation towards the oligodendroglial lineage via the Notch pathway. We demonstrate that ZNF117 is a promising target for GSC differentiation therapy through targeted delivery of CRISPR/Cas9 gene-editing nanoparticles. Our study suggests a direction to improve GBM treatment through differentiation of GSCs towards various lineages.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Neoplasias Encefálicas/patologia , Diferenciação Celular , Linhagem Celular Tumoral , Glioblastoma/patologia , Humanos , Células-Tronco Neoplásicas/metabolismo
12.
Cell Rep Phys Sci ; 3(1)2022 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-35199059

RESUMO

Despite being effective for many other solid tumors, traditional anti-angiogenic therapy has been shown to be insufficient for the treatment of malignant glioma. Here, we report the development of polyphenol nanoparticles (NPs), which not only inhibit the formation of new vessels but also enable targeted disruption of the existing tumor vasculature. The NPs are synthesized through a combinatory iron-coordination and polymer-stabilization approach, which allows for high drug loading and intrinsic tumor vessel targeting. We study a lead NP consisting of quercetin and find that the NP after intravenous administration preferentially binds to VEGFR2, which is overexpressed in tumor vasculature. We demonstrate that the binding is mediated by quercetin, and the interaction of NPs with VEGFR2 leads to disruption of the existing tumor vasculature and inhibition of new vessel development. As a result, systemic treatment with the NPs effectively inhibits tumor growth and increases drug delivery to tumors.

13.
Cell Biosci ; 12(1): 20, 2022 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-35216629

RESUMO

BACKGROUND: Ferroptosis plays a key role in human cancer, but its function and mechanism in glioma is not clear. P62/SQSTM1 was reported to inhibit ferroptosis via the activation of NRF2 signaling pathway. In this study we reveal a dual role of p62 in ferroptosis of glioblastoma (GBM) according to p53 status. METHOD: Lipid peroxidation analysis, transmission electron microscopy (TEM), GSH assay were performed to determine the level of ferroptosis. Western blot and qPCR were obtained to detect the expression of ferroptosis markers. Construction of mutant plasmids, immunoprecipitation, luciferase assay and rescue-experiments were performed to explore the regulatory mechanism. RESULTS: P62 overexpression facilitates ferroptosis and inhibits SLC7A11 expression in p53 mutant GBM, while attenuates ferroptosis and promotes SLC7A11 expression in p53 wild-type GBM. P62 associates with p53 and inhibits its ubiquitination. The p53-NRF2 association and p53-mediated suppression of NRF2 antioxidant activity are diversely regulated by p62 according to p53 status. P53 mutation status is required for the dual regulation of p62 on ferroptosis. In wild-type p53 GBM, the classical p62-mediated NRF2 activation pathway plays a major regulatory role of ferroptosis, leading to increased SLC7A11 expression, resulting in a anti-ferroptosis role. In mutant p53 GBM, stronger interaction of mutant-p53/NRF2 by p62 enhance the inhibitory effect of mutant p53 on NRF2 signaling, which reversing the classical p62-mediated NRF2 activation pathway, together with increased p53's transcriptional suppression on SLC7A11 by p62, leading to a decrease of SLC7A11, resulting in a pro-ferroptosis role. CONCLUSION: Together, this study shows novel molecular mechanisms of ferroptosis regulated by p62; the mutation status of p53 is an important factor that determines the therapeutic response to p62-mediated ferroptosis-targeted therapies in GBM.

14.
CNS Neurosci Ther ; 28(6): 897-912, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35212145

RESUMO

AIMS: Circular RNAs have been reported to play key roles in the progression of various cancers, including gliomas. The present study was designed to investigate the role of hsa_circ_0072309 in autophagy and temozolomide (TMZ) sensitivity in glioblastoma (GBM). METHODS: The effect of hsa_circ_0072309 on autophagy and TMZ sensitivity were examined by GFP-RFP-LC3, transmission electron microscopy(TEM), flow cytometry, Western blot, and immunofluorescence. The mechanism of hsa_circ_0072309 regulating p53 signaling pathway was analyzed using Western blot, IP, and rescue experiments. RESULTS: Low hsa_circ_0072309 expression predicts poor prognosis for glioma patients. The regulation of hsa_circ_0072309 on autophagy and TMZ sensitivity depends on the status of p53. Hsa_circ_0072309 promoted autophagy by p53 signaling pathway and enhanced sensitivity of glioblastoma to temozolomide (TMZ) in p53 wild-type GBM, but not in p53 mutant GBM. Hsa_circ_0072309 inhibits p53 ubiquitination and increases the stability of p53 protein in the context of p53 wild-type. MiR-100 mediates hsa_circ_0072309 regulating p53. P53 inhibitor or autophagy inhibitor could reverse the effect of hsa_circ_0072309 on TMZ sensitivity in p53 wild-type GBM. CONCLUSIONS: This study revealed a function of hsa_circ_0072309 promoting autophagy by p53 signaling pathway and enhancing TMZ sensitivity. These findings demonstrated that hsa_circ_0072309 may be a potential and promising target in designing the treatment strategy for GBM.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Glioma , MicroRNAs , Apoptose , Autofagia , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Linhagem Celular Tumoral , Proliferação de Células , Regulação Neoplásica da Expressão Gênica , Glioblastoma/tratamento farmacológico , Glioblastoma/genética , Glioblastoma/metabolismo , Glioma/genética , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , Temozolomida/farmacologia , Temozolomida/uso terapêutico , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo
15.
J Nanobiotechnology ; 20(1): 39, 2022 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-35062946

RESUMO

BACKGROUND: Glioblastoma (GBM) is the most common and fatal primary tumor in the central nervous system (CNS). Due to the existence of blood-brain barrier (BBB), most therapeutics cannot efficiently reach tumors in the brain, and as a result, they are unable to be used for effective GBM treatment. Accumulating evidence shows that delivery of therapeutics in form of nanoparticles (NPs) may allow crossing the BBB for effective GBM treatment. METHODS: Betulinic acid NPs (BA NPs) were synthesized by the standard emulsion approach and characterized by electron microscopy and dynamic light scattering analysis. The resulting NPs were characterized for their anti-tumor effects by cell viability assay, EdU-DNA synthesis assay, cell cycle assay, mitochondrial membrane potential, and PI-FITC apoptosis assay. Further mechanistic studies were carried out through Western Blot and immunostaining analyses. Finally, we evaluated BA NPs in vivo for their pharmacokinetics and antitumor effects in intracranial xenograft GBM mouse models. RESULTS: BA NPs were successfully prepared and formed into rod shape. BA NPs could significantly suppress glioma cell proliferation, induce apoptosis, and arrest the cell cycle in the G0/G1 phase in vitro. Furthermore, BA NPs downregulated the Akt/NFκB-p65 signaling pathway in a concentration dependent manner. We found that the observed anti-tumor effect of BA NPs was dependent on the function of CB1/CB2 receptors. Moreover, in the intracranial GBM xenograft mouse models, BA NPs could effectively cross the BBB and greatly prolong the survival time of the mice. CONCLUSIONS: We successfully synthesized BA NPs, which could cross the BBB and demonstrated a strong anti-tumor effect. Therefore, BA NPs may potentially be used for effective treatment of GBM.


Assuntos
Antineoplásicos Fitogênicos , Neoplasias Encefálicas/metabolismo , Glioblastoma/metabolismo , Nanopartículas/química , Triterpenos Pentacíclicos , Animais , Antineoplásicos Fitogênicos/química , Antineoplásicos Fitogênicos/farmacologia , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Humanos , Camundongos , Triterpenos Pentacíclicos/química , Triterpenos Pentacíclicos/farmacologia , Receptores de Canabinoides/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto , Ácido Betulínico
16.
Hum Cell ; 35(1): 238-249, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34791597

RESUMO

Ferroptosis, as an new form of non-apoptotic regulated cell death, plays an important role in human cancers. Although it is reported that HSP27 is an novel regulator of ferroptosis in cancer, it remains unknown how HSP27 affects ferroptosis in glioma. In this study, we examined the effect of HSP27 on the ferroptosis of glioblasotma. HSP27 overexpression protects glioblastoma cells from erastin-induced ferroptosis while HSP27 depletion promotes erastin-induced ferroptosis of glioblastoma. Notably, HSP27 phosphorylation is required for the protective function of HSP27 in erastin-induced ferroptosis. Overall, our study reveal novel molecular mechanisms of ferroptosis in glioma and also identify HSP27 as a negative regulator of ferroptosis and a potential target for the treatment of glioma.


Assuntos
Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Ferroptose/genética , Glioblastoma/genética , Glioblastoma/patologia , Proteínas de Choque Térmico HSP27/fisiologia , Neoplasias Encefálicas/terapia , Linhagem Celular Tumoral , Ferroptose/fisiologia , Expressão Gênica/genética , Glioblastoma/terapia , Proteínas de Choque Térmico HSP27/genética , Proteínas de Choque Térmico HSP27/metabolismo , Humanos , Terapia de Alvo Molecular , Fosforilação , Piperazinas
17.
Nano Lett ; 21(19): 8111-8118, 2021 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-34597054

RESUMO

Despite being promising, the clinical application of magnetic hyperthermia for brain cancer treatment is limited by the requirement of highly invasive intracranial injections. To overcome this limitation, here we report the development of gallic acid-coated magnetic nanoclovers (GA-MNCs), which allow not only for noninvasive delivery of magnetic hyperthermia but also for targeted delivery of systemic chemotherapy to brain tumors. GA-MNCs are composed of clover-shaped MNCs in the core, which can induce magnetic heat in high efficiency, and polymerized GA on the shell, which enables tumor vessel-targeting. We demonstrate that intravenous administration of GA-MNCs following alternating magnetic field exposure effectively inhibited brain cancer development and preferentially disrupted tumor vasculature, making it possible to efficiently deliver systemic chemotherapy for further improved efficacy. Due to the noninvasive nature and high efficiency in killing tumor cells and enhancing systemic drug delivery, GA-MNCs have the potential to be translated for improved treatment of brain cancer.


Assuntos
Neoplasias Encefálicas , Hipertermia Induzida , Nanopartículas de Magnetita , Neoplasias Encefálicas/tratamento farmacológico , Linhagem Celular Tumoral , Humanos , Hipertermia , Fenômenos Magnéticos
18.
JCI Insight ; 6(14)2021 07 22.
Artigo em Inglês | MEDLINE | ID: mdl-34128837

RESUMO

The blood-brain barrier (BBB) prevents antibodies from penetrating the CNS and limits conventional antibody-based approaches to brain tumors. We now show that ENT2, a transporter that regulates nucleoside flux at the BBB, may offer an unexpected path to circumventing this barrier to allow targeting of brain tumors with an anti-DNA autoantibody. Deoxymab-1 (DX1) is a DNA-damaging autoantibody that localizes to tumors and is synthetically lethal to cancer cells with defects in the DNA damage response. We found that DX1 penetrated brain endothelial cells and crossed the BBB, and mechanistic studies identify ENT2 as the key transporter. In efficacy studies, DX1 crosses the BBB to suppress orthotopic glioblastoma and breast cancer brain metastases. ENT2-linked transport of autoantibodies across the BBB has potential to be exploited in brain tumor immunotherapy, and its discovery raises hypotheses on actionable mechanisms of CNS penetration by neurotoxic autoantibodies in CNS lupus.


Assuntos
Anticorpos Antinucleares/farmacologia , Autoanticorpos/farmacologia , Neoplasias Encefálicas/tratamento farmacológico , Transportador Equilibrativo 2 de Nucleosídeo/metabolismo , Glioblastoma/tratamento farmacológico , Animais , Anticorpos Antinucleares/uso terapêutico , Autoanticorpos/uso terapêutico , Barreira Hematoencefálica/metabolismo , Neoplasias Encefálicas/patologia , Células CHO , Linhagem Celular , Cricetulus , Células Endoteliais , Transportador Equilibrativo 2 de Nucleosídeo/genética , Técnicas de Silenciamento de Genes , Glioblastoma/patologia , Humanos , Camundongos , Ensaios Antitumorais Modelo de Xenoenxerto
19.
Pathol Res Pract ; 222: 153433, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33862563

RESUMO

Increasing literature reported that circRNAs play vital roles in the occurrence and progression of GBM and regulate GBM cell proliferation, metastases, and chemosensitivity. However, the expression pattern and function of circRNAs in GBM still need further studies. In our work, hsa_circ_0072309 was remarkably downregulated in GBM. Hsa_circ_0072309 inhibits proliferation and invasion of glioblastoma and affects cytoskeletal of GBM cells. Moreover, we found that the function of hsa_circ_0,072,309 in GBM was associated with HSP27, which was reported to be an important regulator of cell proliferation, invasion and cytoskeletal. Our study provides a novel view of hsa_circ_0072309 in GBM cell proliferation and invasion, indicating that hsa_circ_0072309 may act as a potential therapeutic target for GBM comprehensive treatment.


Assuntos
Proliferação de Células/fisiologia , Glioblastoma/metabolismo , Invasividade Neoplásica/genética , RNA Circular/metabolismo , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Linhagem Celular Tumoral , Movimento Celular/fisiologia , Regulação Neoplásica da Expressão Gênica , Glioblastoma/genética , Humanos , MicroRNAs/metabolismo
20.
Front Oncol ; 11: 769033, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35047393

RESUMO

The Fc Fragment of IgG Binding Protein (FCGBP) has been proven to participate in intestinal tumor immunity. However, the biological role of FCGBP has remained unclear in glioma. The differential expression of FCGBP was explored by Oncomine and GEPIA databases. The effect of FCGBP on prognosis was analyzed via Kaplan-Meier plotter and GEPIA. The Tumor Immune Estimation Resource (TIMER) tool was used to determine the correlations of FCGBP expression with tumor immune infiltration. Firstly, FCGBP was highly expressed in glioma and correlated with a worse prognosis. Gene Ontology (GO) and KEGG pathway enrichment analyses revealed that the differentially expressed genes (DEGs) and co-expression genes of FCGBP were mainly involved in the immune response. Furthermore, FCGBP expression was positively associated with multiple immune cells infiltrates as well as the expression levels of multiple immune markers in glioma. FCGBP co-expression networks mostly participated in the regulation of immune response. Finally, immunohistochemistry (IHC) assays were conducted to explore the expression of FCGBP, PD-L1, CCL2 and CD8 in glioma and correlations between them. We found that PDL1 and FCGBP were synchronously upregulated in glioma tissues. These findings revealed a new mechanism by which FCGBP participates in the immune tolerance of glioma, and implied the potential of FCGBP as a therapeutic target or predictive marker for patients.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA