Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
1.
Mol Med ; 30(1): 61, 2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38760717

RESUMO

BACKGROUND: Triple negative breast cancer (TNBC) is a heterogeneous and aggressive disease characterized by a high risk of mortality and poor prognosis. It has been reported that Laminin γ2 (LAMC2) is highly expressed in a variety of tumors, and its high expression is correlated with cancer development and progression. However, the function and mechanism by which LAMC2 influences TNBC remain unclear. METHODS: Kaplan-Meier survival analysis and Immunohistochemical (IHC) staining were used to examine the expression level of LAMC2 in TNBC. Subsequently, cell viability assay, wound healing and transwell assay were performed to detect the function of LAMC2 in cell proliferation and migration. A xenograft mouse model was used to assess tumorigenic function of LAMC2 in vivo. Luciferase reporter assay and western blot were performed to unravel the underlying mechanism. RESULTS: In this study, we found that higher expression of LAMC2 significantly correlated with poor survival in the TNBC cohort. Functional characterization showed that LAMC2 promoted cell proliferation and migration capacity of TNBC cell lines via up-regulating CD44. Moreover, LAMC2 exerted oncogenic roles in TNBC through modulating the expression of epithelial-mesenchymal transition (EMT) markers. Luciferase reporter assay verified that LAMC2 targeted ZEB1 to promote its transcription. Interestingly, LAMC2 regulated cell migration in TNBC via STAT3 signaling pathway. CONCLUSION: LAMC2 targeted ZEB1 via activating CD44/STAT3 signaling pathway to promote TNBC proliferation and migration, suggesting that LAMC2 could be a potential therapeutic target in TNBC patients.


Assuntos
Proliferação de Células , Regulação Neoplásica da Expressão Gênica , Receptores de Hialuronatos , Laminina , Fator de Transcrição STAT3 , Transdução de Sinais , Neoplasias de Mama Triplo Negativas , Homeobox 1 de Ligação a E-box em Dedo de Zinco , Humanos , Fator de Transcrição STAT3/metabolismo , Fator de Transcrição STAT3/genética , Animais , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/metabolismo , Neoplasias de Mama Triplo Negativas/patologia , Neoplasias de Mama Triplo Negativas/mortalidade , Linhagem Celular Tumoral , Feminino , Receptores de Hialuronatos/metabolismo , Receptores de Hialuronatos/genética , Homeobox 1 de Ligação a E-box em Dedo de Zinco/metabolismo , Homeobox 1 de Ligação a E-box em Dedo de Zinco/genética , Laminina/metabolismo , Laminina/genética , Camundongos , Transição Epitelial-Mesenquimal/genética , Movimento Celular/genética , Pessoa de Meia-Idade , Biomarcadores Tumorais/metabolismo , Biomarcadores Tumorais/genética
2.
Adv Sci (Weinh) ; 11(15): e2306623, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38342622

RESUMO

Hepatocellular carcinoma (HCC) is the third leading cause of cancer-related death worldwide. Functionally uncharacterized genes are an attractive repository to explore candidate oncogenes. It is demonstrated that C21orf58 displays an oncogenic role in promoting cell growth, tumorigenesis and sorafenib resistance of HCC cells by abnormal activation of STAT3 signaling. Mechanistically, a novel manner to regulate STAT3 signaling that adaptor C21orf58 forms a ternary complex is reveal with N-terminal domain of STAT3 and SH2 domain of JAK2, by which C21orf58 overactivates wild-type STAT3 by facilitating its phosphorylation mediated by JAK2, and hyper-activates of constitutively mutated STAT3 due to preferred binding with C21orf58 and JAK2. Moreover, it is validated that inhibition of C21orf58 with drug alminoprofen, selected by virtual screening, could effectively repress the viability and tumorigenesis of HCC cells. Therefore, it is identified that C21orf58 functions as an oncogenic adaptor, reveal a novel regulatory mechanism of JAK2/STAT3 signaling, explain the cause of abnormal activity of activated mutants of STAT3, and explore the attractive therapeutic potential by targeting C21orf58 in HCC.


Assuntos
Antineoplásicos , Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Apoptose , Carcinogênese , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Linhagem Celular Tumoral , Janus Quinase 2/genética , Janus Quinase 2/metabolismo , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Fator de Transcrição STAT3/genética , Fator de Transcrição STAT3/metabolismo
3.
Gene ; 908: 148304, 2024 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-38387708

RESUMO

Hereditary cancer syndromes result from the presence of inherited pathogenic variants within susceptibility genes. However, the susceptibility genes associated with hereditary cancer syndrome remain predominantly unidentified. Here, we reported a case of hereditary cancer syndrome observed in a Chinese family harboring a germline mutation in Tensin1 (TNS1). We described a 59-year-old female patient presented with Multiple myeloma and Thyroid carcinoma. The proband and her family members exhibited suspected tumor syndrome due to occurrences of other cancer cases. After oncogenetic counseling, whole-exome sequencing and Sanger sequencing were conducted and a primary driver mutation of TNS1 (NM_022648.7:c.2999-1G > C) was detected. Gene Expression Profiling Interactive Analysis revealed that TNS1 was expressed lower in different tumors when compared to normal, including Pancreatic adenocarcinoma, Breast invasive carcinoma, Thyroid carcinoma andColon adenocarcinoma cells. Despite the well-established role of TNS1 as a tumor suppressor in breast cancer and colorectal cancer, its potential utility as a marker gene for diagnosis and treatment of pancreatic cancer remains uncertain. Here, our data demonstrated that knockdown of TNS1 could promote cell proliferation and migration in Pancreatic adenocarcinoma (PDAC) cells. In addition, TNS1 regulated migration through EMT signaling pathway in PDAC cells. Our findings proposed that this variant was likely involved in cancer predisposition by disrupting the normal splicing process. In summary, we presented a genetic disease by linking an intronic mutation inTNS1. We aim to provide early detection of cancers by identifying germline variants in susceptibility genes.


Assuntos
Adenocarcinoma , Síndromes Neoplásicas Hereditárias , Neoplasias Pancreáticas , Humanos , Feminino , Pessoa de Meia-Idade , Mutação em Linhagem Germinativa , Neoplasias Pancreáticas/genética , Adenocarcinoma/genética , Predisposição Genética para Doença , Síndromes Neoplásicas Hereditárias/genética , Células Germinativas , Tensinas/genética
4.
Cancer Lett ; 585: 216647, 2024 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-38301911

RESUMO

The Notch signaling pathway plays pivotal roles in cell proliferation, stemness and invasion of non-small cell lung cancer (NSCLC). The human Notch family consists of four receptors, namely Notch1, Notch2, Notch3, and Notch4. These receptors are transmembrane proteins that play crucial roles in various cellular processes. Notch1 mostly acts as a pro-carcinogenic factor in NSCLC but sometimes acts as a suppressor. Notch2 has been demonstrated to inhibit the growth and progression of NSCLC, whereas Notch3 facilitates these biological behaviors of NSCLC. The role of Notch4 in NSCLC has not been fully elucidated, but it is evident that Notch4 promotes tumor progression. At present, drugs targeting the Notch pathway are being explored for NSCLC therapy, a majority of which are already in the stage of preclinical research and clinical trials, with bright prospects in the clinical treatment of NSCLC.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/patologia , Receptor Notch1/metabolismo , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Receptores Notch/metabolismo , Receptor Notch2/metabolismo , Receptor Notch3 , Transdução de Sinais
5.
Heliyon ; 10(1): e23165, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38163179

RESUMO

Multiple myeloma (MM) is a malignant plasma cell disease. The activity of PIK3CG (PI3K catalytic subunit γ) is regulated directly by G-protein-coupled receptor and has been confirmed to be highly expressed in MM cells. This study aimed to determine the effect of pharmacological inhibition of PIK3CG on MM. We found that different concentrations of the PIK3CG inhibitor AS-605240 could suppress the growth of MM cell lines and the expression of c-Myc. The combination of PIK3CG inhibitor and the chemotherapy Melphalan could effectively inhibit the proliferation and migration of MM cells, promote the cell apoptosis, and decrease the ratio of Bcl-2/Bax and the expression of vimentin. The expression of proto-oncogene c-Myc was decreased and the sensitivity of cells to chemotherapeutic drugs was enhanced. Collectively, PIK3CG regulates growth of MM via c-Myc pathway, thus emerging as a promising molecular targeted therapy.

6.
Cancer Gene Ther ; 31(3): 484-494, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38135698

RESUMO

Primary myelofibrosis (PMF) patients frequently have JAK2 (V617F), CALR (exon 9), or MPL (W515 or exon 10) strong driver gene mutation, which triggers abnormal activation of the JAK2-STATs signaling pathway that plays a complex role in the occurrence of PMF. However, about 10-15% of PMF patients have no above typical mutations in these strong driver genes, known as being "triple-negative", which are associated with poor prognosis. In this paper, we reported a unique secondary acute myeloid leukemia (sAML) case transformed from triple-negative PMF combined with lung cancer and erythroderma occurrence at the same time, which has not been reported so far. Through whole blood exome sequencing, four novel noncanonical mutations were detected in key regulatory genes SH2B3 (Q748 and S710) and STAT5a (C350 and K354). Meanwhile, STAT5a-S710 and SH2B3-K354 noncanonical mutations gained strong malignant biofunction on promoting cell growth and tumorigenesis by accelerating the G1/S transition. In the mechanistic study, these pernicious phenotypes driven by noncanonical mutations might be initial PMF by activating p-STAT5a/c-Myc/CyclinD1 and p-STAT3/p-AKT/p-ERK1/2 signaling axes. Therefore, our study explored the deleterious roles of novel noncanonical mutations in STAT5a and SH2B3, which may serve as susceptibility genes and display the oncogenic biofunction in the progression of PMF to acute myeloid leukemia-M2a (AML-M2a).


Assuntos
Leucemia Mieloide Aguda , Neoplasias Pulmonares , Mielofibrose Primária , Humanos , Calreticulina/genética , Calreticulina/metabolismo , Janus Quinase 2/genética , Janus Quinase 2/metabolismo , Leucemia Mieloide Aguda/genética , Mutação , Fenótipo , Mielofibrose Primária/genética
7.
Front Cell Dev Biol ; 11: 1237530, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37829187

RESUMO

Deubiquitination is an important form of post-translational modification that regulates protein homeostasis. Ovarian tumor domain-containing proteins (OTUDs) subfamily member OTUD3 was identified as a deubiquitinating enzyme involved in the regulation of various physiological processes such as immunity and inflammation. Disturbances in these physiological processes trigger diseases in humans and animals, such as cancer, neurodegenerative diseases, diabetes, mastitis, etc. OTUD3 is aberrantly expressed in tumors and is a double-edged sword, exerting tumor-promoting or anti-tumor effects in different types of tumors affecting cancer cell proliferation, metastasis, and metabolism. OTUD3 is regulated at the transcriptional level by a number of MicroRNAs, such as miR-520h, miR-32, and miR101-3p. In addition, OTUD3 is regulated by a number of post-translational modifications, such as acetylation and ubiquitination. Therefore, understanding the regulatory mechanisms of OTUD3 expression can help provide insight into its function in human immunity and disease, offering the possibility of its use as a therapeutic target to diagnose or treat disease.

8.
Sci Total Environ ; 903: 166832, 2023 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-37673240

RESUMO

The surplus of nitrogen plays a key role in the maintenance of cyanobacterial bloom when phosphorus has already been limited. However, the interplay between high nitrogen and low phosphorus conditions is not fully understood. Nitrogen metabolism is critical for the metabolism of cyanobacteria. Transcriptomic analysis in the present study suggested that nitrogen metabolism and ribosome biogenesis were the two most significantly changed pathways in long-term phosphorus-starved bloom-forming cyanobacteria Microcystis aeruginosa FACHB-905. Notably, the primary glutamine synthetase/glutamate synthase cycle, crucial for nitrogen metabolism, was significantly downregulated. Concurrently, nitrogen uptake showed a marked decrease due to reduced expression of nitrogen source transporters. The content of intracellular nitrogen reservoir phycocyanin also showed a drastic decrease upon phosphorus starvation. Our study demonstrated that long-term phosphorus-starved cells also suffered from nitrogen deficiency because of the reduction in nitrogen assimilation, which might be limited by the reduced ribosome biogenesis and the shortage of adenosine triphosphate. External nitrogen supply will not change the transcriptions of nitrogen metabolism-related genes significantly like that under phosphorus-rich conditions, but still help to maintain the survival of phosphorus-starved cells. The study deepens our understanding about the survival strategies of Microcystis cells under phosphorus starvation and the mutual dependence between nitrogen and phosphorus, which would provide valuable information for nutrient management in the eutrophicated water body.

9.
J Mol Med (Berl) ; 101(10): 1255-1265, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37615686

RESUMO

Screening tumor susceptibility genes helps in identifying powerful biomarkers for hereditary cancer monitoring, prevention, and diagnosis, providing opportunities for understanding potential molecular mechanisms and biomarkers for the precise treatment of hereditary cancer syndromes. Whole-exome sequencing of blood and bioinformatics analysis uncovered a novel RBBP8(p.E281*) germline mutation in a family with hereditary cancer syndrome, which was verified by Sanger sequencing. Cell proliferation, colony formation, cell migration, and in vivo tumorigenesis were investigated by CCK8, colony formation, Transwell, and in vivo xenograft assays. Protein localization and interaction were detected by immunofluorescence, nuclear and cytoplasmic protein extraction kits, and Co-IP. A new heterozygous germline mutation of the RBBP8(p.E281*) gene was found to be associated with familial hereditary cancer syndrome. RBBP8-WT was mainly detected in the nucleus and interacts with BRCA1. In contrast, RBBP8(p.E281*) is mainly located in the cytoplasm, with no interaction with BRCA1. RBBP8(p.E281*) variant plays an oncogenic role in the cytoplasm in addition to its loss of function in the nucleus, which promotes breast cancer proliferation, in vivo tumorigenesis, and migration. Compared with the control group, RBBP8(p.E281*) showed elevated cell death in response to cisplatin and olaparib treatment. A novel RBBP8(p.E281*) germline mutation was identified from familial hereditary cancer syndrome. RBBP8(p.E281*) is not able to enter the nucleus or interact with BRCA1 through the lost binding motif, and RBBP8(p.E281*) variant appears to promote tumorigenesis in the cytoplasm in addition to its loss of function in the nucleus. RBBP8(p.E281*) variant may promote tumor susceptibility and serve as a precision medicine biomarker in familial hereditary cancer syndrome. KEY MESSAGES: RBBP8(p.E281*) is a susceptibility gene in this familial hereditary cancer syndrome RBBP8(p.E281*) lost its ability to enter the nucleus and the BRCA1 binding motif A novel RBBP8(p.E281*) germline mutation promotes breast cancer tumorigenesis Patients with RBBP8(p.E281*) germline mutation may benefit from Olaparib, Cisplatin.


Assuntos
Neoplasias da Mama , Síndromes Neoplásicas Hereditárias , Humanos , Feminino , Mutação em Linhagem Germinativa , Cisplatino , Predisposição Genética para Doença , Mutação , Síndromes Neoplásicas Hereditárias/genética , Neoplasias da Mama/genética , Carcinogênese/genética , Biomarcadores , Endodesoxirribonucleases/genética
10.
FASEB J ; 37(9): e23157, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37615242

RESUMO

Zinc finger proteins (ZNFs) are the largest family of transcriptional factors in mammalian cells. Recently, their role in the development, progression, and metastasis of malignant tumors via regulating gene transcription and translation processes has become evident. Besides, their possible involvement in drug resistance has also been found, indicating that ZNFs have the potential to become new biological markers and therapeutic targets. In this review, we summarize the oncogenic and suppressive roles of various ZNFs in malignant tumors, including lung, breast, liver, gastric, colorectal, pancreatic, and other cancers, highlighting their role as prognostic markers, and hopefully provide new ideas for the treatment of malignant tumors in the future.


Assuntos
Neoplasias , Animais , Fígado , Pâncreas , Estômago , Dedos de Zinco , Mamíferos
11.
Biochim Biophys Acta Rev Cancer ; 1878(3): 188893, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37015314

RESUMO

The incidence of pancreatic cancer is increasing in both developed and developing Nations. In recent years, various research evidence suggested that reprogrammed metabolism may play a key role in pancreatic cancer tumorigenesis and development. Therefore, it has great potential as a diagnostic, prognostic and therapeutic target. Amino acid metabolism is deregulated in pancreatic cancer, and changes in amino acid metabolism can affect cancer cell status, systemic metabolism in malignant tumor patients and mistakenly involved in different biological processes including stemness, proliferation and growth, invasion and migration, redox state maintenance, autophagy, apoptosis and even tumor microenvironment interaction. Generally, the above effects are achieved through two pathways, energy metabolism and signal transduction. This review aims to highlight the current research progress on the abnormal alterations of amino acids metabolism in pancreatic cancer, how they affect tumorigenesis and development of pancreatic cancer and the application prospects of them as diagnostic, prognostic and therapeutic targets.


Assuntos
Neoplasias Pancreáticas , Humanos , Neoplasias Pancreáticas/patologia , Transdução de Sinais , Aminoácidos/metabolismo , Carcinogênese , Microambiente Tumoral , Neoplasias Pancreáticas
12.
Cancers (Basel) ; 14(13)2022 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-35804829

RESUMO

Triple-negative breast cancer (TNBC) accounts for approximately 20% of all breast carcinomas and has the worst prognosis of all breast cancer subtypes due to the lack of an effective target. Therefore, understanding the molecular mechanism underpinning TNBC progression could explore a new target for therapy. While the Notch pathway is critical in the development process, its dysregulation leads to TNBC initiation. Previously, we found that manic fringe (MFNG) activates the Notch signaling and induces breast cancer progression. However, the underlying molecular mechanism of MFNG upstream remains unknown. In this study, we explore the regulatory mechanisms of MFNG in TNBC. We show that the increased expression of MFNG in TNBC is associated with poor clinical prognosis and significantly promotes cell growth and migration, as well as Notch signaling activation. The mechanistic studies reveal that MFNG is a direct target of GATA3 and miR205-5p and demonstrate that GATA3 and miR205-5p overexpression attenuate MFNG oncogenic effects, while GATA3 knockdown mimics MFNG phenotype to promote TNBC progression. Moreover, we illustrate that GATA3 is required for miR205-5p activation to inhibit MFNG transcription by binding to the 3' UTR region of its mRNA, which forms the GATA3/miR205-5p/MFNG feed-forward loop. Additionally, our in vivo data show that the miR205-5p mimic combined with polyetherimide-black phosphorus (PEI-BP) nanoparticle remarkably inhibits the growth of TNBC-derived tumors which lack GATA3 expression. Collectively, our study uncovers a novel GATA3/miR205-5p/MFNG feed-forward loop as a pathway that could be a potential therapeutic target for TNBC.

13.
Biochim Biophys Acta Rev Cancer ; 1877(4): 188746, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35660646

RESUMO

Fringes are glycosyltransferases that transfer N-acetylglucosamine to the O-linked fucose of Notch receptors. They regulate the Notch signaling activity that drives tumor formation and progression, resulting in poor prognosis. However, the specific tumor-promoting role of Fringes differs depending on the type of cancer. Although a particular Fringe member could act as a tumor suppressor in one cancer type, it may act as an oncogene in another. This review discusses the tumorigenic role of the Fringe family (lunatic fringe, manic fringe, and radical fringe) in modulating Notch signaling in various cancers. Although the crucial functions of Fringes continue to emerge as more mechanistic studies are being pursued, further translational research is needed to explore their roles and therapeutic benefits in various malignancies.


Assuntos
Neoplasias , Transdução de Sinais , Glicosiltransferases/genética , Humanos , Família Multigênica , Neoplasias/genética , Receptores Notch
14.
Cancer Cell Int ; 22(1): 149, 2022 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-35410355

RESUMO

Abnormal expression of 5-Lipoxygenase Activating Protein (FLAP) has been detected in many tumor cells. MicroRNAs (miRNAs) negatively regulate gene expression post-transcriptionally by binding to the 3'-untranslated region (3'-UTR) of the target mRNA sequences and have been shown to be involved in various types of cancers. Herein, we aimed to demonstrate the expression of miR-146a and FLAP in human HCC tissues and liver cancer cell lines. We demonstrated that miR-146a expression is overexpressed, while FLAP protein and mRNA are suppressed in hepatocellular carcinoma tissues and HepG2 cells compared to para-carcinoma tissues and HL-7702 cells. Dual luciferase reporter gene assay showed that miR-146a-5p can directly target FLAP mRNA. Knockdown of miR-146a also resulted in increased FLAP expression of cancer cells. Additionally, miR-146a silencing or restoration of FLAP led to a reduction of HepG2 cell proliferation, cell cycle progression, migration, and invasion. This study showed that miR-146a has a stimulatory role in HepG2 cells and promotes HepG2 cell migration and invasion by targeting FLAP mRNA. Thus, miR-146a may be a tumor promoter and a potential therapeutic target for the treatment of HCC patients.

15.
Cancer Cell Int ; 22(1): 48, 2022 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-35093087

RESUMO

N6-Methyladenosine (m6A), the most abundant internal modification associated with eukaryotic mRNAs, has emerged as a dynamic regulatory mechanism controlling the expression of genes involved in many physiological activities by affecting various steps of mRNA metabolism, including splicing, export, translation, and stability. Here, we review the general role of m6A, highlighting recent advances related to the three major types enzymes that determine the level of m6A modification (i.e., writers, erasers, and readers) and the regulatory mechanism by which m6A influences multiple stages of RNA metabolism. This review clarifies the close connection and interaction between m6A modification and nuclear gene expression, and provides key background information for further studies of its roles in numerous physiological and pathophysiological processes. Among them, perhaps the most eye-catching process is tumorigenesis. Clarifying the molecular mechanism of tumorigenesis, development and metastasis in various tissues of the human body is conducive to curbing out-of-control cell activities from the root and providing a new strategy for human beings to defeat tumors.

16.
Technol Cancer Res Treat ; 20: 15330338211045206, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34605326

RESUMO

The clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9) system was originally discovered in prokaryotes and functions as part of the adaptive immune system. The experimental research of many scholars, as well as scientific and technological advancements, has allowed prokaryote-derived CRISPR/Cas genome-editing systems to transform our ability to manipulate, detect, image, and annotate specific DNA and RNA sequences in the living cells of diverse species. Through modern genetic engineering editing technology and high-throughput gene sequencing, we can edit and splice covalently closed circular DNA to silence it, and correct the mutation and deletion of liver cancer genes to achieve precise in situ repair of defective genes and prohibit viral infection or replication. Such manipulations do not destroy the structure of the entire genome and facilitate the cure of diseases. In this review, we discussed the possibility that CRISPR/Cas could be used as a treatment for patients with liver cancer caused by hepatitis B virus infection, and reviewed the challenges incurred by this effective gene-editing technology.


Assuntos
Proteína 9 Associada à CRISPR , Sistemas CRISPR-Cas , Terapia Genética , Hepatite B Crônica/complicações , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/terapia , Animais , Edição de Genes , Vírus da Hepatite B/genética , Humanos , Neoplasias Hepáticas/virologia
17.
Biomed Pharmacother ; 142: 111988, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34371307

RESUMO

Dieckol [C36H22O18], is a naturally occurring phlorotannin found in some brown algal species. Dieckol is gaining more attention in the scientific community for its potential biological activities. It has been exhibited a broad spectrum of therapeutic functions including anti-bacterial, anti-cancer, anti-oxidant, anti-aging, anti-diabetic, neuroprotective, and other medicinal applications. Distinct emphasis has been given to extraction, purification, and biomedical applications of dieckol. This critical review comprises of in vitro, in vivo, and in silico biological properties of dieckol. An attempt has been made to evaluate the effectiveness, therapeutical application, and mechanism of dieckol against various diseases. The pharmacological significance, current status and the dosage of multifunctional dieckol and its mechanisms have been discussed in this review. Dieckol plays an important role in apoptosis induction via inhibiting the PI3K, AKT, mTOR and FAK signaling molecules. Dieckol remarkably inhibited the lipid accumulation in high fat diet induced animal models. Dieckol, a multifaceted compound will be beneficial in attenuating the action of various diseases and it could be a potential pharmaceutical and nutraceutical compound. Therefore, the combined effects of dieckol with existing drugs and natural compounds will be studied in future to optimize its benefits. Besides limited information on the toxicological action and dosage administration of dieckol on the human was reported to date. Overall, dieckol is a prospective health-promoting compound for the development of a novel drug against numerous diseases.


Assuntos
Benzofuranos/farmacologia , Phaeophyceae/química , Animais , Apoptose/efeitos dos fármacos , Benzofuranos/isolamento & purificação , Simulação por Computador , Suplementos Nutricionais , Desenvolvimento de Medicamentos , Humanos , Transdução de Sinais/efeitos dos fármacos
18.
BMC Cancer ; 21(1): 876, 2021 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-34332578

RESUMO

BACKGROUND: m6A is the most prevalent and abundant form of mRNA modifications and is closely related to tumor proliferation, differentiation, and tumorigenesis. In this study, we try to conduct an effective prediction model to investigated the function of m6A RNA methylation modulators in pancreatic adenocarcinoma and estimated the potential association between m6A RNA methylation modulators and tumor microenvironment infiltration for optimization of treatment. METHODS: Expression of 28 m6A RNA methylation modulators and clinical data of patients with pancreatic adenocarcinoma and normal samples were obtained from TCGA and GTEx database. Differences in the expression of 28 m6A RNA methylation modulators between tumour (n = 40) and healthy (n = 167) samples were compared by Wilcoxon test. LASSO Cox regression was used to select m6A RNA methylation modulators to analyze the relationship between expression and clinical characteristics by univariate and multivariate regression. A risk score prognosis model was conducted based on the expression of select m6A RNA methylation modulators. Bioinformatics analysis was used to explore the association between the m6Ascore and the composition of infiltrating immune cells between high and low m6Ascore group by CIBERSORT algorithm. Evaluation of m6Ascore for immunotherapy was analyzed via the IPS and three immunotherapy cohort. Besides, the biological signaling pathways of the m6A RNA methylation modulators were examined by gene set enrichment analysis (GSEA). RESULTS: Expression of 28 m6A RNA methylation modulators were upregulated in patients with PAAD except for MTEEL3. An m6Ascore prognosis model was established, including KIAA1429, IGF2BP2, IGF2BP3, METTL3, EIF3H and LRPPRC was used to predict the prognosis of patients with PAAD, the high risk score was an independent prognostic indicator for pancreatic adenocarcinoma, and a high risk score presented a lower overall survival. In addition, m6Ascore was related with the immune cell infiltration of PAAD. Patients with a high m6Ascore had lower infiltration of Tregs and CD8+T cells but a higher resting CD4+ T infiltration. Patients with a low m6Ascore displayed a low abundance of PD-1, CTLA-4 and TIGIT, however, the IPS showed no difference between the two groups. The m6Ascore applied in three immunotherapy cohort (GSE78220, TCGA-SKCM, and IMvigor210) did not exhibit a good prediction for estimating the patients' response to immunotherapy, so it may need more researches to figure out whether the m6A modulator prognosis model would benefit the prediction of pancreatic patients' response to immunotherapy. CONCLUSION: Modulators involved in m6A RNA methylation were associated with the development of pancreatic cancer. An m6Ascore based on the expression of IGF2BP2, IGF2BP3, KIAA1429, METTL3, EIF3H and LRPPRC is proposed as an indicator of TME status and is instrumental in predicting the prognosis of pancreatic cancer patients.


Assuntos
Adenocarcinoma/genética , Adenosina/análogos & derivados , Biomarcadores Tumorais , Regulação Neoplásica da Expressão Gênica , Neoplasias Pancreáticas/genética , RNA/genética , Microambiente Tumoral/genética , Adenocarcinoma/imunologia , Adenocarcinoma/mortalidade , Adenocarcinoma/patologia , Adenosina/genética , Adenosina/metabolismo , Idoso , Feminino , Perfilação da Expressão Gênica , Humanos , Estimativa de Kaplan-Meier , Linfócitos do Interstício Tumoral/imunologia , Linfócitos do Interstício Tumoral/metabolismo , Masculino , Pessoa de Meia-Idade , Estadiamento de Neoplasias , Neoplasias Pancreáticas/imunologia , Neoplasias Pancreáticas/mortalidade , Neoplasias Pancreáticas/patologia , Prognóstico , RNA/metabolismo , Curva ROC , Microambiente Tumoral/imunologia
19.
Cancer Manag Res ; 12: 2641-2651, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32368142

RESUMO

PURPOSE: Molecular targeting is a powerful approach for aggressive claudin-low breast cancer (CLBC). Overexpression of PI3K catalytic subunit gamma (PIK3CG) in human CLBC is offering a promising opportunity for targeted therapies. We utilized a specific inhibitor of PIK3CG combined with paclitaxel (PTX) to treat CLBC cells in vitro and in vivo. PATIENTS AND METHODS: The tumor cells growth and apoptosis in vitro were analyzed by CCK8, plate clone formation assay, tumorsphere assay, Hoechst staining and flow cytometry. The invasion and metastasis ability of tumor cells in vitro were investigated by wound healing and transwell experiments. Critical gene expression levels were checked by qRT-PCR and Western blot. Xenograft models with CLBC cell lines in SCID mice were established to investigate the effect of combined drugs in vivo. RESULTS: We identified that PIK3CG was a potential therapeutic target for CLBC patients. Targeting PIK3CG potentiated CLBC cells growth inhibition in 2D and 3D cultures by PTX. Inhibition of PIK3CG activation could enhance CLBC cells apoptosis and migration suppression induced by PTX. Manipulating autophagy was a validated approach for the use of PIK3CG inhibitor. Using CLBC xenograft mice model, we found that CLBC tumors in vivo could be well treated by combined drugs of PIK3CG inhibitor and PTX. CONCLUSION: We demonstrated that PIK3CG was a potential target for the therapy of CLBC and inhibition of PIK3CG activation could reinforce the therapeutic effect of this aggressive disease by PTX. The combined use of PIK3CG inhibitor and PTX might be a potential regimen for treating this subtype of breast cancer.

20.
Eur J Clin Microbiol Infect Dis ; 39(9): 1629-1635, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32333222

RESUMO

Coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is a new infectious disease that first emerged in Hubei province, China, in December 2019, which was found to be associated with a large seafood and animal market in Wuhan. Airway epithelial cells from infected patients were used to isolate a novel coronavirus, named the SARS-CoV-2, on January 12, 2020, which is the seventh member of the coronavirus family to infect humans. Phylogenetic analysis of full-length genome sequences obtained from infected patients showed that SARS-CoV-2 is similar to severe acute respiratory syndrome coronavirus (SARS-CoV) and uses the same cell entry receptor, angiotensin-converting enzyme 2 (ACE2), as SARS-CoV. The possible person-to-person disease rapidly spread to many provinces in China as well as other countries. Without a therapeutic vaccine or specific antiviral drugs, early detection and isolation become essential against novel Coronavirus. In this review, we introduced current diagnostic methods and criteria for the SARS-CoV-2 in China and discuss the advantages and limitations of the current diagnostic methods, including chest imaging and laboratory detection.


Assuntos
Betacoronavirus/genética , Técnicas de Laboratório Clínico , Infecções por Coronavirus/diagnóstico , Genoma Viral/genética , Pulmão/diagnóstico por imagem , Pneumonia Viral/diagnóstico , Alanina Transaminase/metabolismo , Animais , Anticorpos Antivirais/sangue , Proteína C-Reativa/metabolismo , COVID-19 , Teste para COVID-19 , Vacinas contra COVID-19 , China , Quirópteros/virologia , Coronavirus/genética , Proteínas do Envelope de Coronavírus , Infecções por Coronavirus/metabolismo , Infecções por Coronavirus/transmissão , Proteínas do Nucleocapsídeo de Coronavírus , RNA-Polimerase RNA-Dependente de Coronavírus , Citocinas/metabolismo , Ferritinas/metabolismo , Produtos de Degradação da Fibrina e do Fibrinogênio/metabolismo , Humanos , Imunoglobulina G/imunologia , L-Lactato Desidrogenase/metabolismo , Leucopenia , Linfopenia , Proteínas do Nucleocapsídeo/genética , Pandemias , Fosfoproteínas , Pneumonia Viral/metabolismo , Pneumonia Viral/transmissão , Poliproteínas , RNA Polimerase Dependente de RNA/genética , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave/genética , SARS-CoV-2 , Sensibilidade e Especificidade , Glicoproteína da Espícula de Coronavírus/genética , Tomografia Computadorizada por Raios X , Proteínas do Envelope Viral/genética , Proteínas não Estruturais Virais/genética , Proteínas Virais/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA