Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(5)2024 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-38473912

RESUMO

Bulbophyllum is one of the largest genera and presents some of the most intricate taxonomic problems in the family Orchidaceae, including species of ornamental and medical importance. The lack of knowledge regarding the characterization of Bulbophyllum chloroplast (cp) genomes has imposed current limitations on our study. Here, we report the complete cp genomes of seven Bulbophyllum species, including B. ambrosia, B. crassipes, B. farreri, B. hamatum, B. shanicum, B. triste, and B. violaceolabellum, and compared with related taxa to provide a better understanding of their genomic information on taxonomy and phylogeny. A total of 28 Bulbophyllum cp genomes exhibit typical quadripartite structures with lengths ranging from 145,092 bp to 165,812 bp and a GC content of 36.60% to 38.04%. Each genome contained 125-132 genes, encompassing 74-86 protein-coding genes, 38 tRNA genes, and eight rRNA genes. The genome arrangements, gene contents, and length were similar, with differences observed in ndh gene composition. It is worth noting that there were exogenous fragment insertions in the IR regions of B. crassipes. A total of 18-49 long repeats and 38-80 simple sequence repeats (SSRs) were detected and the single nucleotide (A/T) was dominant in Bulbophyllum cp genomes, with an obvious A/T preference. An analysis of relative synonymous codon usage (RSCU) revealed that leucine (Leu) was the most frequently used codon, while cysteine (Cys) was the least used. Six highly variable regions (rpl32-trnLUAG > trnTUGU-trnLUAA > trnFGAA-ndhJ > rps15-ycf1 > rbcL-accD > psbI-trnSGCU) and five coding sequences (ycf1 > rps12 > matK > psbK > rps15) were identified as potential DNA markers based on nucleotide diversity. Additionally, 31,641 molecular diagnostic characters (MDCs) were identified in complete cp genomes. A phylogenetic analysis based on the complete cp genome sequences and 68 protein-coding genes strongly supported that 28 Bulbophyllum species can be divided into four branches, sects. Brachyantha, Cirrhopetalum, and Leopardinae, defined by morphology, were non-monophyly. Our results enriched the genetic resources of Bulbophyllum, providing valuable information to illustrate the complicated taxonomy, phylogeny, and evolution process of the genus.


Assuntos
Genoma de Cloroplastos , Orchidaceae , Filogenia , Orchidaceae/genética , Evolução Molecular , Nucleotídeos
2.
Molecules ; 27(15)2022 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-35956759

RESUMO

Medicinal and food homologous adlay (Coix lachryma-jobi L. var. ma-yuen Stapf) plays an important role in natural products promoting human health. We demonstrated the systematic actional mechanism of functional ingredients in adlay to promote human health, based on the PubMed, CNKI, Google, and ISI Web of Science databases from 1988 to 2022. Adlay and its extracts are rich in 30 ingredients with more than 20 health effects based on human and animal or cell cultures: they are anti-cancer, anti-inflammation, anti-obesity, liver protective, anti-virus, gastroprotective, cardiovascular protective, anti-hypertension, heart disease preventive, melanogenesis inhibiting, anti-allergy, endocrine regulating, anti-diabetes, anti-cachexia, osteoporosis preventive, analgesic, neuroprotecting, suitable for the treatment of gout arthritis, life extending, anti-fungi, and detoxifying effects. Function components with anti-oxidants are rich in adlay. These results support the notion that adlay seeds may be one of the best functional foods and further reveal the action mechanism of six major functional ingredients (oils, polysaccharides, phenols, phytosterols, coixol, and resistant starch) for combating diseases. This review paper not only reveals the action mechanisms of adding adlay to the diet to overcome 17 human diseases, but also provides a scientific basis for the development of functional foods and drugs for the treatment of human diseases.


Assuntos
Antialérgicos , Coix , Animais , Alimento Funcional , Humanos , Fenóis , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico
3.
Cells ; 11(2)2022 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-35053368

RESUMO

Fluctuating light is a typical light condition in nature and can cause selective photodamage to photosystem I (PSI). The sensitivity of PSI to fluctuating light is influenced by the amplitude of low/high light intensity. Tobacco mature leaves are tended to be horizontal to maximize the light absorption and photosynthesis, but young leaves are usually vertical to diminish the light absorption. Therefore, we tested the hypothesis that such regulation of the leaf angle in young leaves might protect PSI against photoinhibition under fluctuating light. We found that, upon a sudden increase in illumination, PSI was over-reduced in extreme young leaves but was oxidized in mature leaves. After fluctuating light treatment, such PSI over-reduction aggravated PSI photoinhibition in young leaves. Furthermore, the leaf angle was tightly correlated to the extent of PSI photoinhibition induced by fluctuating light. Therefore, vertical young leaves are more susceptible to PSI photoinhibition than horizontal mature leaves when exposed to the same fluctuating light. In young leaves, the vertical leaf angle decreased the light absorption and thus lowered the amplitude of low/high light intensity. Therefore, the regulation of the leaf angle was found for the first time as an important strategy used by young leaves to protect PSI against photoinhibition under fluctuating light. To our knowledge, we show here new insight into the photoprotection for PSI under fluctuating light in nature.


Assuntos
Luz , Nicotiana/anatomia & histologia , Nicotiana/efeitos da radiação , Complexo de Proteína do Fotossistema I/metabolismo , Folhas de Planta/anatomia & histologia , Folhas de Planta/efeitos da radiação , Transporte de Elétrons/efeitos da radiação , Fotossíntese/efeitos da radiação
4.
Ann Bot ; 126(2): 261-275, 2020 07 24.
Artigo em Inglês | MEDLINE | ID: mdl-32318689

RESUMO

BACKGROUND AND AIMS: Development of the velamen radicum on the outer surface of the root epidermis is an important characteristic for water uptake and retention in some plant families, particularly epiphytic orchids, for survival under water-limited environments. Velamen radicum cells derive from the primary root meristem; however, following this development, velamen radicum cells die by incompletely understood processes of programmed cell death (PCD). METHODS: We combined the use of transmission electron microscopy, X-ray micro-tomography and transcriptome methods to characterize the major anatomical and molecular changes that occur during the development and death of velamen radicum cells of Cymbidium tracyanum, a typical epiphytic orchid, to determine how PCD occurs. KEY RESULTS: Typical changes of PCD in anatomy and gene expression were observed in the development of velamen radicum cells. During the initiation of PCD, we found that both cell and vacuole size increased, and several genes involved in brassinosteroid and ethylene pathways were upregulated. In the stage of secondary cell wall formation, significant anatomical changes included DNA degradation, cytoplasm thinning, organelle decrease, vacuole rupture and cell wall thickening. Changes were found in the expression of genes related to the biosynthesis of cellulose and lignin, which are instrumental in the formation of secondary cell walls, and are regulated by cytoskeleton-related factors and phenylalanine ammonia-lyase. In the final stage of PCD, cell autolysis was terminated from the outside to the inside of the velamen radicum. The regulation of genes related to autophagy, vacuolar processing enzyme, cysteine proteases and metacaspase was involved in the final execution of cell death and autolysis. CONCLUSIONS: Our results showed that the development of the root velamen radicum in an epiphytic orchid was controlled by the process of PCD, which included initiation of PCD, followed by formation of the secondary cell wall, and execution of autolysis following cell death.


Assuntos
Orchidaceae , Apoptose , Parede Celular , Vacúolos , Água
5.
Plant Sci ; 292: 110371, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32005377

RESUMO

Moderate heat stress is usually accompanied with fluctuating light in summer. Although either heat stress or fluctuating light can cause photoinhibition of photosystems I and II (PSI and PSII), it is unclear whether moderate heat stress accelerate photoinhibition under fluctuating light. Here, we measured chlorophyll fluorescence, P700 redox state and the electrochromic shift signal under fluctuating light at 25 °C and 42 °C for tobacco leaves. We found that (1) the thylakoid proton conductance was significantly enhanced at 42 °C, leading to a decline in trans-thylakoid proton gradient (ΔpH); (2) this low ΔpH at 42 °C did not decrease donor-side limitation of PSI and thermal energy dissipation in PSII; (3) the activation of cyclic electron flow (CEF) around PSI was elevated at 42 °C; and (4) the moderate heat stress did not accelerate photoinhibition of PSI and PSII under fluctuating light. These results strongly indicate that under moderate heat stress the stimulation of CEF protects PSI under fluctuating light in tobacco leaves.


Assuntos
Resposta ao Choque Térmico , Luz , Nicotiana/metabolismo , Complexo de Proteína do Fotossistema I/metabolismo , Complexo de Proteína do Fotossistema II/metabolismo , Folhas de Planta/metabolismo , Folhas de Planta/efeitos da radiação , Nicotiana/efeitos da radiação
6.
Genes Genomics ; 42(4): 467-475, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32088853

RESUMO

BACKGROUND: Bladder cancer is the 10th common cancer worldwide. Osteopontin has been found to enhance cell proliferation, metastasis and invasion in various human tumors. OBJECTIVE: To investigate the roles of osteopontin in bladder cancer. METHODS: The RNA interference and overexpression of osteopontin were performed in bladder cancer cell lines (T24 and SCaBER). Cell proliferation and apoptosis were measured using CCK-8 assay and flow cytometry, respectively. Cell invasion was determined using transwell assay. RESULTS: Osteopontin was highly expressed in bladder cancer tissues in comparison with the adjacent normal tissues. Its high expression significantly correlated with high histologic grade, high TNM stage (III and IV) and poor prognosis. For T24 cells with osteopontin interference and SCaBER cells with osteopontin overexpression, cell proliferation was significantly inhibited (3.58-fold vs. 5.62-fold) and enhanced (7.81-fold vs. 5.29-fold), respectively. The apoptosis portion of T24 cells significantly increased from 4.48 to 10.75%, and that of SCaBER cells significantly declined from 7.33 to 4.01%. The invaded T24 and SCaBER cells significantly decreased to 52.0% and increased to 2.0-fold, respectively. Osteopontin overexpression enhanced the expression (1.54-fold and 2.39-fold; 2.33-fold and 2.05-fold) and activation (1.80-fold and 1.96-fold; 2.00-fold and 2.59-fold) of JAK1 and STAT1 in two cell lines of bladder cancer. CONCLUSION: Osteopontin might enhance proliferation, inhibit apoptosis and accelerate invasion and thus promote the development and metastasis of bladder cancer, and osteopontin's functions might be mediated by activating JAK1/STAT1 signaling pathway.


Assuntos
Osteopontina/metabolismo , Transdução de Sinais , Neoplasias da Bexiga Urinária/metabolismo , Apoptose , Linhagem Celular Tumoral , Proliferação de Células , Humanos , Janus Quinase 1/metabolismo , Osteopontina/genética , Fator de Transcrição STAT1/metabolismo , Regulação para Cima , Neoplasias da Bexiga Urinária/genética
7.
Biochim Biophys Acta Bioenerg ; 1861(2): 148135, 2020 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-31821793

RESUMO

In forests, understory plants are usually exposed to sunflecks on timescales of seconds or minutes. However, it is unclear how understory plants acclimate to fluctuating light. In this study, we compared chlorophyll fluorescence, PSI redox state and the electrochromic shift signal under fluctuating light between an understory plant Paris polyphylla (Liliaceae) and a light-demanding plant Bletilla striata (Orchidaceae). Within the first seconds after transition from low to high light, PSI was highly oxidized in P. polyphylla but was highly reduced in B. striata, although both species could not generate a sufficient trans-thylakoid proton gradient (ΔpH). Furthermore, the outflow of electrons from PSI to O2 was not significant in P. polyphylla, as indicated by the P700 redox kinetics upon dark-to-light transition. Therefore, the different responses of PSI to fluctuating light between P. polyphylla and B. striata could not be explained by ΔpH formation or alternative electron transport. In contrast, upon a sudden transition from low to high light, electron flow from PSII was much lower in P. polyphylla than in B. striata, suggesting that the rapid oxidation of PSI in P. polyphylla was largely attributed to the lower PSII activity. We propose, for the first time, that down-regulation of PSII activity is an important strategy used by some understory angiosperms to cope with sunflecks.


Assuntos
Luz , Melanthiaceae/enzimologia , Complexo de Proteína do Fotossistema II/metabolismo , Força Próton-Motriz/fisiologia , Tilacoides/enzimologia , Transporte de Elétrons/fisiologia , Orchidaceae/enzimologia , Oxigênio/metabolismo
8.
FEBS Open Bio ; 9(5): 851-858, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30980513

RESUMO

Altered expression of long non-coding RNAs (lncRNAs) has been reported in many malignancies, including prostate cancer. However, the role of lncRNA MNX1-AS1 in prostate cancer has not been reported. Here, we report that MNX1-AS1 is expressed in prostate cancer tissues and cells and that siRNA-mediated knockdown of MNX1-AS1 inhibits proliferation, migration, and invasion of prostate cancer DU145 and PC3 cells. In addition, down-regulation of MNX1-AS1 decreased expression of proliferating cell nuclear antigen, PH-3, N-cadherin, and vimentin, but enhanced expression of E-cadherin. In conclusion, this is the first report that knockdown of MNX1-AS1 suppresses prostate cancer cell proliferation, migration, and invasion. We believe that MNX1-AS1 may be a potential new therapeutic target for prostate cancer patients.


Assuntos
Movimento Celular/genética , Proliferação de Células/genética , Regulação Neoplásica da Expressão Gênica/genética , Proteínas de Homeodomínio/genética , Invasividade Neoplásica/genética , Neoplasias da Próstata/genética , Fatores de Transcrição/genética , Regulação para Baixo , Técnicas de Silenciamento de Genes , Proteínas de Homeodomínio/metabolismo , Humanos , Masculino , Células PC-3 , Fatores de Transcrição/metabolismo
9.
Front Plant Sci ; 9: 1648, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30487806

RESUMO

Chloroplastic ATP synthase plays a significant role in the regulation of proton motive force (pmf) and proton gradient (ΔpH) across the thylakoid membranes. However, the regulation of chloroplastic ATP synthase at chilling temperature and its role in photoprotection are little known. In our present study, we examined the chlorophyll fluorescence, P700 signal, and electrochromic shift signal at 25°C, and 6°C in tobacco (Nicotiana tabacum L. cv. Samsun). Although photosynthetic electron flow through both PSI and PSII were severely inhibited at 6°C, non-photochemical quenching and P700 oxidation ratio were largely increased. During the photosynthetic induction under high light, the formation of pmf at 6°C was similar to that at 25°C. However, the ΔpH was significantly higher at 6°C, owing to the decreased activity of chloroplastic ATP synthase (g H +). During illumination at 6°C and high light, a high ΔpH made PSI to be highly oxidized, preventing PSI from photoinhibition. These results indicate that the down-regulation of g H + is critical to the buildup of ΔpH at low temperature, adjusting the redox state of PSI, and thus preventing photodamage to PSI. Our findings highlight the importance of chloroplastic ATP synthase in photoprotection at chilling temperature.

10.
Photosynth Res ; 138(2): 207-218, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30056561

RESUMO

In chloroplast, proton motive force (pmf) is critical for ATP synthesis and photoprotection. To prevent photoinhibition of photosynthetic apparatus, proton gradient (ΔpH) across the thylakoid membranes needs to be built up to minimize the production of reactive oxygen species (ROS) in thylakoid membranes. However, the regulation of thylakoid pmf in immature leaves is little known. In this study, we compared photosynthetic electron sinks, P700 redox state, non-photochemical quenching (NPQ), and electrochromic shift (ECS) signal in immature and mature leaves of a cultivar of Camellia. The immature leaves displayed lower linear electron flow and cyclic electron flow, but higher levels of NPQ and P700 oxidation ratio under high light. Meanwhile, we found that pmf and ΔpH were higher in the immature leaves. Furthermore, the immature leaves showed significantly lower thylakoid proton conductivity than mature leaves. These results strongly indicated that immature leaves can build up enough ΔpH by modulating proton efflux from the lumenal side to the stromal side of thylakoid membranes, which is essential to prevent photoinhibition via thermal energy dissipation and photosynthetic control of electron transfer. This study highlights that the activity of chloroplast ATP synthase is a key safety valve for photoprotection in immature leaves.


Assuntos
Camellia/fisiologia , Folhas de Planta , Força Próton-Motriz/fisiologia , Tilacoides , Camellia/classificação , Clorofila/fisiologia , Fluorescência , Fenótipo , Fotossíntese/fisiologia , Complexo de Proteína do Fotossistema I/fisiologia , Complexo de Proteína do Fotossistema II/fisiologia , Folhas de Planta/fisiologia , Transpiração Vegetal , ATPases Translocadoras de Prótons/fisiologia , Tilacoides/fisiologia
11.
Mol Med Rep ; 18(1): 202-208, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29749452

RESUMO

Prostate cancer gene expression marker 1 (PCGEM1) is a prostate­specific gene overexpressed in prostate cancer cells that promotes cell proliferation. To study the molecular mechanism of PCGEM1 function in hormone­refractory prostate cancer, the interaction between myocyte enhancer factor 2 (MEF2) and PCGEM1 was assessed by a luciferase reporter assay and chromatin immunoprecipitation (ChIP) assay. In addition, the underlying mechanism of PCGEM1 regulating expression of microRNA (miR)­148a in PC3 prostate cancer cells was evaluated. Relative expression levels were measured by reverse transcription­quantitative polymerase chain reaction, and early apoptosis was measured by flow cytometry. PCGEM1 was demonstrated to be overexpressed in prostate cancer tissues compared with noncancerous tissues. Expression levels of PCGEM1 in PC3 cancer cells were demonstrated to be regulated by MEF2, as PCGME1 mRNA was increased by MEF2 overexpression but decreased by MEF2 silencing. MEF2 was also demonstrated to enhance the activity of PCGEM1 promoter and thus promote PCGEM1 transcription. In addition, downregulation of PCGEM1 expression in PC3 cells increased expression of miR­148a. By contrast, overexpression of PCGEM1 decreased miR­148a expression. Finally, PCGME1 silencing by small interfering RNA significantly induced early cell apoptosis but this effect was reduced by a miR­148a inhibitor. In conclusion, the present study demonstrated a positive regulatory association between MEF2 and PCGEM1, and a reciprocal negative regulatory association between PCGEM1 and miR­148a that controls cell apoptosis. The present study, therefore, provides new insights into the mechanism of PCGEM1 function in prostate cancer development.


Assuntos
Proliferação de Células , Regulação para Baixo , Regulação Neoplásica da Expressão Gênica , Fatores de Transcrição MEF2/metabolismo , MicroRNAs/biossíntese , Proteínas de Neoplasias/metabolismo , Neoplasias da Próstata/metabolismo , RNA Longo não Codificante/metabolismo , RNA Neoplásico/metabolismo , Inativação Gênica , Humanos , Fatores de Transcrição MEF2/genética , Masculino , MicroRNAs/genética , Proteínas de Neoplasias/genética , Neoplasias da Próstata/genética , RNA Longo não Codificante/genética , RNA Neoplásico/genética
12.
Asian J Androl ; 19(1): 15-19, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-26732101

RESUMO

To evaluate the safety and efficacy of plasmakinetic enucleation of the prostate (PKEP) for the treatment of symptomatic benign prostatic hyperplasia (BPH) compared with 160-W lithium triboride laser photoselective vaporization of the prostate (PVP). From February 2011 to July 2012, a prospective nonrandomized study was performed. One-hundred one patients underwent PKEP, and 110 underwent PVP. No severe intraoperative complications were recorded, and none of the patients in either group required a blood transfusion. Shorter catheterization time (38.14 ± 23.64 h vs 72.54 ± 28.38 h, P< 0.001) and hospitalization (2.32 ± 1.25 days vs 4.07 ± 1.23 days, P< 0.001) were recorded in the PVP group. At 12-month postoperatively, the PKEP group had a maintained and statistically improvement in International Prostate Symptom Score (IPSS) (4.07 ± 2.07 vs 5.00 ± 2.10; P< 0.001), quality of life (QoL) (1.08 ± 0.72 vs 1.35 ± 0.72; P= 0.007), maximal urinary flow rate (Qmax) (24.75 ± 5.87 ml s-1 vs 22.03 ± 5.04 ml s-1 ; P< 0.001), postvoid residual urine volume (PVR) (14.29 ± 6.97 ml vs 17.00 ± 6.11 ml; P= 0.001), and prostate-specific antigen (PSA) value (0.78 ± 0.57 ng ml-1 vs 1.27 ± 1.07 ng ml-1 ; P< 0.001). Both PKEP and PVP relieve low urinary tract symptoms (LUTS) due to BPH with low complication rates. PKEP can completely remove prostatic adenoma while the total amount of tissue removed by PVP is less than that can be removed by PKEP. Based on our study of the follow-up, PKEP provides better postoperative outcomes than PVP.


Assuntos
Eletrocirurgia/métodos , Terapia a Laser/métodos , Sintomas do Trato Urinário Inferior/cirurgia , Hiperplasia Prostática/cirurgia , Ressecção Transuretral da Próstata/métodos , Idoso , Humanos , Calicreínas/sangue , Tempo de Internação , Sintomas do Trato Urinário Inferior/etiologia , Masculino , Pessoa de Meia-Idade , Complicações Pós-Operatórias/epidemiologia , Antígeno Prostático Específico/sangue , Hiperplasia Prostática/sangue , Hiperplasia Prostática/complicações , Qualidade de Vida , Resultado do Tratamento
13.
Front Plant Sci ; 7: 182, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26941755

RESUMO

It has been indicated that photosystem I (PSI) is susceptible to chilling-light stress in tobacco leaves, but the effect of growth light intensity on chilling-induced PSI photoinhibition in tobacco is unclear. We examined the effects of chilling temperature (4°C) associated with moderate light intensity (300 µmol photons m(-2) s(-1)) on the activities of PSI and photosystem II (PSII) in leaves from sun- and shade-grown plants of tobacco (Nicotiana tabacum cv. k326). The sun leaves had a higher activity of alternative electron flow than the shade leaves. After 4 h chilling treatment, the sun leaves showed significantly a higher PSI photoinhibition than the shade leaves. At chilling temperature the sun leaves showed a greater electron flow from PSII to PSI, accompanying with a lower P700 oxidation ratio. When leaves were pre-treated with lincomycin, PSII activity decreased by 42% (sun leaves) and 47% (shade leaves) after 2 h exposure to the chilling-light stress, but PSI activity remained stable during the chilling-light treatment, because the electron flow from PSII to PSI was remarkably depressed. These results indicated that the stronger chilling-induced PSI photoinhibition in the sun leaves was resulted from a greater electron flow from PSII to PSI. Furthermore, moderate PSII photoinhibition depressed electron flow to PSI and then protected PSI activity against further photodamage in chilled tobacco leaves.

14.
J Photochem Photobiol B ; 157: 97-104, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26896885

RESUMO

Photosynthetic electron transport produces ATP and NADPH, which are used by the primary metabolism. The production and consumption of ATP and NADPH must be balanced to maintain steady-state rates of CO2 assimilation and photorespiration. It has been indicated that the water-water cycle (WWC) is indispensable for driving photosynthesis via increasing ATP/NADPH production. However, the relationship between the WWC and photorespiration is little known. We tested the hypothesis that the WWC responds to change in photorespiration by balancing ATP/NADPH ratio. Measurements of gas exchange and chlorophyll fluorescence were conducted in tobacco plants supplied with high (HN-plants) or low nitrogen concentration (LN-plants). The WWC was activated under high light but not low light in both HN-plants and LN-plants. HN-plants had significantly higher capacities of the WWC and photorespiration than LN-plants. Under high light, the relative high WWC activation in HN-plants was accompanied with relative low levels of NPQ compared LN-plants, suggesting that the main role of the WWC under high light was to favor ATP synthesis but not to activate NPQ. Interestingly, the activation of WWC was positively correlated to the electron flow devoted to RuBP oxygenation, indicating that the WWC plays an important role in energy balancing when photorespiration is high. We conclude that the WWC is an important flexible mechanism to optimize the stoichiometry of the ATP/NADPH ratio responding to change in photorespiration. Furthermore, HN-plants enhance the WWC activity to maintain higher rates of CO2 assimilation and photorespiration.


Assuntos
Nicotiana/fisiologia , Água , Fotossíntese
15.
Front Plant Sci ; 6: 923, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26579169

RESUMO

In higher plants, the generation of proton gradient across the thylakoid membrane (ΔpH) through cyclic electron flow (CEF) has mainly two functions: (1) to generate ATP and balance the ATP/NADPH energy budget, and (2) to protect photosystems I and II against photoinhibition. The intensity of light under which plants are grown alters both CEF activity and the ATP/NADPH demand for primary metabolic processes. However, it is unclear how the role of CEF is affected by the level of irradiance that is applied during the growth and measurement periods. We studied the role of CEF at different light intensities in leaves from sun- and shade-grown plants. At 849 µmol photons m(-2) s(-1), both types of leaves had nearly the same degree of CEF activation. Modeling of the ATP/NADPH demand revealed that, at this light intensity, the contribution of CEF toward supplying ATP was much higher in the sun leaves. Meanwhile, the shade leaves showed higher levels of non-photochemical quenching and the P700 oxidation ratio. Therefore, at 849 µmol photons m(-2) s(-1), CEF mainly helped in the synthesis of ATP in the sun leaves, but functioned in photoprotection for the shade leaves. When the light intensity increased to 1976 µmol photons m(-2) s(-1), CEF activation was greatly enhanced in the sun leaves, but its contribution to supplying ATP changed slightly. These results indicate that the main role of CEF is altered flexibly in response to light intensity. In particular, CEF mainly contributes to balancing the ATP/NADPH energy budget under sub-saturating light intensities. When exposed to saturating light intensities, CEF mainly protects photosynthetic apparatus against photoinhibition.

16.
Front Plant Sci ; 6: 621, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26322062

RESUMO

Plants usually experience dynamic fluctuations of light intensities under natural conditions. However, the responses of mesophyll conductance, CO2 assimilation, and photorespiration to light fluctuation are not well understood. To address this question, we measured photosynthetic parameters of gas exchange and chlorophyll fluorescence in tobacco leaves at 2-min intervals while irradiance levels alternated between 100 and 1200 µmol photons m(-2) s(-1). Compared with leaves exposed to a constant light of 1200 µmol photons m(-2) s(-1), both stomatal and mesophyll conductances were significantly restricted in leaves treated with fluctuating light condition. Meanwhile, CO2 assimilation rate and electron flow devoted to RuBP carboxylation at 1200 µmol photons m(-2) s(-1) under fluctuating light were limited by the low chloroplast CO2 concentration. Analysis based on the C3 photosynthesis model indicated that, at 1200 µmol photons m(-2) s(-1) under fluctuating light, the CO2 assimilation rate was limited by RuBP carboxylation. Electron flow devoted to RuBP oxygenation at 1200 µmol photons m(-2) s(-1) under fluctuating light remained at nearly the maximum level throughout the experimental period. We conclude that fluctuating light restricts CO2 assimilation by decreasing both stomatal and mesophyll conductances. Under such conditions, photorespiration plays an important role in the regulation of photosynthetic electron flow.

17.
Oncol Rep ; 34(2): 567-76, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26058425

RESUMO

The aim of the present study was to develop a novel method for identifying pathways associated with renal cell carcinoma (RCC) based on a gene co-expression network. A framework was established where a co-expression network was derived from the database as well as various co-expression approaches. First, the backbone of the network based on differentially expressed (DE) genes between RCC patients and normal controls was constructed by the Search Tool for the Retrieval of Interacting Genes/Proteins (STRING) database. The differentially co-expressed links were detected by Pearson's correlation, the empirical Bayesian (EB) approach and Weighted Gene Co-expression Network Analysis (WGCNA). The co-expressed gene pairs were merged by a rank-based algorithm. We obtained 842; 371; 2,883 and 1,595 co-expressed gene pairs from the co-expression networks of the STRING database, Pearson's correlation EB method and WGCNA, respectively. Two hundred and eighty-one differentially co-expressed (DC) gene pairs were obtained from the merged network using this novel method. Pathway enrichment analysis based on the Kyoto Encyclopedia of Genes and Genomes (KEGG) database and the network enrichment analysis (NEA) method were performed to verify feasibility of the merged method. Results of the KEGG and NEA pathway analyses showed that the network was associated with RCC. The suggested method was computationally efficient to identify pathways associated with RCC and has been identified as a useful complement to traditional co-expression analysis.


Assuntos
Carcinoma de Células Renais/genética , Redes Reguladoras de Genes , Estudos de Associação Genética/métodos , Neoplasias Renais/genética , Teorema de Bayes , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Predisposição Genética para Doença , Humanos , Análise de Sequência com Séries de Oligonucleotídeos
18.
Front Plant Sci ; 5: 688, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25520735

RESUMO

The greater rate of CO2 assimilation (A n) in sun-grown tobacco leaves leads to lower intercellular and chloroplast CO2 concentrations and, thus, a higher rate of oxygenation of ribulose-1,5-bisphosphate (RuBP) than in shade-grown leaves. Impairment of the photorespiratory pathway suppresses photosynthetic CO2 assimilation. Here, we hypothesized that sun leaves can up-regulate photorespiratory pathway to enhance the A n in tobacco. To test this hypothesis, we examined the responses of photosynthetic electron flow (J T) and CO2 assimilation to incident light intensity and intercellular CO2 concentration (C i) in leaves of 'k326' tobacco plants grown at 95% sunlight (sun plants) or 28% sunlight (shade plants). The sun leaves had higher photosynthetic capacity and electron flow devoted to RuBP carboxylation (J C) than the shade leaves. When exposed to high light, the higher Rubisco (ribulose-1,5-bisphosphate carboxylase/oxygenase) content and lower C i in the sun leaves led to greater electron flow devoted to RuBP oxygenation (J O). The J O/J C ratio was significantly higher in the sun leaves than in the shade leaves under strong illumination. As estimated from CO2-response curves, the maximum J O was linearly correlated with the estimated Rubisco content. Based on light-response curves, the light-saturated J O was linearly correlated with light-saturated J T and light-saturated photosynthesis. These findings indicate that enhancement of the photorespiratory pathway is an important strategy by which sun plants maintain a high A n.

19.
Planta ; 240(3): 489-96, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24915747

RESUMO

MAIN CONCLUSION: Modifications in leaf anatomy of tobacco plants induced greater leaf water transport capacity, meeting greater transpirational demands and acclimating to warmer temperatures with a higher vapor pressure deficit. Temperature is one of the most important environmental factors affecting photosynthesis and growth of plants. However, it is not clear how it may alter leaf hydraulic architecture. We grew plants of tobacco (Nicotiana tabacum) 'k326' in separate glasshouse rooms set to different day/night temperature conditions: low (LT 24/18 °C), medium (MT 28/22 °C), or high (HT 32/26 °C). After 40 days of such treatment, their leaf anatomies, leaf hydraulics, photosynthetic rates, and instantaneous water-use efficiency (WUEi) were measured. Compared with those under LT, plants exposed to HT or MT conditions had significantly higher values for minor vein density (MVD), stomatal density (SD), leaf area, leaf hydraulic conductance (K leaf), and light-saturated photosynthetic rate (A sat), but lower values for leaf water potential (ψ l) and WUEi. However, those parameters did not differ significantly between HT and MT conditions. Correlation analyses demonstrated that SD and K leaf increased in parallel with MVD. Moreover, greater SD and K leaf were partially associated with accelerated stomatal conductance. And then stomatal conductance was positively correlated with A sat. Therefore, under well-watered, fertilized conditions, when relative humidity was optimal, changes in leaf anatomy seemed to facilitate the hydraulic acclimation to higher temperatures, meeting greater transpirational demands and contributing to the maintenance of great photosynthetic rates. Because transpiration rate increased more with temperature than photosynthetic rate, WUEi reduced under warmer temperatures. Our results indicate that the modifications of leaf hydraulic architecture are important anatomical and physiological strategies for tobacco plants acclimating to warmer temperatures under a higher vapor pressure deficit.


Assuntos
Aclimatação , Nicotiana/anatomia & histologia , Folhas de Planta/anatomia & histologia , Transpiração Vegetal , Água/fisiologia , Temperatura Alta , Fotossíntese , Folhas de Planta/fisiologia , Nicotiana/fisiologia
20.
Physiol Plant ; 149(1): 141-50, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23480306

RESUMO

Photorespiration has been indicated as an important mechanism for maintaining CO2 assimilation and alleviating photodamage under conditions of high light and low CO2 . We tested the hypothesis that plants grown under a high temperature had greater electron flow for photorespiration compared with those grown under a relative low temperature. Responses of photosynthetic electron flow and CO2 assimilation to incident light intensity and intercellular CO2 concentration were examined in leaves of tobacco cultivar 'k326'. Plants were cultivated at three sites with different ambient temperatures (Zhengzhou, Zunyi and Jiangchuan). Under high light, plants grown in Zhengzhou (with the highest growth temperature in the three sites) showed higher effective quantum yield of photosystem II and total electron flow through photosystem II than that in Zunyi and Jiangchuan. However, regardless of light intensity and intercellular CO2 status, there were no significant differences among sites in the photosynthetic CO2 assimilation rate or electron flow devoted to the carboxylation of ribulose-1,5-bisphosphate (RuBP). As a result, plants grown at high temperature showed higher electron flow devoted to oxygenation of RuBP than plants grown at low temperature. These results suggested that enhancement of electron flow for photorespiration is an important strategy in tobacco for acclimating to high growth temperature.


Assuntos
Nicotiana/crescimento & desenvolvimento , Nicotiana/metabolismo , Folhas de Planta/fisiologia , Aclimatação , Dióxido de Carbono/metabolismo , Transporte de Elétrons/fisiologia , Luz , Fotossíntese/fisiologia , Complexo de Proteína do Fotossistema II/metabolismo , Ribulosefosfatos/metabolismo , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA