Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 103
Filtrar
1.
Environ Geochem Health ; 46(7): 224, 2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38849581

RESUMO

This study aimed to evaluate the effect of modified nanoscale zero-valent iron (SAS-nZVI) on chemical leaching of lead and cadmium composite contaminated soil by citric acid (CA). The synthesized SAS-nZVI was used as a leaching aid to improve the removal rate of soil heavy metals (HMs) by CA chemical leaching. The effects of various factors such as SAS-nZVI dosage, elution temperature and elution time were studied. At the same time, the effect of chemical leaching on the basic physical and chemical properties of soil and the morphology of HMs was evaluated. The results show that when the SAS-nZVI dosage is 2.0 g/L, the leaching temperature is 25 °C, and the leaching time is 720 min, the maximum removal rates of Pb and Cd in the soil are 77.64% and 97.15% respectively. The experimental results were evaluated using elution and desorption kinetic models (Elovich model, double constant model, diffusion model). The elution and desorption process of Pb and Cd in soil by SAS-nZVI-CA fitted well with the double-constant model, indicating that the desorption kinetic process of Pb and Cd is a heterogeneous diffusion process, and the elution process is controlled by diffusion factors. After leaching with SAS-nZVI-CA, the physical and chemical properties of the soil changed little, the mobility and toxicity of HMs in the soil were reduced, and the HMs content in the leaching waste liquid was reduced. It can be concluded that SAS-nZVI enhances the efficiency of CA in extracting Pb and Cd from soil, minimizes soil damage resulting from chemical leaching technology, and alleviates the challenges associated with treating leaching waste liquid.


Assuntos
Cádmio , Ácido Cítrico , Ferro , Chumbo , Poluentes do Solo , Poluentes do Solo/química , Ácido Cítrico/química , Ferro/química , Cádmio/química , Chumbo/química , Recuperação e Remediação Ambiental/métodos , Nanopartículas Metálicas/química , Metais Pesados/química , Cinética , Solo/química , Temperatura
2.
Environ Res ; 252(Pt 2): 118946, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38631470

RESUMO

Heavy metals pollution is a notable threat to environment and human health. This study evaluated the potential ecological and health risks of heavy metals (Cu, Cr, Cd, Pb, Zn, Ni, and As) and their accumulation in a peanut-soil system based on 34 soil and peanut kernel paired samples across China. Soil As and Cd posed the greatest pollution risk with 47.1% and 17.6% of soil samples exceeding the risk screen levels, respectively, with 26.5% and 20.6% of the soil sites at relatively strong potential ecological risk level, respectively, and with the geo-accumulation levels at several soil sites in the uncontaminated to moderately contaminated categories. About 35.29% and 2.94% of soil sites were moderately and severely polluted based on Nemerow comprehensive pollution index, respectively, and a total of 32.4% of samples were at moderate ecological hazard level based on comprehensive potential ecological risk index values. The Cd, Cr, Ni, and Cu contents exceeded the standard in 11.76, 8.82, 11.76 and 5.88% of the peanut kernel samples, respectively. Soil metals posed more health risks to children than adults in the order As > Ni > Cr > Cu > Pb > Zn > Cd for non-carcinogenic health risks and Ni > Cr â‰« Cd > As > Pb for carcinogenic health risks. The soil As non-cancer risk index for children was greater than the permitted limits at 14 sites, and soil Ni and Cr posed the greatest carcinogenic risk to adults and children at many soil sites. The metals in peanut did not pose a non-carcinogenic risk according to standard. Peanut kernels had strong enrichment ability for Cd with an average bio-concentration factor (BCF) of 1.62. Soil metals contents and significant soil properties accounted for 35-74% of the variation in the BCF values of metals based on empirical prediction models.


Assuntos
Arachis , Metais Pesados , Poluentes do Solo , Metais Pesados/análise , Arachis/química , Medição de Risco , Poluentes do Solo/análise , Humanos , China , Monitoramento Ambiental , Solo/química , Criança
3.
Bioorg Chem ; 147: 107381, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38669781

RESUMO

The development of XOD/URAT1 dual target inhibitors has emerged as a promising therapeutic strategy for the management of hyperuricemia. Here, through virtual screening, we have identified digallic acid as a novel dual target inhibitor of XOD/URAT1 and subsequently evaluated its pharmacological properties, pharmacokinetics, and toxicities. Digallic acid inhibited URAT1 with an IC50 of 5.34 ± 0.65 µM, which is less potent than benzbromarone (2.01 ± 0.36 µM) but more potent than lesinurad (10.36 ± 1.23 µM). Docking and mutation analysis indicated that residues S35, F241 and R477 of URAT1 confer a high affinity for digallic acid. Digallic acid inhibited XOD with an IC50 of 1.04 ± 0.23 µM. Its metabolic product, gallic acid, inhibited XOD with an IC50 of 0.91 ± 0.14 µM. Enzyme kinetic studies indicated that both digallic acid and gallic acid act as mixed-type XOD inhibitors. It shares the same binding mode as digallic acid, and residues E802, R880, F914, T1010, N768 and F1009 contribute to their high affinity. The anion group (carboxyl) of digallic acid contribute significantly to its inhibition activity on both XOD and URAT1 as indicated by docking analysis. Remarkably, at a dosage of 10 mg/kg in vivo, digallic acid exhibited a stronger urate-lowering and uricosuric effect compared to the positive drug benzbromarone and lesinurad. Pharmacokinetic study indicated that digallic acid can be hydrolyzed into gallic acid in vivo and has a t1/2 of 0.77 ± 0.10 h. Further toxicity evaluation indicated that digallic acid exhibited no obvious renal toxicity, as reflected by CCK-8, biochemical analysis (CR and BUN) and HE examination. The findings of our study can provide valuable insights for the development of XOD/URAT1 dual target inhibitors, and digallic acid deserves further investigation as a potential anti-hyperuricemic drug.


Assuntos
Relação Dose-Resposta a Droga , Inibidores Enzimáticos , Hiperuricemia , Transportadores de Ânions Orgânicos , Proteínas de Transporte de Cátions Orgânicos , Hiperuricemia/tratamento farmacológico , Humanos , Animais , Transportadores de Ânions Orgânicos/antagonistas & inibidores , Transportadores de Ânions Orgânicos/metabolismo , Relação Estrutura-Atividade , Estrutura Molecular , Proteínas de Transporte de Cátions Orgânicos/antagonistas & inibidores , Proteínas de Transporte de Cátions Orgânicos/metabolismo , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/farmacocinética , Urato Oxidase/química , Descoberta de Drogas , Simulação de Acoplamento Molecular , Camundongos , Masculino , Ácido Gálico/química , Ácido Gálico/farmacologia , Ácido Gálico/análogos & derivados , Ratos Sprague-Dawley
4.
BMC Plant Biol ; 24(1): 166, 2024 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-38433195

RESUMO

BACKGROUND: Chlorophyll (Chl) is an agronomic trait associated with photosynthesis and yield. Gibberellin 2-oxidases (GA2oxs) have previously been shown to be involved in Chl accumulation. However, whether and how the PbrGA2ox proteins (PbrGA2oxs) mediate Chl accumulation in pear (Pyrus spp.) is scarce. RESULTS: Here, we aimed to elucidate the role of the pear GA2ox gene family in Chl accumulation and the related underlying mechanisms. We isolated 13 PbrGA2ox genes (PbrGA2oxs) from the pear database and identified PbrGA2ox1 as a potential regulator of Chl accumulation. We found that transiently overexpressing PbrGA2ox1 in chlorotic pear leaves led to Chl accumulation, and PbrGA2ox1 silencing in normal pear leaves led to Chl degradation, as evident by the regreening and chlorosis phenomenon, respectively. Meanwhile, PbrGA2ox1-overexpressing (OE) tobacco plants discernably exhibited Chl built-up, as evidenced by significantly higher Pn and Fv/Fm. In addition, RNA sequencing (RNA-seq), physiological and biochemical investigations revealed an increase in abscisic acid (ABA), methyl jasmonate (MeJA), and salicylic acid (SA) concentrations and signaling pathways; a marked elevation in reducing and soluble sugar contents; and a marginal decline in the starch and sucrose levels in OE plants. Interestingly, PbrGA2ox1 overexpression did not prominently affect Chl synthesis. However, it indeed facilitated chloroplast development by increasing chloroplast number per cell and compacting the thylakoid granum stacks. These findings might jointly contribute to Chl accumulation in OE plants. CONCLUSION: Overall, our results suggested that GA2oxs accelerate Chl accumulation by stimulating chloroplast development and proved the potential of PbrGA2ox1 as a candidate gene for genetically breeding biofortified pear plants with a higher yield.


Assuntos
Clorofila , Pyrus , Pyrus/genética , Melhoramento Vegetal , Cloroplastos/genética , Tilacoides
5.
Zhongguo Zhen Jiu ; 44(2): 175-181, 2024 Feb 12.
Artigo em Inglês, Chinês | MEDLINE | ID: mdl-38373763

RESUMO

OBJECTIVES: To investigate the effects of electroacupuncture (EA) on the miR-381, leucine-rich repeat C4 protein (LRRC4), and downstream stromal cell-derived factor-1 (SDF-1)/CXC chemokine receptor 4 (CXCR4) signaling pathway in rat model of ischemic stroke, and to explore the mechanism by which EA improves neurological damage following ischemic stroke. METHODS: Among 50 SPF male SD rats, 10 rats were randomly selected into a sham surgery group, and the remaining rats were used to establish the middle cerebral artery occlusion (MCAO) model. The 30 successfully modeled rats were randomly divided into a model group, an EA group, and an agonist group, with 10 rats in each group. The rats in the EA group received EA at "Baihui" (GV 20) and "Dazhui" (GV 14), with disperse-dense wave, a frequency of 2 Hz/10 Hz, and a current intensity of 1 mA, 30 min per session, once daily for a total of 14 days. The rats in the agonist group received miR-381 agonist injections into the lateral ventricle, with 10 µL per injection, every 7 days for a total of 2 injections. After intervention, ZeaLonga neurobehavioral deficit score was observed in each group. HE staining was performed to observe the morphological changes in the ischemic brain tissue of rats in each group. ELISA was used to measure the levels of tumor necrosis factor alpha (TNF-α), interleukin-6 (IL-6), and nerve growth factor (NGF) in serum. Western blot was employed to detect the protein expression of LRRC4, SDF-1, CXCR4, and extracellular regulated protein kinase 1 (ERK1) in the ischemic brain tissue. Real-time PCR was utilized to assess the expression of miR-381 and LRRC4, SDF-1, CXCR4, ERK1 mRNA in the ischemic brain tissue. RESULTS: After intervention, the brain tissue showed disordered cell arrangement, reduced quantity, and significant interstitial edema, with numerous vacuoles in the model group. The pathological changes mentioned above were alleviated in the brain tissue of rats in the EA group and the agonist group. Compared with the sham surgery group, the rats in the model group exhibited increased ZeaLonga neurobehavioral deficit scores, elevated levels of serum TNF-α and IL-6 (P<0.01), and decreased serum NGF level (P<0.01);the protein expression of SDF-1, CXCR4 and ERK1 in ischemic brain tissue was reduced (P<0.01), while LRRC4 protein expression was increased (P<0.01);the expression of miR-381, as well as SDF-1, CXCR4 and ERK1 mRNA in ischemic brain tissue was decreased (P<0.01), while LRRC4 mRNA expression was increased (P<0.01). Compared with the model group, the rats in the EA group and the agonist group showed decreased ZeaLonga neurobehavioral deficit scores and reduced levels of serum TNF-α and IL-6 (P<0.05, P<0.01), and increased serum NGF levels (P<0.05, P<0.01); the protein expression of SDF-1, CXCR4 and ERK1 in ischemic brain tissue was increased (P<0.01), while LRRC4 protein expression was decreased (P<0.01);the expression of miR-381, as well as SDF-1, CXCR4 and ERK1 mRNA in ischemic brain tissue was increased (P<0.05, P<0.01), while LRRC4 mRNA expression was decreased (P<0.01). CONCLUSIONS: EA at "Baihui" (GV 20) and "Dazhui" (GV 14) may promote the repair of neurological damage following ischemic stroke by up-regulating miR-381 to selectively inhibit LRRC4 expression, thereby activating the SDF-1/CXCR4 signaling pathway.


Assuntos
Isquemia Encefálica , Eletroacupuntura , AVC Isquêmico , MicroRNAs , Ratos , Masculino , Animais , Isquemia Encefálica/genética , Isquemia Encefálica/terapia , Isquemia Encefálica/metabolismo , Ratos Sprague-Dawley , Receptores CXCR4/genética , Receptores CXCR4/metabolismo , Fator de Necrose Tumoral alfa/genética , Interleucina-6 , Fator de Crescimento Neural , Transdução de Sinais , MicroRNAs/genética , RNA Mensageiro
6.
RSC Adv ; 13(37): 25877-25887, 2023 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-37664215

RESUMO

How to efficiently treat municipal solid waste (MSW) has become one of the critical solutions in response to the call for "carbon neutrality". Here, the waste polypropylene nonwoven fabric of waste diapers was converted into hierarchical nanoporous biochar (HPBC) through pre-carbonization and activation processes as an ideal precursor for supercapacitors (SCs) with excellent performance. The prepared HPBC-750-4 with an ultrahigh specific surface area (3838.04 m2 g-1) and abundant heteroatomic oxygen (13.25%) and nitrogen (1.16%) codoped porous biochar structure. Given its structural advantages, HPBC-750-4 achieved a specific capacitance of 340.9 F g-1 at a current density of 1 A g-1 in a three-electrode system. Its capacitance retention rate was above 99.2% after 10 000 cycles at a current density of 10 A g-1, which indicated an excellent rate capability and long-term cycling stability. Furthermore, the HPBC-750-4//HPBC-750-4 symmetric SC exhibited a superb energy density of 10.02 W h kg-1 with a power density of 96.15 W kg-1 in a 6 M KOH electrolyte. This work not only demonstrates the enormous potential of waste polypropylene nonwoven fabric in the SC industry but also provides an economically feasible means of managing MSW.

7.
Toxics ; 11(7)2023 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-37505539

RESUMO

This research study investigates the extent of heavy metal pollution and pollution trends in agricultural soil in mining areas during different time periods. A total of 125 soil samples were collected from two mining areas in China, the Chengchao iron mine and Tonglushan ancient copper mine. The samples were analyzed for various potentially toxic elements (PTEs). The index of geoaccumulation (Igeo), pollution index (Pi), potential ecological risk index (Eri), and hazard index (HI) were calculated to evaluate the pollution status of PTEs in the farmland around the two mining areas. The sources of PTEs were inferred by pollution distribution, and the pollution conditions of the two mining areas were compared. The results showed that the pollution of ancient copper mines was relatively severe. The main pollution elements were Cu, Cd, and As, and their average Pi values were 3.76, 4.12, and 1.84, respectively. These PTEs mainly came from mining and transportation. There are no particularly polluted elements in the Chengchao iron mine and the average Pi of all PTEs were classified as light pollution and had a wide range of sources. The findings suggest that the ancient copper mine, due to outdated mining techniques and insufficient mine restoration efforts, resulted in the spread and accumulation of PTEs in the soil over an extended period, making the farmland soil around the ancient copper mine more polluted compared to the Chengchao iron mine. In the two mining areas, there is no risk of cancer for adults and children. However, the RI values of Cr in adults and children are higher than 10-4, which indicates that the carcinogenic risk of Cr in these soils is very high. The non-carcinogenic effects of PTEs on the human body in the soil of ancient copper mine are also higher than that of the Chengchao iron mine.

8.
Adv Mater ; 35(38): e2302916, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37288841

RESUMO

Cancer stem-like cells (CSCs), capable of indefinite self-renewal and differentiation, are considered to be the root cause of tumor radiotherapy (RT) resistance. However, the CSCs-targeted therapy still remains to be a great challenge because they are commonly located in the deep tumor making drugs hard to approach, and their hypoxic and acidic niche can further aggravate radioresistance. Herein, based on the finding that hypoxic CSCs highly express carbonic anhydrase IX (CAIX) on the cell membrane, a CAIX-targeted induced in situ self-assembly system on the surface of CSC is reported to overcome hypoxic CSC-mediated radioresistance. Via the sequential processes of "monomer release-target accumulation-surface self-assembly", the constructed peptide-based drug delivery system (CA-Pt) exhibits the advantages of deep penetration, amplified CAIX inhibition, and enhanced cellular uptake, which greatly relieves the hypoxic and acidic microenvironment to promote the hypoxic CSC differentiation and combines with platinum to boost the RT-inducing DNA damage. In both lung cancer tumor mouse and zebrafish embryo models, CA-Pt treatment can effectively assist RT in suppressing tumor growth and preventing tumor invasion and metastasis. This study uses a surface-induced self-assembly strategy to differentiate hypoxic CSCs, which may provide a universal treatment strategy for overcoming tumor radioresistance.


Assuntos
Neoplasias Pulmonares , Peixe-Zebra , Animais , Camundongos , Linhagem Celular Tumoral , Peptídeos , Diferenciação Celular , Microambiente Tumoral
9.
Plants (Basel) ; 12(11)2023 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-37299155

RESUMO

Iron is an essential trace element for plants; however, low bioactive Fe in soil continuously places plants in an Fe-deficient environment, triggering oxidative damage. To cope with this, plants make a series of alterations to increase Fe acquisition; however, this regulatory network needs further investigation. In this study, we found notably decreased indoleacetic acid (IAA) content in chlorotic pear (Pyrus bretschneideri Rehd.) leaves caused by Fe deficiency. Furthermore, IAA treatment slightly induced regreening by increasing chlorophyll synthesis and Fe2+ accumulation. At that point, we identified PbrSAUR72 as a key negative effector output of auxin signaling and established its close relationship to Fe deficiency. Furthermore, the transient PbrSAUR72 overexpression could form regreening spots with increased IAA and Fe2+ content in chlorotic pear leaves, whereas its transient silencing does the opposite in normal pear leaves. In addition, cytoplasm-localized PbrSAUR72 exhibits root expression preferences and displays high homology to AtSAUR40/72. This promotes salt tolerance in plants, indicating a putative role for PbrSAUR72 in abiotic stress responses. Indeed, transgenic plants of Solanum lycopersicum and Arabidopsis thaliana overexpressing PbrSAUR72 displayed less sensitivity to Fe deficiency, accompanied by substantially elevated expression of Fe-induced genes, such as FER/FIT, HA, and bHLH39/100. These result in higher ferric chelate reductase and root pH acidification activities, thereby hastening Fe absorption in transgenic plants under an Fe-deficient condition. Moreover, the ectopic overexpression of PbrSAUR72 inhibited reactive oxygen species production in response to Fe deficiency. These findings contribute to a new understanding of PbrSAURs and its involvement in Fe deficiency, providing new insights for the further study of the regulatory mechanisms underlying the Fe deficiency response.

10.
Hum Cell ; 36(4): 1464-1476, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37129799

RESUMO

Oral squamous cell carcinoma (OSCC) is a common cancer with an increasing incidence worldwide. Zinc-finger proteins 677 (ZNF677) is involved in the progression and methylation of various cancers, but its role and mechanism in OSCC remain indeterminate. The expression of ZNF677 was analyzed by online database and immunohistochemistry, while the methylation level of ZNF677 was determined by the methylation-specific PCR. The role and mechanism of ZNF677 in the tumor cell growth, migration, invasion and stemness were addressed by cell counting kit-8 (CCK-8), 5-ethynyl-2'-deoxyuridine (EdU) incorporation, Transwell, wound-healing, sphere­formation, and western blot assays. In addition, its function was also investigated in a xenografted mice model. The results showed that ZNF677 was lowly expressed in OSCC with a hypermethylation level, which predicted poor overall survival in patients with HNSC. Upregulation of ZNF677 reduced the cell viability, Edu positive cells, numbers of invasion cells, the migration ability, numbers of spheres formation and the expression of proliferation, migration and stemness related proteins in CAL-27 and SCC25 cells. Mechanically, the relative levels of p-AKT/AKT were decreased and the levels of p-FOXO3a/FOXO3a were increased in both cells overexpressed with ZNF677, which were reversed by the SC79 treatment. Moreover, interference of FOXO3a recovered the suppressive effects of ZNF677 overexpression on cell proliferation, migration, invasion and stemness of OSCC cells. Furthermore, overexpression of ZNF677 reduced the tumor volume and weight, and the relative protein level of p-AKT/AKT with an increased level of p-FOXO3a/FOXO3a, and improved pathological symptoms in vivo. Collectively, ZNF677 suppressed OSCC cells growth, migration, invasion and stemness through inhibiting AKT/FOXO3a pathway.


Assuntos
Carcinoma de Células Escamosas , Neoplasias de Cabeça e Pescoço , Neoplasias Bucais , Animais , Camundongos , Carcinoma de Células Escamosas/patologia , Neoplasias Bucais/genética , Neoplasias Bucais/patologia , Carcinoma de Células Escamosas de Cabeça e Pescoço/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proliferação de Células/genética , Linhagem Celular Tumoral , Movimento Celular/genética , Regulação Neoplásica da Expressão Gênica
11.
Altern Ther Health Med ; 29(5): 268-273, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37083647

RESUMO

Objective: To compare and analyze the effects of proximal femoral nail anti-rotation (PFNA) and femoral head replacement in treating elderly patients with femoral intertrochanteric fracture. Methods: A retrospective analysis was performed on clinical data of elderly patients with femoral intertrochanteric fractures from February 2019 to February 2021 in the hospital. Patients were divided into a control group (PFNA) and a study group (femoral head replacement) based on surgical methods after propensity score matching. Perioperative indicators, hematocrit (HCT), hemoglobin (Hb), hip function, and complications one year after surgery were compared between the two groups after excluding confounding factors. Result: Both groups had complete follow-ups without any cases lost. The study group had longer surgical time, higher intraoperative blood loss, and greater postoperative drainage volume compared to the control group, while the hospital stay and weight-bearing starting time were shorter in the study group (P < .05). There were statistically significant differences in HCT and Hb after surgery between the two groups (P < .05). One year after surgery, the excellent and good rate of hip function was 90.28% in the study group and 76.39% in the control group (P < .05). The total incidence rate of postoperative early complications was higher in the study group, while the total incidence rate of late postoperative complications was lower in the study group compared to the control group (P < .05). Conclusion: PFNA and femoral head replacement have their respective advantages in treating elderly patients with femoral intertrochanteric fractures. PFNA causes less trauma to patients but has poorer postoperative hip function recovery, while femoral head replacement causes greater trauma to patients but has better postoperative hip function recovery. Therefore, the appropriate surgical method can be selected based on the patient's specific conditions.


Assuntos
Fraturas do Fêmur , Fixação Intramedular de Fraturas , Fraturas do Quadril , Humanos , Idoso , Estudos Retrospectivos , Cabeça do Fêmur , Pinos Ortopédicos , Fixação Intramedular de Fraturas/métodos , Resultado do Tratamento , Fraturas do Quadril/cirurgia , Fraturas do Fêmur/cirurgia , Complicações Pós-Operatórias/epidemiologia
12.
Water Sci Technol ; 87(5): 1096-1111, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36919736

RESUMO

Being prepared by a liquid-phase reduction method, sulfur-modified nanoscale zero-valent iron (S-nZVI) was then coated with sodium alginate (SA) to form gel beads (SAS-nZVI) which are capable of removing Pb(II) from water. SAS-nZVI was characterized by SEM, EDS, FTIR, XRD, and BET, and its removal effect on Pb(II) in water, including the effects of pH, adsorbent dosage, shaking time, and initial concentration of lead, was also studied. The results demonstrated that the maximum removal efficiency of Pb(II) by SAS-nZVI was 97.89%, and the maximum uptake was 246.40 mg/g. In the Pb(II) removal behavior study, the pseudo-second-order kinetic model and the Langmuir isotherm model were found to fit the adsorption process well. SAS-nZVI was easier to recycle from the reaction system, and the removal efficiency of SAS-nZVI to Pb(II) in water was still able to reach 82.75% after five cycles. Therefore, this study suggests that SAS-nZVI has a high removal capacity for Pb(II) and great potential in water pollution treatment.


Assuntos
Ferro , Poluentes Químicos da Água , Ferro/química , Chumbo , Água , Poluentes Químicos da Água/análise , Adsorção , Enxofre
13.
Molecules ; 28(2)2023 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-36677693

RESUMO

A practical and efficient Suzuki coupling of phenols has been developed by using trans-NiCl(o-Tol)(PCy3)2/2PCy3 as a catalyst in the presence of tosyl fluoride as an activator. The key for the direct use of phenols lies in the compatibility of the nickel catalyst with tosyl fluoride (TsF) and its sulfur(VI) fluoride exchange (SuFEx) with CAr-OH. Water has been found to improve the one-pot process remarkably. The steric and electronic effects and the functional group compatibility of the one-pot Suzuki coupling of phenols appear to be comparable to the conventional one of pre-prepared aryl tosylates. A series of electronically and sterically various biaryls could be obtained in good to excellent yields by using 3-10 mol% loading of the nickel catalyst. The applications of this one-pot procedure in chemoselective derivatization of complex molecules have been demonstrated in 3-phenylation of estradiol and estrone.

14.
Environ Res ; 217: 114968, 2023 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-36455628

RESUMO

Evaluation joint cadmium (Cd) and copper (Cu) phytotoxicity in wide range of subtropical agricultural soils is highly vital for phytoremediation of soils contaminated with Cd and Cu. In this study, barley root elongation assays were performed in 30 representative soils in response to single and combined Cd and Cu inhibition. The single Cd caused nearly 50% inhibition of barley root elongation, and Cu induced more than 50% inhibition in most soils. Mixed Cd + Cu caused significant inhibition on barley growth with average relative root elongation values of 20.0% and 30.4% in soil with a pH < 7 and pH > 7, respectively. An antagonistic interaction was evaluated in combined Cd + Cu toxicity, which was strong in soils containing low soluble Cu and Cd contents. Soil pH was the controlling factor in predicting single and mixed Cd and Cu phytotoxicity, which could explain 44% and 46% variation of single Cd and Cu toxicity, respectively. Soil organic carbon and effective cation exchange capacity were another important factor positively influencing metal toxicity, which further improved empirical prediction models accuracy, with determined coefficient (r2) values of 0.44-0.84. These results provide a theoretical basis for soils Cd and Cu pollution control.


Assuntos
Intoxicação por Cádmio , Hordeum , Poluentes do Solo , Cobre/toxicidade , Cobre/análise , Solo/química , Cádmio/toxicidade , Carbono , Poluentes do Solo/toxicidade , Poluentes do Solo/análise
15.
Cancer Med ; 12(6): 6877-6888, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36411731

RESUMO

BACKGROUND: Acute myeloid leukemia (AML) patients with a Fms-like tyrosine kinase 3 (FLT3) mutation have a high incidence of relapse despite allogeneic hematopoietic stem cell transplantation (allo-HSCT) and a subsequent poor prognosis. FLT3 inhibitors (FLT3i) have been suggested to reduce the post-transplant relapse risk in recent studies. As more evidence is accumulated, we perform the present meta-analysis to assess the efficacy and safety of FLT3i as post-transplant maintenance therapy in AML patients. METHODS: Literature search was performed in public databases from inception to December 31, 2021. Overall survival (OS), relapse-free survival (RFS), cumulative incidence of relapse (CIR), non-relapse mortality (NRM), graft-versus-host disease (GVHD) and adverse events were compared between FLT3i and control groups. Pooled hazard ratio (HR) or relative risk (RR) with corresponding 95% confidence interval (CI) were calculated. RESULTS: We identified 12 eligible studies with 2282 FLT3-mutated AML patients who had received HSCT. There was no between-study heterogeneity and a fix-effect model was used. Post-transplant FLT3i maintenance significantly prolonged OS (HR = 0.41, 95%CI: 0.32-0.52, p < 0.001) and RFS (HR = 0.39, 95%CI 0.31-0.50, p < 0.001), and reduced CIR (HR = 0.31, 95%CI 0.20-0.46, p < 0.001) as compared with control. There were no significant risk differences in NRM (RR = 0.69, 95%CI 0.41-1.17, p = 0.169), acute GVHD (RR = 1.17, 95%CI 0.93-1.47, p = 0.175), chronic GVHD (RR = 1.31, 95%CI 0.91-1.39, p = 0.276) and grade ≥3 adverse events between both groups, except for skin toxicity (RR = 5.86, 95%CI 1.34-25.57, p = 0.019). CONCLUSION: Post-transplant FLT3i maintenance can improve survival and reduce relapse in FLT3-mutated AML patients and is tolerable.


Assuntos
Doença Enxerto-Hospedeiro , Transplante de Células-Tronco Hematopoéticas , Leucemia Mieloide Aguda , Humanos , Tirosina Quinase 3 Semelhante a fms/genética , Transplante Homólogo , Mutação , Transplante de Células-Tronco Hematopoéticas/efeitos adversos , Recidiva , Doença Enxerto-Hospedeiro/etiologia , Doença Enxerto-Hospedeiro/prevenção & controle , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/terapia , Estudos Retrospectivos
16.
Environ Pollut ; 316(Pt 2): 120424, 2023 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-36272602

RESUMO

The major health risks of dual exposure to two hazardous factors of plastics and radioactive contamination are obscure. In the present study, we systematically evaluated the combinational toxic effects of tetrabromobisphenol A (TBBPA), one of the most influential plastic ingredients, mainly from electronic wastes, and γ-irradiation in zebrafish for the first time. TBBPA (0.25 µg/mL for embryos and larvae, 300 µg/L for adults) contamination aggravated the radiation (6 Gy for embryos and larvae, 20 Gy for adults)-induced early dysplasia and aberrant angiogenesis of embryos, further impaired the locomotor vitality of irradiated larvae, and worsened the radioactive multiorganic histologic injury, neurobehavioural disturbances and dysgenesis of zebrafish adults as well as the inter-generational neurotoxicity in offspring. TBBPA exaggerated the radiative toxic effects not only by enhancing the inflammatory and apoptotic response but also by further unbalancing the endocrine system and disrupting the underlying gene expression profiles. In conclusion, TBBPA exacerbates radiation-induced injury in zebrafish, including embryos, larvae, adults and even the next generation. Our findings provide new insights into the toxicology of TBBPA and γ-irradiation, shedding light on the severity of cocontamination of MP components and radioactive substances and thereby inspiring novel remediation and rehabilitation strategies for radiation-injured aqueous organisms and radiotherapy patients.


Assuntos
Retardadores de Chama , Bifenil Polibromatos , Animais , Peixe-Zebra/metabolismo , Embrião não Mamífero , Retardadores de Chama/toxicidade , Retardadores de Chama/metabolismo , Bifenil Polibromatos/toxicidade , Bifenil Polibromatos/metabolismo , Larva
17.
J Radiat Res ; 63(6): 805-816, 2022 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-36253108

RESUMO

This article aims to investigate the protection of the intestine from ionizing radiation-induced injury by using D-galactose (D-gal) to alter the gut microbiome. In addition, this observation opens up further lines of research to further increase therapeutic potentials. Male C57BL/6 mice were exposed to 7.5 Gy of total body irradiation (TBI) or 13 Gy of total abdominal irradiation (TAI) in this study. After adjustment, D-gal was intraperitoneally injected into mice at a dose of 750 mg/kg/day. Survival rates, body weights, histological experiments and the level of the inflammatory factor IL-1ß were observed after TBI to investigate radiation injury in mice. Feces were collected from mice for 16S high-throughput sequencing after TAI. Furthermore, fecal microorganism transplantation (FMT) was performed to confirm the effect of D-gal on radiation injury recovery. Intraperitoneally administered D-gal significantly increased the survival of irradiated mice by altering the gut microbiota structure. Furthermore, the fecal microbiota transplanted from D-gal-treated mice protected against radiation injury and improved the survival rate of recipient mice. Taken together, D-gal accelerates gut recovery following radiation injury by promoting the growth of specific microorganisms, especially those in the class Erysipelotrichia. The study discovered that D-gal-induced changes in the microbiota protect against radiation-induced intestinal injury. Erysipelotrichia and its metabolites are a promising therapeutic option for post-radiation intestinal regeneration.


Assuntos
Galactose , Lesões por Radiação , Masculino , Camundongos , Animais , Camundongos Endogâmicos C57BL , Radiação Ionizante
18.
Virol J ; 19(1): 114, 2022 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-35765099

RESUMO

BACKGROUND: Chronic infection with hepatitis B virus (HBV) has been proved highly associated with the development of hepatocellular carcinoma (HCC). AIMS: The purpose of the study is to investigate the association between HBV preS region quasispecies and HCC development, as well as to develop HCC diagnosis model using HBV preS region quasispecies. METHODS: A total of 104 chronic hepatitis B (CHB) patients and 117 HBV-related HCC patients were enrolled. HBV preS region was sequenced using next generation sequencing (NGS) and the nucleotide entropy was calculated for quasispecies evaluation. Sparse logistic regression (SLR) was used to predict HCC development and prediction performances were evaluated using receiver operating characteristic curves. RESULTS: Entropy of HBV preS1, preS2 regions and several nucleotide points showed significant divergence between CHB and HCC patients. Using SLR, the classification of HCC/CHB groups achieved a mean area under the receiver operating characteristic curve (AUC) of 0.883 in the training data and 0.795 in the test data. The prediction model was also validated by a completely independent dataset from Hong Kong. The 10 selected nucleotide positions showed significantly different entropy between CHB and HCC patients. The HBV quasispecies also classified three clinical parameters, including HBeAg, HBVDNA, and Alkaline phosphatase (ALP) with the AUC value greater than 0.6 in the test data. CONCLUSIONS: Using NGS and SLR, the association between HBV preS region nucleotide entropy and HCC development was validated in our study and this could promote the understanding of HCC progression mechanism.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Antígenos de Superfície da Hepatite B/genética , Vírus da Hepatite B/genética , Humanos , Modelos Logísticos , Nucleotídeos , Quase-Espécies
19.
Acta Biochim Pol ; 69(1): 65-69, 2022 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-35129942

RESUMO

In the present study isoxanthanol was investigated for treatment of monosodium iodoacetate (MIA)-induced osteoarthritis (OA) in vivo. The study demonstrated that isoxanthanol inhibited excessive release of interleukin-6, NO and PGE2 in RAW264.7 cells treated with LPS in dose dependent manner. The effects of isoxanthanol were examined in a rat model of osteoarthritis (OA) and observed to amelio-rate inflammatory damage and protect against OA. Moreover, in vivo data also confirmed inhibition of interleukin-6, NO and PGE2 levels in LPS-induced OA-rats. Deterioration of knee subchondral bone in LPS-induced OA-rats was also prevented effectively by isoxanthanol-treatment. Therefore, isoxanthanol prevents subchondral bone deterioration in OA rats via targeting inflammatory processes.


Assuntos
Anti-Inflamatórios/farmacologia , Artrite Experimental/tratamento farmacológico , Osteoartrite/tratamento farmacológico , Extratos Vegetais/farmacologia , Animais , Artrite Experimental/metabolismo , Osso e Ossos/metabolismo , Dinoprostona/metabolismo , Modelos Animais de Doenças , Interleucina-6/metabolismo , Masculino , Camundongos , Óxido Nítrico/metabolismo , Osteoartrite/metabolismo , Substâncias Protetoras/farmacologia , Células RAW 264.7 , Ratos , Ratos Sprague-Dawley , Sesquiterpenos/farmacologia , Xanthium/química
20.
Environ Pollut ; 299: 118834, 2022 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-35031407

RESUMO

The quality and quantity of dissolved organic matter (DOM) greatly controls the fate of heavy metals. The characteristics of DOM and its interaction with metals are essential for the metal ecological risk assessment of soils. In this study, the DOM spectral characteristics of representative forest soils and the complex capacities between fluorescent DOM components and cadmium (Cd) were analyzed. Functional groups, such as carboxylic acids, alcohols and phenols, were determined by FT-IR analysis. Chromophoric DOM, fluorescent DOM and dissolved organic carbon (DOC) concentrations exhibited strong correlations with each other, indicating that variations of DOC could be well explained by Chromophoric DOM or fluorescent DOM due to high correlation coefficients. The spectral slope ratio was in the range of 0.85-5.90, implying an abundance of heavy macromolecular humic acids, peptides, and polycondensates. The absorbance spectral at 254 nm (SUVA254) strongly correlated with SUVA260 (r = 0.992, P < 0.01), indicating that hydrophobicity closely related with aromatic structure, and aromatic groups could be broadly hydrophobic. Fluorescence indices were from 1.62 to 2.21 and biological index values ranged from 0.54 to 1.14, where the DOM was mainly sourced from mixed terrestrial and autogenous inputs in most sites. Four universal fluorescence components were identified and characterized by fluorescence EEM-PARAFAC, including two humic-like (components 1 and 2), one tyrosine-like (components 3) and one fulvic-like (components 4) component. Both components 3 and 4 showed fluorescence quenching with increasing Cd concentrations, while components 1 and 2 had no evident change in fluorescence intensity. The logK3 and logK4 values ranged from 4.41 to 5.29 and 4.71 to 5.54, respectively, with most logK values of component 3 for Cd binding being smaller than that of component 4, thus, indicating that the fulvic acid substances exhibited stronger and more stable interactions with Cd than protein-like components.


Assuntos
Metais Pesados , Solo , Cádmio/análise , Matéria Orgânica Dissolvida , Florestas , Substâncias Húmicas/análise , Metais Pesados/análise , Solo/química , Espectrometria de Fluorescência , Espectroscopia de Infravermelho com Transformada de Fourier
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA