Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Case Rep Oncol ; 15(2): 700-704, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36157687

RESUMO

ROS1 comprises a small molecular subset of NSCLC, and several fusion partners have been discovered. Concomitant mutations of EGFR and ROS1 in NSCLC have been occasionally reported, while no clear standard of treatment has been revealed. Here we report a case with metastatic lung adenocarcinoma detected to have EGFR 21 exon L858R mutation at diagnosis, who responded to first-line gefitinib and second-line osimertinib treatment. Next-generation sequencing during the treatment course revealed multiple alterations, including an OPRM1-ROS1 Ointergenic: R36 fusion. We reviewed the related literatures but found no report of this fusion type previously. The application of ctDNA detection results in the finding of new alterations, which need further confirmation.

2.
Cell Death Discov ; 7(1): 357, 2021 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-34785642

RESUMO

Ubiquitination displays a crucial role in various biological functions, such as protein degradation, signal transduction, and cellular homeostasis. Accumulating evidence has indicated that ubiquitination is essential in cancer progression. Ubiquitin-conjugating enzyme E2S (UBE2S) is a member of ubiquitin-conjugating enzyme family of the ubiquitin system and its role in hepatocellular cancer (HCC) is largely unknown. We investigated the role of UBE2S in HCC and found UBE2S upregulation is relevant with large tumor size, recurrence, and advanced TNM stage, serving as an independent risk factor of overall survival (OS) and disease-free survival (DFS) for HCC patients. We conducted in vitro experiments and found that in HCC cells, UBE2S overexpression increases the resistance to 5-FU and oxaliplatin, while UBE2S knockdown achieves an opposite effect. UBE2S is transcriptionally activated by the binding of FOXM1 to UBE2S promoter, which induces its upregulation and reduces PTEN protein level by promoting PTEN ubiquitination at Lys60 and Lys327 and facilitating AKT phosphorylation. The promotional effect of FOXM1-UBE2S axis on HCC cell chemoresistance is attenuated by allosteric AKT inhibitor, MK2206. In conclusion, our results reveal that UBE2S is a prognostic biomarker for HCC patients, and the FOXM1-UBE2S-PTEN-p-AKT signaling axis might be a promising target for the treatment of HCC.

3.
Science ; 371(6531): 803-810, 2021 02 19.
Artigo em Inglês | MEDLINE | ID: mdl-33602850

RESUMO

Although bespoke, sequence-specific proteases have the potential to advance biotechnology and medicine, generation of proteases with tailor-made cleavage specificities remains a major challenge. We developed a phage-assisted protease evolution system with simultaneous positive and negative selection and applied it to three botulinum neurotoxin (BoNT) light-chain proteases. We evolved BoNT/X protease into separate variants that preferentially cleave vesicle-associated membrane protein 4 (VAMP4) and Ykt6, evolved BoNT/F protease to selectively cleave the non-native substrate VAMP7, and evolved BoNT/E protease to cleave phosphatase and tensin homolog (PTEN) but not any natural BoNT protease substrate in neurons. The evolved proteases display large changes in specificity (218- to >11,000,000-fold) and can retain their ability to form holotoxins that self-deliver into primary neurons. These findings establish a versatile platform for reprogramming proteases to selectively cleave new targets of therapeutic interest.


Assuntos
Toxinas Botulínicas/metabolismo , Evolução Molecular Direcionada , Engenharia de Proteínas , Animais , Bacteriófago M13/genética , Toxinas Botulínicas/química , Toxinas Botulínicas/genética , Domínio Catalítico , Linhagem Celular , Células Cultivadas , Humanos , Mutação , Neurônios/metabolismo , PTEN Fosfo-Hidrolase/metabolismo , Biblioteca de Peptídeos , Domínios Proteicos , Proteínas R-SNARE/metabolismo , Ratos , Seleção Genética , Especificidade por Substrato , Proteína 2 Associada à Membrana da Vesícula/metabolismo
4.
Nat Commun ; 8(1): 423, 2017 09 04.
Artigo em Inglês | MEDLINE | ID: mdl-28871080

RESUMO

A short half-life in the circulation limits the application of therapeutics such as single-domain antibodies (VHHs). We utilize red blood cells to prolong the circulatory half-life of VHHs. Here we present VHHs against botulinum neurotoxin A (BoNT/A) on the surface of red blood cells by expressing chimeric proteins of VHHs with Glycophorin A or Kell. Mice whose red blood cells carry the chimeric proteins exhibit resistance to 10,000 times the lethal dose (LD50) of BoNT/A, and transfusion of these red blood cells into naive mice affords protection for up to 28 days. We further utilize an improved CD34+ culture system to engineer human red blood cells that express these chimeric proteins. Mice transfused with these red blood cells are resistant to highly lethal doses of BoNT/A. We demonstrate that engineered red blood cells expressing VHHs can provide prolonged prophylactic protection against bacterial toxins without inducing inhibitory immune responses and illustrates the potentially broad translatability of our strategy for therapeutic applications.The therapeutic use of single-chain antibodies (VHHs) is limited by their short half-life in the circulation. Here the authors engineer mouse and human red blood cells to express VHHs against botulinum neurotoxin A (BoNT/A) on their surface and show that an infusion of these cells into mice confers long lasting protection against a high dose of BoNT/A.


Assuntos
Toxinas Botulínicas Tipo A/toxicidade , Eritrócitos/metabolismo , Engenharia Genética , Anticorpos de Domínio Único/genética , Animais , Anticorpos Neutralizantes/administração & dosagem , Anticorpos Neutralizantes/genética , Anticorpos Neutralizantes/metabolismo , Toxinas Botulínicas Tipo A/metabolismo , Botulismo/etiologia , Botulismo/terapia , Transfusão de Eritrócitos , Eritrócitos/virologia , Células Precursoras Eritroides/metabolismo , Células Precursoras Eritroides/transplante , Células Precursoras Eritroides/virologia , Vetores Genéticos/genética , Vetores Genéticos/metabolismo , Glicoforinas/genética , Glicoforinas/metabolismo , Humanos , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Metaloendopeptidases/genética , Metaloendopeptidases/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Retroviridae/genética , Retroviridae/metabolismo , Anticorpos de Domínio Único/administração & dosagem , Anticorpos de Domínio Único/metabolismo
5.
Hum Mol Genet ; 23(16): 4315-27, 2014 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-24705357

RESUMO

RASopathies, a family of disorders characterized by cardiac defects, defective growth, facial dysmorphism, variable cognitive deficits and predisposition to certain malignancies, are caused by constitutional dysregulation of RAS signalling predominantly through the RAF/MEK/ERK (MAPK) cascade. We report on two germline mutations (p.Gly39dup and p.Val55Met) in RRAS, a gene encoding a small monomeric GTPase controlling cell adhesion, spreading and migration, underlying a rare (2 subjects among 504 individuals analysed) and variable phenotype with features partially overlapping Noonan syndrome, the most common RASopathy. We also identified somatic RRAS mutations (p.Gly39dup and p.Gln87Leu) in 2 of 110 cases of non-syndromic juvenile myelomonocytic leukaemia, a childhood myeloproliferative/myelodysplastic disease caused by upregulated RAS signalling, defining an atypical form of this haematological disorder rapidly progressing to acute myeloid leukaemia. Two of the three identified mutations affected known oncogenic hotspots of RAS genes and conferred variably enhanced RRAS function and stimulus-dependent MAPK activation. Expression of an RRAS mutant homolog in Caenorhabditis elegans enhanced RAS signalling and engendered protruding vulva, a phenotype previously linked to the RASopathy-causing SHOC2(S2G) mutant. Overall, these findings provide evidence of a functional link between RRAS and MAPK signalling and reveal an unpredicted role of enhanced RRAS function in human disease.


Assuntos
Carcinogênese/genética , Mutação/fisiologia , Fenótipo , Proteínas ras/genética , Animais , Caenorhabditis elegans , Estudos de Coortes , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Humanos , Leucemia Mieloide Aguda/genética , Leucemia Mielomonocítica Juvenil/genética , MAP Quinase Quinase Quinases/metabolismo , Síndrome de Noonan/genética , Proteína Oncogênica v-akt/metabolismo , Transdução de Sinais/genética , Proteínas ras/química , Proteínas ras/metabolismo
6.
J Biol Chem ; 289(10): 6839-6849, 2014 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-24443565

RESUMO

The three deleted in liver cancer genes (DLC1-3) encode Rho-specific GTPase-activating proteins (RhoGAPs). Their expression is frequently silenced in a variety of cancers. The RhoGAP activity, which is required for full DLC-dependent tumor suppressor activity, can be inhibited by the Src homology 3 (SH3) domain of a Ras-specific GAP (p120RasGAP). Here, we comprehensively investigated the molecular mechanism underlying cross-talk between two distinct regulators of small GTP-binding proteins using structural and biochemical methods. We demonstrate that only the SH3 domain of p120 selectively inhibits the RhoGAP activity of all three DLC isoforms as compared with a large set of other representative SH3 or RhoGAP proteins. Structural and mutational analyses provide new insights into a putative interaction mode of the p120 SH3 domain with the DLC1 RhoGAP domain that is atypical and does not follow the classical PXXP-directed interaction. Hence, p120 associates with the DLC1 RhoGAP domain by targeting the catalytic arginine finger and thus by competitively and very potently inhibiting RhoGAP activity. The novel findings of this study shed light on the molecular mechanisms underlying the DLC inhibitory effects of p120 and suggest a functional cross-talk between Ras and Rho proteins at the level of regulatory proteins.


Assuntos
Domínio Catalítico , Proteínas Ativadoras de GTPase/antagonistas & inibidores , Proteínas Supressoras de Tumor/antagonistas & inibidores , Proteína p120 Ativadora de GTPase/química , Alanina/química , Análise Mutacional de DNA , Proteínas Ativadoras de GTPase/química , Proteínas Ativadoras de GTPase/genética , Humanos , Redes e Vias Metabólicas , Ligação Proteica , Proteínas Supressoras de Tumor/química , Proteínas Supressoras de Tumor/genética , Proteína p120 Ativadora de GTPase/genética
7.
Biol Chem ; 394(11): 1399-410, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23950574

RESUMO

In a variety of normal and pathological cell types, Rho-kinases I and II (ROCKI/II) play a pivotal role in the organization of the nonmuscle and smooth muscle cytoskeleton and adhesion plaques as well as in the regulation of transcription factors. Thus, ROCKI/II activity regulates cellular contraction, motility, morphology, polarity, cell division, and gene expression. Emerging evidence suggests that dysregulation of the Rho-ROCK pathways at different stages is linked to cardiovascular, metabolic, and neurodegenerative diseases as well as cancer. This review focuses on the current status of understanding the multiple functions of Rho-ROCK signaling pathways and various modes of regulation of Rho-ROCK activity, thereby orchestrating a concerted functional response.


Assuntos
Quinases Associadas a rho/antagonistas & inibidores , Quinases Associadas a rho/metabolismo , Animais , Apoptose/genética , Apoptose/fisiologia , Proliferação de Células , Regulação para Baixo/genética , Regulação para Baixo/fisiologia , Regulação Enzimológica da Expressão Gênica/genética , Regulação Enzimológica da Expressão Gênica/fisiologia , Humanos , Óxido Nítrico Sintase Tipo III/antagonistas & inibidores , Óxido Nítrico Sintase Tipo III/metabolismo , Fosforilação/genética , Fosforilação/fisiologia , Estabilidade Proteica , Transdução de Sinais/genética , Transdução de Sinais/fisiologia , Proteínas rho de Ligação ao GTP/fisiologia , Quinases Associadas a rho/fisiologia , Proteína rhoA de Ligação ao GTP/fisiologia , Proteína rhoB de Ligação ao GTP/fisiologia , Proteína de Ligação a GTP rhoC
8.
Hum Mol Genet ; 22(2): 262-70, 2013 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-23059812

RESUMO

Activating somatic and germline mutations of closely related RAS genes (H, K, N) have been found in various types of cancer and in patients with developmental disorders, respectively. The involvement of the RAS signalling pathways in developmental disorders has recently emerged as one of the most important drivers in RAS research. In the present study, we investigated the biochemical and cell biological properties of two novel missense KRAS mutations (Y71H and K147E). Both mutations affect residues that are highly conserved within the RAS family. KRAS(Y71H) showed no clear differences to KRAS(wt), except for an increased binding affinity for its major effector, the RAF1 kinase. Consistent with this finding, even though we detected similar levels of active KRAS(Y71H) when compared with wild-type protein, we observed an increased activation of MEK1/2, irrespective of the stimulation conditions. In contrast, KRAS(K147E) exhibited a tremendous increase in nucleotide dissociation generating a self-activating RAS protein that can act independently of upstream signals. As a consequence, levels of active KRAS(K147E) were strongly increased regardless of serum stimulation and similar to the oncogenic KRAS(G12V). In spite of this, KRAS(K147E) downstream signalling did not reach the level triggered by oncogenic KRAS(G12V), especially because KRAS(K147E) was downregulated by RASGAP and moreover exhibited a 2-fold lower affinity for RAF kinase. Here, our findings clearly emphasize that individual RAS mutations, despite being associated with comparable phenotypes of developmental disorders in patients, can cause remarkably diverse biochemical effects with a common outcome, namely a rather moderate gain-of-function.


Assuntos
Displasia Ectodérmica/genética , Displasia Ectodérmica/metabolismo , Insuficiência de Crescimento/genética , Insuficiência de Crescimento/metabolismo , Cardiopatias Congênitas/genética , Cardiopatias Congênitas/metabolismo , Mutação , Síndrome de Noonan/genética , Síndrome de Noonan/metabolismo , Proteínas ras/genética , Proteínas ras/metabolismo , Linhagem Celular , Fácies , Humanos , Ligação Proteica , Conformação Proteica , Estabilidade Proteica , Transdução de Sinais , Proteínas ras/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA