Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
ACS Appl Bio Mater ; 7(5): 3316-3329, 2024 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-38691017

RESUMO

Basic fibroblast growth factor (bFGF) plays an important role in active wound repair. However, the existing dosage forms in clinical applications are mainly sprays and freeze-dried powders, which are prone to inactivation and cannot achieve a controlled release. In this study, a bioactive wound dressing named bFGF-ATP-Zn/polycaprolactone (PCL) nanodressing with a "core-shell" structure was fabricated by emulsion electrospinning, enabling the sustained release of bFGF. Based on the coordination and electrostatic interactions among bFGF, ATP, and Zn2+, as well as their synergistic effect on promoting wound healing, a bFGF-ATP-Zn ternary combination system was prepared with higher cell proliferation activity and used as the water phase for emulsion electrospinning. The bFGF-ATP-Zn/PCL nanodressing demonstrated improved mechanical properties, sustained release of bFGF, cytocompatibility, and hemocompatibility. It increased the proliferation activity of human dermal fibroblasts (HDFs) and enhanced collagen secretion by 1.39 and 3.45 times, respectively, while reducing the hemolysis rate to 3.13%. The application of the bFGF-ATP-Zn/PCL nanodressing in mouse full-thickness skin defect repair showed its ability to accelerate wound healing and reduce wound scarring within 14 days. These results provide a research basis for the development and application of this bioactive wound dressing product.


Assuntos
Trifosfato de Adenosina , Materiais Biocompatíveis , Proliferação de Células , Emulsões , Fator 2 de Crescimento de Fibroblastos , Teste de Materiais , Cicatrização , Zinco , Cicatrização/efeitos dos fármacos , Emulsões/química , Animais , Zinco/química , Zinco/farmacologia , Humanos , Fator 2 de Crescimento de Fibroblastos/química , Fator 2 de Crescimento de Fibroblastos/farmacologia , Camundongos , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia , Proliferação de Células/efeitos dos fármacos , Trifosfato de Adenosina/metabolismo , Tamanho da Partícula , Fibroblastos/efeitos dos fármacos , Poliésteres/química , Poliésteres/farmacologia , Bandagens
2.
J Control Release ; 362: 784-796, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37003490

RESUMO

Hepatitis B core protein virus-like particles (HBc VLPs) have attracted wide attentions using as drug delivery vehicles, due to its excellent stability and easy in large scale production. Here in the present work, we report unique thermal-triggered loading and glutathione-responsive releasing property of the HBc particles for anticancer drug delivery. Through reversible temperature-dependent hole gating of the HBc particle capsid, about 4248 doxorubicin (DOX) were successfully encapsulated inside nanocage of a single nanoparticle at high HBc recovery of 83.2%, by simply incubating the DOX with HBc at 70 °C for 90 min. The new strategy was significantly superior to the disassembly-reassembly methods, which can only yield 3556 DOX loading at 52.3% HBc recovery. The thermal-sensitive drug entry channel in HBc was analyzed by molecular dynamic simulations, and the G113, G117 and R127 were identified as the key amino acid residues that are not conducive to the entrance of DOX but sensitive to temperature. Especially, the ΔGbind of R127 become even higher at high temperature, mutation of the R127 would be the first choice to make the drug entry thermodynamically easier. Due to plenty of disulfide bonds linking the HBc subunits, the HBc particles loaded with DOX exhibited intrinsic glutathione (GSH) responsivity for efficient controlled release in tumor sites. To further increase the tumor-targeting effect of the drug, Cyclo(Arg-Gly-Asp-d-Tyr-Lys) peptide was conjugated to the surface of HBc through a PEG linker. The prepared HBc-based anticancer drug showed significantly improved stability, tumor specificity, and in vivo anticancer activity on MCF7-bearing Balb/c-nu mice. Overall, our work demonstrated that the HBc VLPs can be an ideal drug carrier to fulfill requirement of the intelligent loading and "on demand" release of the therapeutic agents for efficient cancer therapy with minimal adverse effects.

3.
J Chromatogr A ; 1686: 463648, 2022 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-36410170

RESUMO

High-performance size-exclusion chromatography (HPSEC) has been developed for the rapid and quantitative analysis of inactivated foot and mouth disease virus (FMDV) and adopted by regulatory agencies and vaccine manufacturers. However, strong non-specific adsorption of type A/AKT III FMDV was found on some batches of TSK G4000 SWXL column, which significantly affected the analysis accuracy. The adsorption mechanism was studied by investigating the charge and hydrophobicity of A/AKT III FMDV and another serotype O/Mya 98, as well as several model proteins, by zeta potential and hydrophobic interaction chromatography analysis. Adsorption was related to both the FMDV strain and column lots. Some specific amino acids residues on the A/AKT III FMDV surface may strongly interact with the column if the silica-based stationary phase was not completely diol-modified. Several amino acids and chaotropic salts were screened as additives in the mobile phase to suppress the non-specific adsorption of AKT III FMDV in HPSEC analysis. Results showed that adding 0.4 M of arginine (Arg), lysine (Lys), NaClO4, or NaSCN achieved 100% FMDV recovery and normal retention time. Suppression of interaction between FMDV and the backbone of the silica matrix through competitive binding with residues of FMDV or the matrix is considered as the main mechanism by which these four additives act as suppressors. The addition of Arg, NaClO4, or NaSCN led to an apparent decrease in the thermal dissociation temperature Tm of FMDV, whereas Lys slightly increased viral stability. Finally, the mobile phase comprising 0.4 M Lys was screened as optimum that allowed accurate quantification of both two serotypes of FMDV according to method validation; particularly, a relative standard deviation (RSD) < 5% was achieved for AKT III FMDV using three different lots of columns.


Assuntos
Vírus da Febre Aftosa , Sorogrupo , Proteínas Proto-Oncogênicas c-akt , Cromatografia em Gel , Aminoácidos , Lisina , Arginina
4.
Int J Pharm ; 625: 122083, 2022 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-35934167

RESUMO

Maintaining structural integrity and enhancing stability of inactivated foot-and-mouth disease virus (iFMDV) antigen in adjuvants is crucial to ensure the vaccine potency. Unfortunately, formulation with most reported adjuvants leads to the accelerated dissociation of iFMDV into inactive pentamers. Here, an ionic liquid, i.e., choline and niacin ([Cho][Nic]), which was found to stabilize iFMDV against the acid- and thermo- induced dissociation in buffer solution, was applied to construct a novel oil-in-ionic liquid (o/IL) nanoemulsion adjuvant composed of [Cho][Nic], squalene, and Tween 80. The o/IL nanoemulsion formulated with iFMDV has a monodisperse diameter of 135.8 ± 40.4 nm. The thermostability and long-term stability of iFMDV were remarkably enhanced in o/IL nanoemulsion compared with that in the o/w emulsion without [Cho][Nic] and in the commercial Montanide ISA 206 adjuvant. The o/IL nanoemulsion exerted its adjuvant effects by improving the humoral immune responses. Immunization of o/IL nanoemulsion adjuvanted iFMDV induced specific IgG titers similar to that adjuvanted by Montanide ISA 206 and about 4-fold higher than the un-adjuvanted iFMDV, also promoted the activation of B lymphocytes and the secretion of interleukin-4 in the mice model. This [Cho][Nic]-based o/IL nanoemulsion can serve as a promising adjuvant platform for the foot-and-mouth disease vaccine.


Assuntos
Vírus da Febre Aftosa , Líquidos Iônicos , Vacinas Virais , Adjuvantes Imunológicos/química , Adjuvantes Farmacêuticos , Animais , Anticorpos Antivirais , Antígenos Virais , Imunidade Humoral , Camundongos , Óleo Mineral
5.
J Control Release ; 346: 380-391, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35483639

RESUMO

Effective antigen delivery and immune stimulation in nasal mucosa determine the success of mucosal immunity. Here, an oil-in-ionic liquid (o/IL) nanoemulsion formulated with choline and niacin IL ([Cho][Nic]), squalene, and Tween 80 surfactant is explored as a vaccine delivery system for intranasal mucosal immunization. Compared to the o/w emulsion counterpart without the ILs, the o/IL manoemulsion showed a reduced and more uniform size of approximately 168 nm and significantly improved stability. Studies in mice model showed that when was used as an intranasal vaccine delivery system for influenza split-virus antigens, the antigens in the o/IL nanoemulsion induced strong mucosal immune responses with secretory IgA titers 25- and 5.8-fold higher than those of naked and commercial MF59-adjuvanted antigens, respectively. The o/IL nanoemulsion system also induced stronger systemic humoral responses. The excellent mucosal adjuvant effects of the o/IL nanoemulsion mainly benefited from the prolonged retention of antigens in the nasal cavity, enhanced antigen permeation into the submucosa, and the consequently promoted proliferation of CD11b cells and CD4+ T cells in nasal mucosa-associated lymphoid tissue. Moreover, when used as an injection adjuvant, the o/IL nanoemulsion also induced stronger humoral immune responses than MF59. Thus, the [Cho][Nic]-based o/IL nanoemulsion vaccine delivery system can serve as a promising adjuvant platform.


Assuntos
Vacinas contra Influenza , Influenza Humana , Líquidos Iônicos , Adjuvantes Imunológicos , Administração Intranasal , Animais , Anticorpos Antivirais , Antígenos Virais , Humanos , Imunidade nas Mucosas , Camundongos , Camundongos Endogâmicos BALB C
6.
Nanoscale ; 14(3): 766-779, 2022 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-34951432

RESUMO

Two dimensional black phosphorus nanosheets (BP NSs) have attracted plenty of attention in the research field of cancer photonic therapy. However, the poor stability and relatively low efficiency of reactive oxygen species (ROS) generation of BP NSs limit their practical application. To address these drawbacks, herein we report a red/black phosphorus (RP/BP) composite nanosheet, M-RP/BP@ZnFe2O4, which was synthesized by (1) partially converting red phosphorus (RP) to black phosphorus (BP) followed by liquid-phase ultrasonic exfoliation to form RP/BP NSs, (2) in situ synthesis of ZnFe2O4 nanoparticles on the surface of RP/BP NSs, (3) and wrapping with the MCF-7 cell membrane. Due to the presence of RP, BP, ZnFe2O4 and the cell membrane, the M-RP/BP@ZnFe2O4 NSs exhibited high performance in cancer phototherapy with the following features: (i) a Z-scheme heterojunction structure was formed between RP/BP NSs thus enabling high separation efficiency of the photogenerated electrons and holes; (ii) the photoexcitation holes in the valence band of RP can break the tumor microenvironment by oxidizing glutathione; (iii) the NSs could decompose water to produce H2O2 and O2, which can be further converted to toxic ˙OH through the ZnFe2O4 catalyzed Fenton reaction and 1O2 through energy transfer, respectively; and (iv) the cell membrane wrapping improved the targeting of the composite NSs at the tumor site and photonic therapy can be finally triggered by a 660 nm laser to convert O2 to ˙O2- and 1O2. The in vitro cytotoxicity experiments showed that more than 90% cells were killed after photodynamic therapy (PDT) at 0.3 mg mL-1 M-RP/BP@ZnFe2O4 NSs, and the animal experiments with xenograft tumor model mice indicated that tumor growth was completely inhibited and the highest survival rate of 83.3% at 60 days post PDT was obtained.


Assuntos
Nanopartículas , Neoplasias , Fotoquimioterapia , Animais , Peróxido de Hidrogênio , Camundongos , Neoplasias/tratamento farmacológico , Fósforo , Microambiente Tumoral
7.
Biomaterials ; 276: 121035, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34303153

RESUMO

Virus-like particles (VLPs) holding internal cavity with diameter from tens up to one hundred nanometers are attractive platform for drug delivery. Nevertheless, the packing of drugs in the nanocage mainly relies on complicated disassembly-reassembly process. In this study, hepatitis B core protein (HBc) VLPs which can withstand temperature up to 90 °C was employed as carrier to load a lipophilic near infrared dye IR780. It was found that an attaching-dis-atching-diffusing process was involved for the entering of IR780 in the cavity of HBc. The first two steps were associated with the electrostatic interactions between oppositely charged HBc and IR780, which was critically manipulated by ionic strength and HBc/IR780 mass ratio at which they were mixed; while the diffusion of IR780 across the shell of HBc showed a temperature-dependent manner that can be triggered by thermal induced pore-opening of the HBc capsid. At optimized condition, about 1055 IR780 molecules were encapsulated in each HBc by simply mixing them for 10 min at 60 °C. Compared with free IR780, the HBc-IR780 particles showed significantly improved aqueous and photostability, as well as enhanced photothermal and photodynamic performance for cancer therapy. This study provides a novel drug loading strategy and nanomemedicine for cancer phototherapies.


Assuntos
Hepatite B , Neoplasias , Hepatite B/terapia , Humanos , Indóis , Concentração Osmolar , Fototerapia
8.
Sheng Wu Gong Cheng Xue Bao ; 37(7): 2283-2292, 2021 Jul 25.
Artigo em Chinês | MEDLINE | ID: mdl-34327895

RESUMO

Immunotherapy is becoming an effective and less invasive strategy that can be applied to the treatment of various malignancies. Lentiviral vectors (LVs) have shown great potential in immunotherapy as they can stably integrate relatively large foreign DNA, and effectively transduce dividing and non-dividing cells. Clinical application needs high quality LVs, and therefore strict quality control of the final products is necessary to ensure their purity, efficacy and safety. The quantitative detection of LVs is among the key parts of product development and quality control. In this paper, the existing methods for quantitative detection of LVs are summarized, including fluorescence activated cell sorter (FACS), P24 enzyme-linked immuno sorbent assay (P24 ELISA), real-time fluorescence quantitative polymerase chain reaction (RT-qPCR), nanoparticle tracking analysis (NTA), tunable resistive pulse sensing(TRPS) and virus counter(VC).Their advantages and disadvantages are listed, and future development and challenges are discussed.


Assuntos
Lentivirus , Neoplasias , Vetores Genéticos/genética , Humanos , Imunoterapia , Lentivirus/genética , Transdução Genética
9.
Adv Healthc Mater ; 10(3): e2001835, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33200585

RESUMO

A Z-scheme heterojunction with high separation efficiency of photogenerated electrons and holes and enhanced reduction/oxidation potentials, which can enhance reactive oxygen species generation and photothermal conversion efficiency, exhibits tremendous potential in photonic theranostics. Herein, antimonene nanosheets (Sb NSs) are functionalized with photosensitizer 5,10,15,20-Tetrakis(4-hydroxy-phenyl)-21H,12H-porphine (THPP) and a poly(ethylene glycol) (PEG) modifier. The Sb-THPP-PEG NSs thus fabricated are found to form a Z-scheme heterojunction structure between Sb and THPP, based on their valence band and bandgap level analysis. The Z-scheme heterojunction structure enables the Sb-THPP-PEG NSs multiple promising features for cancer therapy. Firstly, due to improved electron-hole pairs separation efficiency and redox potential, new reactive oxygen species •O2- is generated, besides the production of 1 O2 by THPP. Secondly, the assembly of THPP enhances the NIR-light-to-heat conversion of Sb NS, a photothermal conversion efficiency as high as 44.6% is obtained by this Sb-THPP-PEG NSs photonic nanomedicine. Moreover, the photothermal, fluorescent, and photoacoustic imaging properties of Sb-THPP-PEG NSs allow multimodal imaging-guided tumor treatment.


Assuntos
Neoplasias , Fotoquimioterapia , Humanos , Nanomedicina , Neoplasias/tratamento farmacológico , Fármacos Fotossensibilizantes/uso terapêutico , Espécies Reativas de Oxigênio
10.
Eng Life Sci ; 20(11): 451-465, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33204232

RESUMO

Super large proteinaceous particles (SLPPs) such as virus, virus like particles, and extracellular vesicles have successful and promising applications in vaccination, gene therapy, and cancer treatment. The unstable nature, the complex particulate structure and composition are challenges for their manufacturing and applications. Rational design of the processing should be built on the basis of fully understanding the characteristics of these bio-particles. This review highlights useful analytical techniques for characterization and stabilization of SLPPs in the process development and product formulations, including high performance size exclusion chromatography, multi-angle laser light scattering, asymmetrical flow field-flow fractionation, nanoparticle tracking analysis, CZE, differential scanning calorimetry, differential scanning fluorescence, isothermal titration calorimetry , and dual polarization interferometry. These advanced analytical techniques will be helpful in obtaining deep insight into the mechanism related to denaturation of SLPPs, and more importantly, in seeking solutions to preserve their biological functions against deactivation or denaturation. Combination of different physicochemical techniques, and correlation with in vitro or in vivo biological activity analyses, are considered to be the future trend of development in order to guarantee a high quality, safety, and efficacy of SLPPs.

11.
J Mater Chem B ; 8(46): 10650-10661, 2020 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-33150923

RESUMO

Black phosphorus quantum dots (BPQDs) with excellent biocompatibility, outstanding photothermal and photodynamic efficacies have attracted significant attention in cancer therapy. However, the low environmental stability and poor dispersity of BPQDs limit their practical applications. In the present work, biocompatible anionic waterborne polyurethane (WPU) nanoparticles were synthesized from castor oil to encapsulate the BPQDs. The WPU-BPQDs with a BPQDs loading capacity of about 13.8% (w/w) exhibited significantly improved dispersion and environmental stability without affecting the photothermal efficiency of BPQDs. Intriguingly, it was found that WPU encapsulation led to significant enhancement in the reactive oxygen species (ROS) generation of BPQDs, which indicated the enhanced photodynamic efficacy of the encapsulated BPQDs as compared to the bare BPQDs. The effect of solution pH on the ROS generation efficiency of BPQDs and the pH variation caused by BPQDs degradation was then investigated to explore the possible mechanism. In acidic solution, ROS generation was suppressed, while BPQDs degradation led to the acidification of the solution. Fortunately, after being encapsulated inside the WPU nanoparticles, the degradation rate of BPQDs became slower, while the acidic environment around BPQDs was favorably regulated by WPU nanoparticles having a special electrochemical double layer consisting of interior COO- and exterior NH(Et3)+, thus endowing the WPU-BPQDs-boosted production of ROS as compared to the bare BPQDs. Considering the undesired acidic tumor environment, this unique pH regulation effect of WPU-BPQDs would be beneficial for in vivo photodynamic efficacy. Both in vitro and in vivo experiments showed that WPU-BPQDs could effectively improve photodynamic therapy (PDT) and maintain outstanding photothermal therapy (PTT) effects. Together with the excellent dispersity, biocompatibility, and easy biodegradability, WPU-BPQDs can be a promising agent for PDT/PTT cancer treatments.


Assuntos
Nanopartículas/química , Fósforo/química , Fotoquimioterapia/métodos , Terapia Fototérmica/métodos , Pontos Quânticos/química , Espécies Reativas de Oxigênio/metabolismo , Animais , Ânions , Relação Dose-Resposta a Droga , Feminino , Células HeLa , Células Hep G2 , Humanos , Células MCF-7 , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Nanopartículas/administração & dosagem , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Fósforo/administração & dosagem , Fármacos Fotossensibilizantes/administração & dosagem , Fármacos Fotossensibilizantes/síntese química , Poliuretanos/administração & dosagem , Poliuretanos/síntese química , Pontos Quânticos/administração & dosagem , Distribuição Aleatória , Água
12.
J Mater Chem B ; 8(21): 4609-4619, 2020 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-32373909

RESUMO

Tumor phototherapy is of great significance for the expansion and advancement of cancer treatment methods. Herein, two-dimensional boron nanosheets (B NSs) with a thickness of 2.4 nm exhibiting an excellent photothermal conversion performance were developed via a simple liquid phase ultrasonic stripping method. Following the loading of the photosensitizer agent chlorin e6 (Ce6) and subsequent modification with poly(allylamine hydrochloride) (PAH) and poly(acrylic acid) (PAA), a B@Ce6-PAH-PAA NS nanomedicine exhibiting dual modal imaging-guided cancer photothermal therapy (PTT) and photodynamic therapy (PDT) properties, as well as outstanding stability was developed. The suitable nano-size (120 nm) of B@Ce6-PAH-PAA NSs can allow drugs to target tumor tissue with an enhanced permeability and retention effect (EPR). The cytotoxicity experiments demonstrated that B@Ce6-PAH-PAA NSs exhibited good biocompatibility even at high concentrations. Furthermore, the in vitro and in vivo experiments showed the excellent synergistic therapeutic effect of this nanomedicine for PTT and PDT.


Assuntos
Antineoplásicos/farmacologia , Materiais Biocompatíveis/farmacologia , Fotoquimioterapia , Fármacos Fotossensibilizantes/farmacologia , Resinas Acrílicas/química , Resinas Acrílicas/farmacologia , Animais , Antineoplásicos/síntese química , Antineoplásicos/química , Materiais Biocompatíveis/síntese química , Materiais Biocompatíveis/química , Boro/química , Boro/farmacologia , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Clorofilídeos , Ensaios de Seleção de Medicamentos Antitumorais , Feminino , Humanos , Células MCF-7 , Neoplasias Mamárias Experimentais/tratamento farmacológico , Neoplasias Mamárias Experimentais/metabolismo , Neoplasias Mamárias Experimentais/patologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Nanopartículas/química , Tamanho da Partícula , Fármacos Fotossensibilizantes/síntese química , Fármacos Fotossensibilizantes/química , Poliaminas/química , Poliaminas/farmacologia , Porfirinas/química , Porfirinas/farmacologia , Propriedades de Superfície
13.
Vaccine ; 38(14): 2904-2912, 2020 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-32127228

RESUMO

Adjuvants are important to enhance the antigens immunogenicity, but may also alter the structures of antigens. Currently off-line methods for adjuvants induced antigen alteration suffer from incomplete release and possible structural alteration of antigens. Here we investigated the differential scanning fluorimetry (DSF) as an in-situ and high-throughput strategy to analyze the stability of inactivated foot-and-mouth disease virus (iFMDV), known as 146S, in three representative adjuvants including aluminum hydroxide (AH), oil-in-water (O/W) emulsion, and water-in-oil (W/O) emulsion. Under optimized DSF conditions, the Tm referring to 146S dissociation can be detected in all three adjuvants. Using SYBR Green II as fluorescent dye enables detection of iFMDV as low as 5 µg/mL. By comparing the Tm in different pH, three adjuvants showed different effects on 146S. Screening for excipients was successfully conducted using DSF. Sugars and glycerol increased the Tm of iFMDV in all three adjuvants, but to different degree. The stabilization by 20% (w/v) sucrose and glycerol was further verified by differential scanning calorimetry (DSC) and high performance size exclusion chromatography (HPSEC). DSF is proved also applicative for low-purity iFMDV and pre-adjuvanted iFMDV vaccines. In summary, the DSF can be a powerful tool in formulation study and vaccine quality control for inactivated virus vaccines.


Assuntos
Adjuvantes Imunológicos/química , Hidróxido de Alumínio/química , Febre Aftosa , Vacinas Virais/química , Animais , Emulsões/química , Fluorometria , Febre Aftosa/prevenção & controle , Vírus da Febre Aftosa , Vacinas de Produtos Inativados/química
14.
Acta Biomater ; 10(4): 1692-704, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24012607

RESUMO

Vegetable oils are one of the most important classes of bio-resources for producing polymeric materials. The main components of vegetable oils are triglycerides - esters of glycerol with three fatty acids. Several highly reactive sites including double bonds, allylic positions and the ester groups are present in triglycerides from which a great variety of polymers with different structures and functionalities can be prepared. Vegetable-oil-based polyurethane, polyester, polyether and polyolefin are the four most important classes of polymers, many of which have excellent biocompatibilities and unique properties including shape memory. In view of these characteristics, vegetable-oil-based polymers play an important role in biomaterials and have attracted increasing attention from the polymer community. Here we comprehensively review recent developments in the preparation of vegetable-oil-based polyurethane, polyester, polyether and polyolefin, all of which have potential applications as biomaterials.


Assuntos
Materiais Biocompatíveis/farmacologia , Óleos de Plantas/química , Polímeros/farmacologia , Animais , Materiais Biocompatíveis/síntese química , Materiais Biocompatíveis/química , Humanos , Polímeros/síntese química , Polímeros/química
15.
ACS Appl Mater Interfaces ; 4(11): 5981-7, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23067105

RESUMO

Enzyme-based smart materials constitute a rapidly growing group of functional materials. Often the natively evolved enzymes are not compatible with hydrophobic synthetic materials, thus significantly limiting the performance of enzymes. This work investigates the use of a polyethylene glycol (PEG)-conjugated detergent enzyme for self-cleaning coatings. As a result, PEG conjugated α-amylase demonstrated a much more homogeneous distribution in polyurethane coatings than the parent native enzyme as detected by both fluorescent microscopy and scanning electron microscopy (SEM) equipped with energy-dispersive X-ray spectroscopy (SEM-EDX). Additionally, the conjugated enzyme showed enhanced retention in the coating and much improved thermal stability with a halflife of 20 days detected at 80 °C and over 350 days under room temperature. Such coating-incorporated enzyme afforded interesting self-cleaning functionality against starch-based stains as examined through a slipping drop test.


Assuntos
Enzimas/química , Polietilenoglicóis/química , Adsorção , Enzimas Imobilizadas/química , Interações Hidrofóbicas e Hidrofílicas , Teste de Materiais , Propriedades de Superfície
16.
Artigo em Chinês | MEDLINE | ID: mdl-20848845

RESUMO

OBJECTIVE: To investigate the expression of CD95 and special marker for activation of peripheral blood lymphocytes in patients with hand foot and mouth disease (HFMD) and its significance. METHODS: Immunofluorescent two-color flow cytometry was used to study the expression of CD95 and HLA-DR on lymphocytes in 58 patients with HFMD and 34 normal controls. RESULTS: Expression of CD3+ T cells was significantly lower in patients (63.82 +/- 7.74)% than that in controls (P < 0.001), meanwhile the expression of CD4+ T cells was (34.29 +/- 7.33)%, significantly lower than that of the controls (P < 0.005). The percentage of lymphocytes expressing HLA-DR in patients was (23.77 +/- 5.78)%, significantly higher than that of the controls (P < 0.005). Significant difference was observed in the expression of HLA- DR on CD8+ T cells in patients (1.34 +/- 1.12)% as compared with controls (P < 0.005). No significant difference in the expression of CD95 on lymphocytes was observed between patients and the controls (P > 0.05). CONCLUSION: The findings support that cellular immunodeficiency exists in patients and that lymphocytes were abnormally activated in the patients. The activation of peripheral blood T lymphocytes in patients mainly involves CD8 subset and it may play an important role in the immune response to antiviral infection.


Assuntos
Antígenos/genética , Doença de Mão, Pé e Boca/genética , Doença de Mão, Pé e Boca/imunologia , Subpopulações de Linfócitos T/imunologia , Receptor fas/genética , Antígenos/imunologia , Linfócitos T CD4-Positivos/imunologia , Estudos de Casos e Controles , Células Cultivadas , Pré-Escolar , Humanos , Lactente , Contagem de Linfócitos , Masculino , Receptor fas/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA