Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Biochim Biophys Acta Mol Basis Dis ; 1863(7): 1778-1788, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28428003

RESUMO

Cigarette smoke (CS) is a major risk factor for the development of chronic obstructive pulmonary disease (COPD). Our previous studies have indicated that Rac1 is involved in lipopolysaccharide-induced pulmonary injury and CS-mediated epithelial-mesenchymal transition. However, the contribution of Rac1 activity to CS-induced lung inflammation remains not fully clear. In this study, we investigated the regulation of Rac1 in CS-induced pulmonary inflammation. Mice or 16HBE cells were exposed to CS or cigarette smoke extract (CSE) to induce acute inflammation. The lungs of mice exposed to CS showed an increase in the release of interleukin-6 (IL-6) and keratinocyte-derived chemokine (KC), as well as an accumulation of inflammatory cells, indicating high Rac1 activity. The exposure of 16HBE cells to CSE resulted in elevated Rac1 levels, as well as increased release of IL-6 and interleukin-8 (IL-8). Selective inhibition of Rac1 ameliorated the release of IL-6 and KC as well as inflammation in the lungs of CS-exposed mice. Histological assessment showed that treatment with a Rac1 inhibitor, NSC23766, led to a decrease in CD68 and CD11b positive cells and the infiltration of neutrophils and macrophages into the alveolar spaces. Selective inhibition or knockdown of Rac1 decreased IL-6 and IL-8 release in 16HBE cells induced by CSE, which correlated with CSE-induced Rac1-regulated Erk1/2 mitogen-activated protein kinase (MAPK) and signal transducer and activator of transcription-3 (STAT3) signaling. Our data suggest an important role for Rac1 in the pathological alterations associated with CS-mediated inflammation. Rac1 may be a promising therapeutic target for the treatment of CS-induced pulmonary inflammation.


Assuntos
Fumar Cigarros/efeitos adversos , Pulmão/metabolismo , Sistema de Sinalização das MAP Quinases , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Neuropeptídeos/metabolismo , Pneumonia/metabolismo , Fator de Transcrição STAT3/metabolismo , Proteínas rac1 de Ligação ao GTP/metabolismo , Animais , Fumar Cigarros/genética , Fumar Cigarros/metabolismo , Citocinas/genética , Citocinas/metabolismo , Inflamação/etiologia , Inflamação/genética , Inflamação/metabolismo , Inflamação/patologia , Pulmão/patologia , Camundongos , Proteína Quinase 3 Ativada por Mitógeno/genética , Neuropeptídeos/genética , Infiltração de Neutrófilos/genética , Neutrófilos/metabolismo , Neutrófilos/patologia , Pneumonia/etiologia , Pneumonia/genética , Pneumonia/patologia , Fator de Transcrição STAT3/genética , Proteínas rac1 de Ligação ao GTP/genética
2.
Eur J Pharmacol ; 775: 138-48, 2016 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-26872986

RESUMO

Ambroxol, a metabolite of bromhexine, is shown to exert several pharmacological activities, including secretolytic, anti-inflammatory and antioxidant actions. Oral and intravenous administration of ambroxol is useful for the airway inflammatory diseases. However, little is known about its potential in inhalation therapy for lipopolysaccharide (LPS)-induced mucous hypersecretion and inflammatory response. In the present study, we compared the pharmacological effects of ambroxol by inhalation with intravenous administration and preliminarily explored its mechanism of action. Our results demonstrated that ambroxol administered by inhalation inhibited MUC5AC expression, reduced glycosaminoglycan levels, enhanced the function of mucociliary clearance and promoted sputum excretion, suggesting that ambroxol increases expectoration of sputum by reducing its viscosity. Moreover, ambroxol significantly alleviated LPS-induced the influx of inflammatory cells and the extracellular signal-regulated kinase 1/2 (Erk 1/2) expression in lung tissues, and inhibited increases in the mRNA expression of the pro-inflammatory cytokines tumor necrosis factor (TNF)-α, CCL-2 (monocyte chemotactic protein-1), KC (keratinocyte cell protein) and interleukin (IL)-1ß in lung tissues. The secretolytic and anti-inflammatory effects of inhaled ambroxol at a dose of 7.5 mg/ml was comparable to that of ambroxol at 20 mg/ml i.v. and dexamethasone at 0.5 mg/kg i.p. In addition, we found that ambroxol dose-dependently inhibited LPS-induced increases in the mRNA expression of MUC5AC, TNF-α, and IL-1ß in human bronchial epithelial cell (NCI-H292) by inhibiting the Erk signaling pathway. These results demonstrate the beneficial effects of ambroxol in inhalation therapy for the airway inflammatory diseases.


Assuntos
Lesão Pulmonar Aguda/tratamento farmacológico , Ambroxol , Anti-Inflamatórios , Expectorantes , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Lesão Pulmonar Aguda/induzido quimicamente , Lesão Pulmonar Aguda/imunologia , Lesão Pulmonar Aguda/metabolismo , Administração por Inalação , Ambroxol/administração & dosagem , Ambroxol/farmacologia , Ambroxol/uso terapêutico , Animais , Anti-Inflamatórios/administração & dosagem , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Linhagem Celular , Citocinas/genética , Expectorantes/administração & dosagem , Expectorantes/farmacologia , Expectorantes/uso terapêutico , Feminino , Glicosaminoglicanos/metabolismo , Humanos , Lipopolissacarídeos , Pulmão/efeitos dos fármacos , Pulmão/metabolismo , Camundongos Endogâmicos ICR , Mucina-5AC/genética , Depuração Mucociliar/efeitos dos fármacos , Muco/metabolismo , RNA Mensageiro/metabolismo
3.
Drug Dev Res ; 76(3): 123-31, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25958838

RESUMO

Bencycloquidium bromide (BCQB), a novel M3 receptor antagonist, alleviates airway hyperresponsiveness, inflammation, and airway remodeling in a murine model of asthma. The aim of this study was to investigate the anti-inflammatory activity of inhaled BCQB in a cigarette smoke (CS)-induced model of acute lung inflammation. Mice exposed to CS developed chronic obstructive pulmonary disease (COPD). Inhalation of BCQB suppressed the accumulation of neutrophils and macrophages in airways and lung and also inhibited the CS-induced increases in mRNA levels of keratinocyte-derived chemokine, monocyte chemotactic protein-1, tumor necrosis factor-alpha, and interleukin-1ß in lung and protein expression levels in bronchoalveolar lavage fluid. Moreover, BCQB (300 µg/ml) inhibited the CS-induced changes in superoxide dismutase and myeloperoxidase activities in the lungs. Our study suggests that BCQB might be a potential therapy for inflammation in CS-induced pulmonary diseases, including COPD.


Assuntos
Compostos Bicíclicos Heterocíclicos com Pontes/administração & dosagem , Modelos Animais de Doenças , Nicotiana/efeitos adversos , Pneumonia/tratamento farmacológico , Receptor Muscarínico M3/antagonistas & inibidores , Fumaça/efeitos adversos , Administração por Inalação , Animais , Relação Dose-Resposta a Droga , Feminino , Pulmão/efeitos dos fármacos , Pulmão/metabolismo , Pulmão/patologia , Camundongos , Camundongos Endogâmicos ICR , Pneumonia/metabolismo , Pneumonia/patologia , Fumar/efeitos adversos , Fumar/metabolismo , Fumar/patologia , Resultado do Tratamento
4.
Toxicol Mech Methods ; 24(8): 575-83, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25134437

RESUMO

Cigarette smoke contains reactive oxygen (ROS) that can cause oxidative stress. It increases the number of apoptotic and necrotic lung cells and further induces the development of chronic airway disease. In this study, we investigated the effects of cigarette smoke extract (CSE) on apoptosis in human bronchial epithelial cells (BEAS-2B). CSE exposure induced ROS generation and p38 mitogen-activated protein kinase (MAPK) activation that are associated with the activation of apoptosis-regulating signal kinase 1 (ASK-1). N-acetylcysteine (a general antioxidant) attenuated the CSE-induced ASK-1 and p38 MAPK activation and cell apoptosis, suggesting a triggering role of ROS in ASK-1/p38 MAPK activation during apoptotic progression. In contrast, the inhibition and knockdown of p38 attenuated the expression of anti-oxidant master NF-E2-related factor 2 (Nrf-2) and CSE-induced apoptosis, suggesting that p38 MAPK modulates Nrf-2 expression and presumably prevents cell apoptosis. Taken together, the data presented in this manuscript demonstrate that the ROS-dependent ASK-1/p38 signaling cascade regulates CSE-induced BEAS-2B cell apoptosis. In addition, anti-oxidative Nrf-2 is also up-regulated by the ROS/p38 signaling cascade in this progression.


Assuntos
Apoptose/efeitos dos fármacos , Brônquios/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Fator 2 Relacionado a NF-E2/agonistas , Mucosa Respiratória/efeitos dos fármacos , Fumar/efeitos adversos , Regulação para Cima/efeitos dos fármacos , Acetilcisteína/farmacologia , Elementos de Resposta Antioxidante/efeitos dos fármacos , Antioxidantes/farmacologia , Brônquios/enzimologia , Brônquios/metabolismo , Linhagem Celular , Misturas Complexas/antagonistas & inibidores , Misturas Complexas/toxicidade , Ativação Enzimática/efeitos dos fármacos , Inativação Gênica , Humanos , MAP Quinase Quinase Quinase 5/antagonistas & inibidores , MAP Quinase Quinase Quinase 5/química , MAP Quinase Quinase Quinase 5/metabolismo , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Fator 2 Relacionado a NF-E2/antagonistas & inibidores , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Espécies Reativas de Oxigênio/agonistas , Espécies Reativas de Oxigênio/metabolismo , Mucosa Respiratória/enzimologia , Mucosa Respiratória/metabolismo , Fumaça , Produtos do Tabaco , Proteínas Quinases p38 Ativadas por Mitógeno/antagonistas & inibidores , Proteínas Quinases p38 Ativadas por Mitógeno/química , Proteínas Quinases p38 Ativadas por Mitógeno/genética , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
5.
Biochim Biophys Acta ; 1840(6): 1838-49, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24508121

RESUMO

BACKGROUND: Epithelial-mesenchymal transition (EMT) is the major pathophysiological process in lung fibrosis observed in chronic obstructive pulmonary disease (COPD) and lung cancer. Smoking is a risk factor for developing EMT, yet the mechanism remains largely unknown. In this study, we investigated the role of Rac1 in cigarette smoke (CS) induced EMT. METHODS: EMT was induced in mice and pulmonary epithelial cells by exposure of CS and cigarette smoke extract (CSE) respectively. RESULTS: Treatment of pulmonary epithelial cells with CSE elevated Rac1 expression associated with increased TGF-ß1 release. Blocking TGF-ß pathway restrained CSE-induced changes in EMT-related markers. Pharmacological inhibition or knockdown of Rac1 decreased the CSE exposure induced TGF-ß1 release and ameliorated CSE-induced EMT. In CS-exposed mice, pharmacological inhibition of Rac1 reduced TGF-ß1 release and prevented aberrations in expression of EMT markers, suggesting that Rac1 is a critical signaling molecule for induction of CS-stimulated EMT. Furthermore, Rac1 inhibition or knockdown abrogated CSE-induced Smad2 and Akt (PKB, protein kinase B) activation in pulmonary epithelial cells. Inhibition of Smad2, PI3K (phosphatidylinositol 3-kinase) or Akt suppressed CSE-induced changes in epithelial and mesenchymal marker expression. CONCLUSIONS AND GENERAL SIGNIFICANCE: Altogether, these data suggest that CS initiates EMT through Rac1/Smad2 and Rac1/PI3K/Akt signaling pathway. Our data provide new insights into the fundamental basis of EMT and suggest a possible new course of therapy for COPD and lung cancer.


Assuntos
Transição Epitelial-Mesenquimal , Neuropeptídeos/fisiologia , Nicotiana/efeitos adversos , Alvéolos Pulmonares/patologia , Fumaça/efeitos adversos , Proteínas rac1 de Ligação ao GTP/fisiologia , Animais , Camundongos , Camundongos Endogâmicos C57BL , Fosfatidilinositol 3-Quinases/fisiologia , Proteínas Proto-Oncogênicas c-akt/fisiologia , Proteína Smad2/fisiologia , Fator de Crescimento Transformador beta1/análise , Fator de Crescimento Transformador beta1/biossíntese
6.
Artigo em Inglês | MEDLINE | ID: mdl-24454488

RESUMO

Caudatin 3-O-ß-D-cymaropyranosyl-(1 → 4)-ß-D-oleandropyranosyl-(1 → 4)-ß-D-cymaropyranosyl-(1 → 4)-ß-D-cymaropyranoside (CGII) is one of the C21-steroidal glycosides isolated from the roots of Cynanchum auriculatum ROYLE ex WIGHT. This study aimed to determine the cell growth, cell proliferation, and apoptotic cell death of human gastric cancer cells after CGII treatment. MTT assay was used to determine cell growth; fluorescence-activated cell sorting analysis was used to evaluate cell cycle distribution and apoptotic cell death. Immunoblotting was applied for measuring the expression of proteins involved in the cell cycle progression. The activities of caspase-3, -8, and -9 were detected by colorimetric caspase activity assays. CGII inhibited cell growth of human gastric cancer SGC-7901 cells in a concentration- and time-dependent manner. Treatment of SGC-7901 cells with CGII resulted in G1 phase cell cycle arrest, accompanied with decreased expression of cyclin D1 and cyclin-dependent kinases 4 and 6. CGII induced cell apoptosis and activated caspase-3, caspase-8, and caspase-9. In contrast, pan-caspase inhibitor z-VAD-fmk partially abolished the CGII-induced growth inhibition of SGC-7901 cells. In conclusion, CGII inhibits cell growth of human gastric cancer cells by inducing G1 phase cell cycle arrest and caspase-dependent apoptosis cascades.

7.
Zhonghua Zhong Liu Za Zhi ; 31(2): 90-4, 2009 Feb.
Artigo em Chinês | MEDLINE | ID: mdl-19538881

RESUMO

OBJECTIVE: To investigate the inhibitory effects of an antisense PC cell derived growth factor (PCDGF) vector on proliferation and invasion of highly malignant ovarian cancer cell lines Sw626 and A2780 cells, and preliminarily explore the related mechanisms. METHODS: MTT assay and Boyden chamber in vitro invasion assay were employed to detect the changes of proliferation and invasion ability in the Sw626 and A2780 cells transfected with anti-sense PCDGF. The expression levels of cyclin D1 and CDK4 proteins before and after transfection were detected by Western blotting. The effects on the expression and activity of MMP-2 were evaluated by quantitative RT-PCR and zymography, respectively. RESULTS: Comparing with the blank group, the proliferation inhibition rate of the Sw626 and A2780 cells transfected with anti-sense PCDGF was 72.9% and 70.9%, respectively, and the invasion ability was inhibited by 62.9% and 59.0%, respectively. The levels of cyclin D1 and CDK4 protein expression in antisense PCDGF transfected cells were 0.38 +/- 0.08 and 0.37 +/- 0.13, respectively, all significantly lower than 0.84 +/- 0.11 and 0.64 +/- 0.11, respectively, in the blank group (P < 0.01). The MMP-2 mRNA expression level in antisense PCDGF transfected cell group was 0.66 +/- 0.11, not significantly decreased in comparison with 0.89 +/- 0.09 in the blank group (P > 0.05), but the activity of MMP-2 was inhibited significantly. CONCLUSION: The antisense PCDGF vector may inhibit markedly the proliferation and invasion of highly malignant ovarian cancer cells, and partially reverses their malignant phenotype. It seems to be related with down-regulating the expression of cyclin D1 and CDK4 and inhibiting the activity of MMP-2. Our findings indicate that PCDGF may become a new target for antisense gene therapy of ovarian cancer.


Assuntos
Adesão Celular , Proliferação de Células , DNA Antissenso , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Neoplasias Ovarianas/patologia , Linhagem Celular Tumoral , Ciclina D1/metabolismo , Quinase 4 Dependente de Ciclina/metabolismo , Regulação para Baixo , Feminino , Vetores Genéticos , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/genética , Metaloproteinase 2 da Matriz/genética , Metaloproteinase 2 da Matriz/metabolismo , Invasividade Neoplásica , Neoplasias Ovarianas/metabolismo , Progranulinas , RNA Mensageiro/metabolismo , Transfecção
8.
Planta Med ; 73(1): 53-8, 2007 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-17315310

RESUMO

The aim of this study was to investigate the anti-asthmatic effects of Perilla seed oil in vitro and in vivo in sensitized guinea pigs. Aerosolized antigen caused an immediate bronchoconstriction. Perilla seed oil per os inhibited the increase in lung resistance and the decrease in dynamic lung compliance in a dose-dependent manner with an ED50 (95 % confidence interval, CI) of 1.10 (0.98 - 1.24) g/kg and 1.07 (0.94 - 1.22) g/kg, respectively. Infiltration of leukocytes, mononuclear cells, eosinophils and neutrophils induced by inhaling antigen was also inhibited by Perilla seed oil in a dose-dependent manner with an ED50 (95 % CI) of 1.00 (0.86 - 1.15), 1.24 (1.10 - 1.38), 0.63 (0.51 - 0.77) and 0.61 (0.38 - 0.98) g/kg, respectively. Perilla seed oil (5 - 500 microg/mL) inhibited the slow reaction substance of anaphylaxis (SRS-A) release induced by antigen challenge in lung tissue of sensitized guinea pigs. It also inhibited calcium ionophore (A(23187))-induced leukotriene (LT) D4 release from the lung tissue of non-sensitized guinea pigs in a concentration-dependent manner with an IC50 (95 % CI) of 50 (36 - 69) microg/mL. These results indicate that Perilla seed oil may improve lung function in asthma by controlling eicosanoid production and suppressing LT generation.


Assuntos
Broncodilatadores/farmacologia , Perilla , Fitoterapia , Ácido alfa-Linolênico/farmacologia , Animais , Antígenos , Espasmo Brônquico/induzido quimicamente , Espasmo Brônquico/prevenção & controle , Broncodilatadores/administração & dosagem , Broncodilatadores/uso terapêutico , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Feminino , Cobaias , Técnicas In Vitro , Concentração Inibidora 50 , Pulmão/citologia , Pulmão/efeitos dos fármacos , Masculino , Ovalbumina/imunologia , Óleos de Plantas/administração & dosagem , Óleos de Plantas/farmacologia , Óleos de Plantas/uso terapêutico , Ácido alfa-Linolênico/administração & dosagem , Ácido alfa-Linolênico/uso terapêutico
9.
Acta Pharmacol Sin ; 26(3): 353-8, 2005 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-15715933

RESUMO

AIM: To explore the change of 5-lipoxygenase (5-LO) pathway expression and proinflammatory mediators level of lung tissue and cerebral cortex, and the possible regulatory mechanism through central nervous 5-LO pathways to pulmonary inflammatory status in antigen repeated challenged rats. METHODS: Four groups of rats were treated as control, asthma model, asthma model treatment with dexamethasone (DXM, 0.5 mg/kg, i.p.) and ketotifen (5 mg/kg, i.g.). Tumor necrosis factor (TNF)-alpha, interleukin (IL)-4, interferon (IFN)-gamma, and nitric oxide (NO) were detected by ELISA kits. The mRNA expression of 5-LO and LTA4-hydrolase (LTA4-H) was analyzed by reverse transcription-polymerase chain reaction (RT-PCR), and the protein content of 5-LO was measured by Western blot. RESULTS: Increase of TNF-alpha, IL-4, NO level, and decrease of IFN-gamma level in bronchoalveolar lavage fluid (BALF) and cerebral cortex in sensitized rats were shown after repeated antigen challenge. The expression of 5-LO and LTA4-H mRNA, and 5-LO protein levels were increased in lung tissue and cerebral cortex in asthma rats. In comparison with the asthma model, DXM significantly inhibited the increase of cytokine levels and the expression of 5-LO pathway enzyme (P<0.05). Ketotifen also inhibited the increase of TNF-alpha level and 5-LO pathway enzyme expression in lung and cerebral cortex, but had no effect on the level of NO, IL-4, and IFN-gamma. CONCLUSION: The correlative increase of 5-LO pathway enzyme expression and proinflammatory mediators of brain may have a regulatory effect on pulmonary inflammation in asthma.


Assuntos
Araquidonato 5-Lipoxigenase/metabolismo , Asma/metabolismo , Córtex Cerebral/enzimologia , Cetotifeno/farmacologia , Pulmão/enzimologia , Animais , Anti-Inflamatórios/farmacologia , Araquidonato 5-Lipoxigenase/genética , Asma/patologia , Córtex Cerebral/metabolismo , Dexametasona/farmacologia , Feminino , Antagonistas dos Receptores Histamínicos H1/farmacologia , Masculino , RNA Mensageiro/biossíntese , RNA Mensageiro/genética , Ratos , Ratos Sprague-Dawley
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA