Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 239
Filtrar
1.
Biochem Pharmacol ; : 116282, 2024 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-38762147

RESUMO

IPF is a chronic, progressive, interstitial lung disease with high mortality. Current drugs have limited efficacy in curbing disease progression and improving quality of life. Selpercatinib, a highly selective inhibitor of receptor tyrosine kinase RET (rearranged during transfection), was approved in 2020 for the treatment of a variety of solid tumors with RET mutations. In this study, the action and mechanism of Selpercatinib in pulmonary fibrosis were evaluated in vivo and in vitro. In vivo experiments demonstrated that Selpercatinib significantly ameliorated bleomycin (BLM)-induced pulmonary fibrosis in mice. In vitro, Selpercatinib inhibited the proliferation, migration, activation and extracellular matrix deposition of fibroblasts by inhibiting TGF-ß1/Smad and TGF-ß1/non-Smad pathway, and suppressed epithelial-mesenchymal transition (EMT) like process of lung epithelial cells via inhibiting TGF-ß1/Smad pathway. The results of in vivo pharmacological tests corroborated the results obtained from the in vitro experiments. Further studies revealed that Selpercatinib inhibited abnormal phenotypes of lung fibroblasts and epithelial cells in part by regulating its target RET. In short, Selpercatinib inhibited the activation of fibroblasts and EMT-like process of lung epithelial cells by inhibiting TGF-ß1/Smad and TGF-ß1/non-Smad pathways, thus alleviating BLM-induced pulmonary fibrosis in mice.

2.
Clin Transl Oncol ; 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38750344

RESUMO

OBJECTIVES: No head-to-head trials had been performed to estimate the relative effectiveness of poly ADP-ribose polymerase inhibitor (PARPi) and androgen receptor signaling inhibitor (ARSi) in the first-line treatment for metastatic castration-resistant prostate cancer (mCRPC). We aimed to perform a systematic review and network meta-analysis to evaluate the comparative effectiveness of various systemic treatment agents for patients with mCRPC. METHODS: A comprehensive literature search was conducted for abstracts and full-text articles from the database's inception through April 27, 2023. The study concentrated on assessing radiographic progression-free survival (rPFS) for both overall and homologous recombination repair mutation (HRRm) population, with overall survival (OS) as the secondary measure. Under the Bayesian framework, the overall effect was pooled using the fixed-effects model in base case analysis. Scenario analysis using restricted mean survival time (RMST) methods was performed to test the robustness of the results. RESULTS: Nine studies with 6,830 patients and 8 unique treatment options were included. Network meta-analysis demonstrated that talazoparib in combination with enzalutamide (TALA + ENZA; overall population, hazard ratio [HR], 0.20; 95% credible interval [CrI]: 0.16-0.26; RMST, 3.51; 95% confidence interval [CI] 2.46-4.60; HRRm population, HR, 0.15; 95% CrI: 0.09-0.23; RMST, 4.14; 95% CI 2.84-5.39) was superior to other treatments in the first-line setting in terms of rPFS. The results of Bayesian framework and RMST models showed consistent efficacy ranks. When extrapolated to overall survival benefit, within the Bayesian framework, olaparib plus abiraterone acetate and prednisone (OLAP + AAP) achieved the highest OS benefit for the overall population, which was not statistically significant when compared to TALA + ENZA. However, TALA + ENZA achieved the highest OS benefit at 3 years by applying RMST. CONCLUSIONS: We suggest that talazoparib in combination with enzalutamide is probably a preferred treatment agent for the overall population and HRRm patients with mCRPC. Given the limitations of network framework and the modeling assumptions undertaken to finalize the analyses, results should be cautiously interpreted.

3.
ACS Nano ; 18(17): 11103-11119, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38623806

RESUMO

In recent years, carbon nanotubes have emerged as a widely used nanomaterial, but their human exposure has become a significant concern. In our former study, we reported that pulmonary exposure of multiwalled carbon nanotubes (MWCNTs) promoted tumor metastasis of breast cancer; macrophages were key effectors of MWCNTs and contributed to the metastasis-promoting procedure in breast cancer, but the underlying molecular mechanisms remain to be explored. As a follow-up study, we herein demonstrated that MWCNT exposure in breast cancer cells and macrophage coculture systems promoted metastasis of breast cancer cells both in vitro and in vivo; macrophages were skewed into M2 polarization by MWCNT exposure. LncRNA NBR2 was screened out to be significantly decreased in MWCNTs-stimulated macrophages through RNA-seq; depletion of NBR2 led to the acquisition of M2 phenotypes in macrophages by activating multiple M2-related pathways. Specifically, NBR2 was found to positively regulate the downstream gene TBX1 through H3k27ac activation. TBX1 silence rescued NBR2-induced impairment of M2 polarization in IL-4 & IL-13-stimulated macrophages. Moreover, NBR2 overexpression mitigated the enhancing effects of MWCNT-exposed macrophages on breast cancer metastasis. This study uncovered the molecular mechanisms underlying breast cancer metastasis induced by MWCNT exposure.


Assuntos
Neoplasias da Mama , Macrófagos , Nanotubos de Carbono , Nanotubos de Carbono/química , Macrófagos/metabolismo , Macrófagos/efeitos dos fármacos , Neoplasias da Mama/patologia , Neoplasias da Mama/metabolismo , Humanos , Feminino , Camundongos , Animais , Proteínas com Domínio T/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Metástase Neoplásica , Camundongos Endogâmicos BALB C , Linhagem Celular Tumoral
4.
Nutrients ; 16(5)2024 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-38474727

RESUMO

Hepatocellular carcinoma (HCC), being ranked as the top fifth most prevalent cancer globally, poses a significant health challenge, with a considerable mortality rate. Hepatitis B virus (HBV) infection stands as the primary factor contributing to HCC, presenting substantial challenges in its treatment. This study aimed to identify lactic acid bacteria (LAB) with anti-HBV properties and evaluate their impact on the intestinal flora in HBV-associated HCC. Initially, two LAB strains, Levilactobacillus brevis SR52-2 (L. brevis SR52-2) and LeviLactobacillus delbrueckii subsp. bulgaicus Q80 (L. delbrueckii Q80), exhibiting anti-HBV effects, were screened in vitro from a pool of 498 LAB strains through cell experiments, with extracellular expression levels of 0.58 ± 0.05 and 0.65 ± 0.03, respectively. These strains exhibited the capability of inhibiting the expression of HBeAg and HBsAg. Subsequent in vitro fermentation, conducted under simulated anaerobic conditions mimicking the colon environment, revealed a decrease in pH levels in both the health control (HC) and HCC groups influenced by LAB, with a more pronounced effect observed in the HC group. Additionally, the density of total short-chain fatty acids (SCFAs) significantly increased (p < 0.05) in the HCC group. Analysis of 16S rRNA highlighted differences in the gut microbiota (GM) community structure in cultures treated with L. brevis SR52-2 and L. delbrueckii Q80. Fecal microflora in normal samples exhibited greater diversity compared to HBV-HCC samples. The HCC group treated with LAB showed a significant increase in the abundance of the phyla Firmicutes, Bacteroidetes and Actinobacteria, while Proteobacteria significantly decreased compared to the untreated HCC group after 48 h. In conclusion, the findings indicate that LAB, specifically L. brevis SR52-2 and L. delbrueckii Q80, possessing antiviral properties, contribute to an improvement in gastrointestinal health.


Assuntos
Carcinoma Hepatocelular , Microbioma Gastrointestinal , Hepatite B Crônica , Hepatite B , Lactobacillales , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/complicações , Vírus da Hepatite B/genética , RNA Ribossômico 16S , Anticorpos
5.
J Exp Clin Cancer Res ; 43(1): 90, 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38523299

RESUMO

BACKGROUND: Ropivacaine, a local anesthetic, exhibits anti-tumor effects in various cancer types. However, its specific functions and the molecular mechanisms involved in breast cancer cell stemness remain elusive. METHODS: The effects of ropivacaine on breast cancer stemness were investigated by in vitro and in vivo assays (i.e., FACs, MTT assay, mammosphere formation assay, transwell assays, western blot, and xenograft model). RNA-seq, bioinformatics analysis, Western blot, Luciferase reporter assay, and CHIP assay were used to explore the mechanistic roles of ropivacaine subsequently. RESULTS: Our study showed that ropivacaine remarkably suppressed stem cells-like properties of breast cancer cells both in vitro and in vivo. RNA-seq analysis identified GGT1 as the downstream target gene responding to ropivacaine. High GGT1 levels are positively associated with a poor prognosis in breast cancer. Ropivacaine inhibited GGT1 expression by interacting with the catalytic domain of AKT1 directly to impair its kinase activity with resultant inactivation of NF-κB. Interestingly, NF-κB can bind to the promoter region of GGT1. KEGG and GSEA analysis indicated silence of GGT1 inhibited activation of NF-κB signaling pathway. Depletion of GGT1 diminished stem phenotypes of breast cancer cells, indicating the formation of NF-κB /AKT1/GGT1/NF-κB positive feedback loop in the regulation of ropivacaine-repressed stemness in breast cancer cells. CONCLUSION: Our finding revealed that local anesthetic ropivacaine attenuated breast cancer stemness through AKT1/GGT1/NF-κB signaling pathway, suggesting the potential clinical value of ropivacaine in breast cancer treatment.


Assuntos
Neoplasias da Mama , NF-kappa B , Humanos , Feminino , NF-kappa B/metabolismo , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Ropivacaina/farmacologia , Ropivacaina/uso terapêutico , Anestésicos Locais/farmacologia , Anestésicos Locais/uso terapêutico , Linhagem Celular Tumoral , Proteínas Proto-Oncogênicas c-akt/metabolismo
6.
J Clin Rheumatol ; 30(4): 138-144, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38351510

RESUMO

BACKGROUND: Although observational studies have revealed associations between idiopathic inflammatory myopathies (IIMs) and lung cancer (LC), they have not established a causal relationship between these 2 conditions. METHODS: We used a 2-sample Mendelian randomization approach to examine the bidirectional causal associations between IIMs and LC, using single-nucleotide polymorphisms selected from high-quality genome-wide association studies in the FinnGen database. Sensitivity analyses were conducted to assess potential heterogeneity and pleiotropy impacts on the Mendelian randomization results. RESULTS: Our analysis demonstrated a positive causal effect of genetically increased IIM risk on LC (odds ratio, 1.114; 95% confidence interval, 1.057-1.173; p = 5.63 × 10 -5 ), particularly on the lung squamous cell carcinoma subtype (odds ratio, 1.168, 95% confidence interval, 1.049-1.300, p = 0.00451), but not on lung adenocarcinoma or small cell lung cancer. No causal effect of LC on IIMs was identified. Sensitivity analyses indicated that horizontal pleiotropy was unlikely to influence causality, and leave-one-out analysis confirmed that the observed associations were not driven by a single-nucleotide polymorphism. CONCLUSION: Our findings offer compelling evidence of a positive causal relationship between IIMs and LC, particularly with regard to lung squamous cell carcinoma, in the European population. Conversely, there is no evidence of LC causing IIMs. We recommend that LC diagnosis consider the specific characteristics of IIMs.


Assuntos
Estudo de Associação Genômica Ampla , Neoplasias Pulmonares , Análise da Randomização Mendeliana , Miosite , Polimorfismo de Nucleotídeo Único , Humanos , Análise da Randomização Mendeliana/métodos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/epidemiologia , Neoplasias Pulmonares/etiologia , Miosite/genética , Miosite/epidemiologia , Miosite/diagnóstico , Predisposição Genética para Doença , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/epidemiologia , Carcinoma de Células Escamosas/etiologia , Causalidade
7.
Arch Public Health ; 82(1): 21, 2024 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-38331828

RESUMO

BACKGROUND: Dyslipidemia is a major risk factor for cardiovascular diseases, but its prevalence and determinants among sedentary occupational population are poorly understood. This study aimed to investigate the prevalence and associated factors for dyslipidemia among a sedentary occupational population in Shanghai, China. METHODS: We collected data from 35,950 sedentary occupational workers on their demographics, social, medical, and family history, lifestyle, anthropometry, and biochemistry. We used the 2016 Chinese guideline for the management of dyslipidemia in adults to define dyslipidemia and its subtypes. We performed multivariate logistic regression to examine the factors associated with dyslipidemia. RESULTS: The prevalence of dyslipidemia was 29.10%, with 15.86% for high triglycerides (TG), 6.43% for high total cholesterol (TC), 5.37% for high low-density lipoprotein cholesterol (LDL-C), and 14.68% for low high-density lipoprotein cholesterol (HDL-C). Men had a significantly higher prevalence of dyslipidemia than women (39.64% vs. 12.43%, P < 0.01). Factors associated with dyslipidemia included older age, being married, longer sedentary time while resting, frequent intake of animal viscera, current smoking, hypertension, diabetes, and obesity. Current drinking was associated with a 1.24 times higher prevalence of high TG (P < 0.01). Current smokers were less likely to have low HDL-C than non-smokers. CONCLUSIONS: Our present study, in a population of 35,950 sedentary occupational workers from Shanghai, demonstrated a prevalence of dyslipidemia, but lower than in other previous studies without the limitation of occupational characteristics. Prevention and control measures for dyslipidemia should take into account the characteristics and related factors for this population group.

8.
ACS Nano ; 2024 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-38330150

RESUMO

The practical efficacy of nanomedicines for treating solid tumors is frequently low, predominantly due to the elevated interstitial pressure within such tumors that obstructs the penetration of nanomedicines. This increased interstitial pressure originates from both liquid and solid stresses related to an undeveloped vascular network and excessive fibroblast proliferation. To specifically resolve the penetration issues of nanomedicines for tumor treatment, this study introduces a holistic "dual-faceted" approach. A treatment platform predicated on the WS2/Pt Schottky heterojunction was adopted, and flexocatalysis technology was used to disintegrate tumor interstitial fluids, thus producing oxygen and reactive oxygen species and effectively mitigating the interstitial fluid pressure. The chemotherapeutic agent curcumin was incorporated to further suppress the activity of cancer-associated fibroblasts, minimize collagen deposition in the extracellular matrix, and alleviate solid stress. Nanomedicines achieve homologous targeting by enveloping the tumor cell membrane. It was found that this multidimensional strategy not only alleviated the high-pressure milieu of the tumor interstitium─which enhanced the efficiency of nanomedicine delivery─but also triggered tumor cell apoptosis via the generated reactive oxygen species and modulated the tumor microenvironment. This, in turn, amplified immune responses, substantially optimizing the therapeutic impacts of nanomedicines.

9.
J Proteomics ; 296: 105107, 2024 03 30.
Artigo em Inglês | MEDLINE | ID: mdl-38325729

RESUMO

To explore the effect of feeding fermented distiller's grains (FDG) diets on spleen and mesenteric lymph nodes (MLN) immune status and metabolomics in finishing cattle, eighteen Guanling crossbred cattle (18 months old, 250.0 ± 25 kg) were randomly divided into 3 groups: a basal diet (Control) group, an FDG-15% group, and an FDG-30% group (containing 0%, 15% and 30% FDG to partially replace the concentrates, respectively). After 75 days, the spleens and MLN were collected for detection of relative spleen weight, immune parameters, and metabolomic analysis. Compared with the Control group, FDG-30% group significantly increased (P<0.05) the relative spleen weight. In addition, the level of IL-17A in the spleen of the FDG-30% group was significantly higher than that of the FDG-15% group. Metabolomic analysis showed that differential metabolites (VIP>1, P<0.05) of spleen and MLN in FDG-15% and FDG-30% groups are mostly lipids and lipid molecules. KEGG analysis illustrated that choline metabolism in cancer, glycerophospholipid metabolism, biosynthesis of unsaturated fatty acids and insulin resistance were metabolic pathways in spleen shared by FDG-15% group vs.Control group and FDG-30% group vs.Control group, and choline metabolism in cancer was a metabolic pathway in MLN shared by FDG-15% group vs.Control group and FDG-30% group vs.Control group. These results suggest that feeding FDG may promote spleen development by regulating choline metabolism in cancer, glycerophospholipid metabolism, biosynthesis of unsaturated fatty acids and insulin resistance. Additionally, it may affect MLN development by regulating choline metabolism in cancer. SIGNIFICANCE: Fermented distiller's grains (FDG) is a high quality alternative to feed because it is rich in beneficial microorganisms and nutrients. The spleen and mesenteric lymph nodes (MLN) are important peripheral immune organs in animals, whose status reflects the health of the animal. However, there are few reports on the effect of feeding FDG diets on spleen and MLN immune status and metabolomics in domestic animals. In this study, we found that feeding FDG may promote spleen development by regulating choline metabolism in cancer, glycerophospholipid metabolism, biosynthesis of unsaturated fatty acids and insulin resistance metabolic pathways, and may affect MLN development by regulating choline metabolism in cancer. This study extends our understanding of the metabolomics of the spleen and MLN in FDG and helps to further understand of the immunomodulatory effects of the FDG diet.


Assuntos
Resistência à Insulina , Neoplasias , Bovinos , Animais , Baço , Fluordesoxiglucose F18 , Ração Animal/análise , Dieta/veterinária , Ácidos Graxos Insaturados , Linfonodos , Glicerofosfolipídeos , Colina
10.
J Food Sci ; 89(3): 1727-1738, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38258958

RESUMO

Sea cucumber intestines are considered a valuable resource in the sea cucumber processing industry due to their balanced amino acid composition. Studies have reported that peptides rich in glutamate and branched-chain amino acids have anti-fatigue properties. However, the function of the sea cucumber intestine in reducing exercise-induced fatigue remains unclear. In this study, we enzymatically hydrolyzed low molecular weight peptides from sea cucumber intestines (SCIP) and administered SCIP orally to mice to examine its effects on exercise-induced fatigue using swimming and pole-climbing exhaustion experiments. The results revealed that supplementation with SCIP significantly prolonged the exhaustion time of swimming in mice, decreased blood lactate and urea nitrogen levels, and increased liver and muscle glycogen levels following a weight-loaded swimming test. Immunofluorescence analysis indicated a notable increase the proportion of slow-twitch muscle fiber and a significant decrease the proportion of fast-twitch muscle fiber following SCIP supplementation. Furthermore, SCIP upregulated mRNA expression levels of Ca2+ /Calcineurin upstream and downstream regulators, thereby contributing to the promotion of skeletal muscle fiber type conversion. This study presents the initial evidence establishing SCIP as a potential enhancer of skeletal muscle fatigue resistance, consequently providing a theoretical foundation for the valuable utilization of sea cucumber intestines.


Assuntos
Calcineurina , Pepinos-do-Mar , Camundongos , Animais , Calcineurina/metabolismo , Calcineurina/farmacologia , Pepinos-do-Mar/metabolismo , Músculo Esquelético/metabolismo , Peptídeos/farmacologia , Natação/fisiologia , Transdução de Sinais , Intestinos , Peptídeo Hidrolases/metabolismo
11.
Sci Rep ; 14(1): 661, 2024 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-38182704

RESUMO

Frozen shoulder (FS) is a common disorder often treated with Tuina, but the mechanisms involved remain unclear. We employed proteomics and phosphoproteomics to investigate the mechanisms associated with the treatment of capsule fibrosis in FS rats. We used a method composed of three weeks of cast immobilization to establish a model of FS. We then administered Tuina once daily for 14 days, evaluated glenohumeral range of motion (ROM), assessed histological changes, and identified differentially expressed proteins (DEPs) using proteomics and phosphoproteomics. This study demonstrated that Tuina could improve glenohumeral ROM and reserve capsule fibrosis in FS rats. Proteomics revealed proteins regulated by Tuina belonging to the PI3K-AKT and ECM receptor interaction signaling pathways. Phosphoproteomics detected differentially phosphorylated proteins regulated by Tuina to be enriched in the MAPK signaling pathway. The combination of proteomics and phosphoproteomics for Protein-Protein Interaction (PPI) network analysis revealed that the phosphorylation of Myh3 and Srsf1 with a node degree larger than the average degree were considered the central regulatory protein modulated by Tuina to reverse capsule fibrosis. Thbs1, Vtn, and Tenascin-W were significantly enriched in PI3K-AKT and ECM receptor interaction signaling pathways and highly expressed in model rats. Tuina resulted in reduced expression of these proteins. Our findings demonstrated some of mechanisms behind the reversal of FS capsule fibrosis following Tuina, a scientific medical therapy for FS patients.


Assuntos
Bursite , Relatório de Pesquisa , Humanos , Animais , Ratos , Fosfatidilinositol 3-Quinases , Proteômica , Proteínas Proto-Oncogênicas c-akt , Bursite/terapia
12.
Cell Chem Biol ; 31(4): 776-791.e7, 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-37751743

RESUMO

The tumor microenvironment (TME) is a heterogeneous ecosystem containing cancer cells, immune cells, stromal cells, cytokines, and chemokines which together govern tumor progression and response to immunotherapies. Methyltransferase-like 3 (METTL3), a core catalytic subunit for RNA N6-methyladenosine (m6A) modification, plays a crucial role in regulating various physiological and pathological processes. Whether and how METTL3 regulates the TME and anti-tumor immunity in non-small-cell lung cancer (NSCLC) remain poorly understood. Here, we report that METTL3 elevates expression of pro-tumorigenic chemokines including CXCL1, CXCL5, and CCL20, and destabilizes PD-L1 mRNA in an m6A-dependent manner, thereby shaping a non-inflamed TME. Thus, inhibiting METTL3 reprograms a more inflamed TME that renders anti-PD-1 therapy more effective in several murine lung tumor models. Clinically, NSCLC patients who exhibit low-METTL3 expression have a better prognosis when receiving anti-PD-1 therapy. Collectively, our study highlights targeting METTL3 as a promising strategy to improve immunotherapy in NSCLC patients.

13.
Adv Healthc Mater ; 13(2): e2302190, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37792422

RESUMO

Although low-cost nanozymes with excellent stability have demonstrated the potential to be highly beneficial for nanocatalytic therapy (NCT), their unsatisfactory catalytic activity accompanied by intricate tumor microenvironment (TME) significantly hinders the therapeutic effect of NCT. Herein, for the first time, a heterojunction (HJ)-fabricated sonoresponsive and NIR-II-photoresponsive nanozyme is reported by assembling carbon dots (CDs) onto TiCN nanosheets. The narrow bandgap and mixed valences of Ti3+ and Ti4+ endow TiCN with the capability to generate reactive oxygen species (ROS) when exposed to ultrasound (US), as well as the dual enzyme-like activities of peroxidase and glutathione peroxidase. Moreover, the catalytic activities and sonodynamic properties of the TiCN nanosheets are boosted by the formation of HJs owing to the increased speed of carrier transfer and the enhanced electron-hole separation. More importantly, the introduction of CDs with excellent NIR-II photothermal properties could achieve mild hyperthermia (43 °C) and thereby further improve the NCT and sonodynamic therapy (SDT) performances of CD/TiCN. The synergetic therapeutic efficacy of CD/TiCN through mild hyperthermia-amplified NCT and SDT could realize "three-in-one" multimodal oncotherapy to completely eliminate tumors without recurrence. This study opens a new avenue for exploring sonoresponsive and NIR-II-photoresponsive nanozymes for efficient tumor therapy based on semiconductor HJs.


Assuntos
Hipertermia Induzida , Neoplasias , Humanos , Carbono , Manejo da Dor , Peroxidase , Peroxidases , Neoplasias/tratamento farmacológico , Linhagem Celular Tumoral , Microambiente Tumoral
14.
Acta Pharmacol Sin ; 45(2): 422-435, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37816856

RESUMO

Extracellular regulated protein kinases 1/2 (ERK1/2) are key members of multiple signaling pathways, including the ErbB axis. Ectopic ERK1/2 activation contributes to various types of cancer, especially drug resistance to inhibitors of RTK, RAF and MEK, and specific ERK1/2 inhibitors are scarce. In this study, we identified a potential novel covalent ERK inhibitor, Laxiflorin B, which is a herbal compound with anticancer activity. However, Laxiflorin B is present at low levels in herbs; therefore, we adopted a semi-synthetic process for the efficient production of Laxiflorin B to improve the yield. Laxiflorin B induced mitochondria-mediated apoptosis via BAD activation in non-small-cell lung cancer (NSCLC) cells, especially in EGFR mutant subtypes. Transcriptomic analysis suggested that Laxiflorin B inhibits amphiregulin (AREG) and epiregulin (EREG) expression through ERK inhibition, and suppressed the activation of their receptors, ErbBs, via a positive feedback loop. Moreover, mass spectrometry analysis combined with computer simulation revealed that Laxiflorin B binds covalently to Cys-183 in the ATP-binding pocket of ERK1 via the D-ring, and Cys-178 of ERK1 through non-inhibitory binding of the A-ring. In a NSCLC tumor xenograft model in nude mice, Laxiflorin B also exhibited strong tumor suppressive effects with low toxicity and AREG and EREG were identified as biomarkers of Laxiflorin B efficacy. Finally, Laxiflorin B-4, a C-6 analog of Laxiflorin B, exhibited higher binding affinity for ERK1/2 and stronger tumor suppression. These findings provide a new approach to tumor inhibition using natural anticancer compounds.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Camundongos , Animais , Humanos , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/patologia , Receptores ErbB , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Sistema de Sinalização das MAP Quinases , Camundongos Nus , Simulação por Computador , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Mutação , Linhagem Celular Tumoral
15.
J Ethnopharmacol ; 321: 117495, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38016572

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: When left untreated, liver fibrosis (LF) causes various chronic liver diseases. Earthworms (Pheretima aspergillum) are widely used in traditional medicine because of their capacity to relieve hepatic diseases. AIM OF THE STUDY: This study aimed to explore the anti-LF effects of water extract of earthworms (WEE) and the underlying molecular mechanisms. MATERIALS AND METHODS: A CCl4-induced mouse model of LF was used to study the impact of WEE on LF in vivo. The anti-LF activity of WEE in mice was compared with that of silybin, which can be clinically applied in LF intervention and was used as a positive control. Activation of LX-2 hepatic stellate cells (HSCs) and apoptosis and ferroptosis of AML-12 hepatocytes induced by TGFß1 were used as in vitro models. RESULTS: WEE drastically improved LF in mice. WEE reduced markers of activated HSCs in mice and inhibited TGFß1-induced activation of LX-2 HSCs in vitro. Additionally, WEE suppressed CCl4-induced apoptosis and ferroptosis in mouse hepatocytes. Mechanistically, WEE induced Nrf2 to enter the nuclei of the mouse liver cells, and the hepatic levels of Nrf2-downstream antioxidative factors increased. LKB1/AMPK/GSK3ß is an upstream regulatory cascade of Nrf2. In the LF mouse model, WEE increased hepatic phosphorylated LKB1, AMPK, and GSK3ß levels. Similar results were obtained for the LX-2 cells. In AML-12 hepatocytes and LX-2 HSCs, WEE elevated intracellular Nrf2 levels, promoted its nuclear translocation, and inhibited TGFß1-induced ROS accumulation. Knocking down LKB1 abolished the impact of WEE on the AMPK/GSK3ß/Nrf2 cascade and eliminated its protective effects against TGFß1. CONCLUSIONS: Our findings reveal that WEE improves mouse LF triggered by CCl4 and supports its application as a promising hepatoprotective agent against LF. The potentiation of the hepatic antioxidative AMPK/GSK3ß/Nrf2 cascade by activating LKB1 and the subsequent suppression of HSC activation and hepatocyte apoptosis and ferroptosis are implicated in WEE-mediated alleviation of LF.


Assuntos
Leucemia Mieloide Aguda , Oligoquetos , Animais , Camundongos , Fator 2 Relacionado a NF-E2 , Proteínas Quinases Ativadas por AMP , Glicogênio Sintase Quinase 3 beta , Fígado , Cirrose Hepática/induzido quimicamente , Cirrose Hepática/tratamento farmacológico , Cirrose Hepática/patologia , Hepatócitos , Fibrose , Células Estreladas do Fígado , Modelos Animais de Doenças , Antioxidantes/efeitos adversos , Leucemia Mieloide Aguda/patologia
16.
Br J Nutr ; 131(6): 1031-1040, 2024 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-37926899

RESUMO

Dietary antioxidant indices (DAI) may be potentially associated with relative telomere length (RTL) of leucocytes. This study aimed to investigate the relationship between DAI and RTL. A cross-sectional study involving 1656 participants was conducted. A generalised linear regression model and a restricted cubic spline model were used to assess the correlation of DAI and its components with RTL. Generalised linear regression analysis revealed that DAI (ß = 0·005, P = 0·002) and the intake of its constituents vitamin C (ß = 0·043, P = 0·027), vitamin E (ß = 0·088, P < 0·001), Se (ß = 0·075, P = 0·003), and Zn (ß = 0·075, P = 0·023) were significantly and positively correlated with RTL. Sex-stratified analysis showed that DAI (ß = 0·006, P = 0·005) and its constituents vitamin E (ß = 0·083, P = 0·012), Se (ß = 0·093, P = 0·006), and Zn (ß = 0·092, P = 0·034) were significantly and positively correlated with RTL among females. Meanwhile, among males, only vitamin E intake (ß = 0·089, P = 0·013) was significantly and positively associated with RTL. Restricted cubic spline analysis revealed linear positive associations between DAI and its constituents' (vitamin E, Se and Zn) intake and RTL in the total population. Sex-stratified analysis revealed a linear positive correlation between DAI and its constituents' (vitamin E, Se and Zn) intake and RTL in females. Our study found a significant positive correlation between DAI and RTL, with sex differences.


Assuntos
Antioxidantes , Vitamina E , Humanos , Masculino , Feminino , Estudos Transversais , Telômero , China
17.
Hepatol Commun ; 8(1)2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-38099854

RESUMO

As the most prevalent chronic liver disease globally, NAFLD encompasses a pathological process that ranges from simple steatosis to NASH, fibrosis, cirrhosis, and HCC, closely associated with numerous extrahepatic diseases. While the initial etiology was believed to be hepatocyte injury caused by lipid toxicity from accumulated triglycerides, recent studies suggest that an imbalance of cholesterol homeostasis is of greater significance. The role of nuclear receptors in regulating liver cholesterol homeostasis has been demonstrated to be crucial. This review summarizes the roles and regulatory mechanisms of nuclear receptors in the 3 main aspects of cholesterol production, excretion, and storage in the liver, as well as their cross talk in reverse cholesterol transport. It is hoped that this review will offer new insights and theoretical foundations for the study of the pathogenesis and progression of NAFLD and provide new research directions for extrahepatic diseases associated with NAFLD.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Hepatopatia Gordurosa não Alcoólica , Humanos , Receptores Citoplasmáticos e Nucleares
18.
Molecules ; 28(21)2023 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-37959727

RESUMO

Acetaminophen (APAP)-induced liver injury is a common hepatic disease resulting from drug abuse. Few targeted treatments are available clinically nowadays. The flower bud of Rosa rugosa has a wide range of biological activities. However, it is unclear whether it alleviates liver injury caused by APAP. Here, we prepared an ethanol extract of Rosa rugosa (ERS) and analyzed its chemical profile. Furthermore, we revealed that ERS significantly ameliorated APAP-induced apoptosis and ferroptosis in AML-12 hepatocytes and dampened APAP-mediated cytotoxicity. In AML-12 cells, ERS elevated Sirt1 expression, boosted the LKB1/AMPK/Nrf2 axis, and thereby crippled APAP-induced intracellular oxidative stress. Both EX527 and NAM, which are chemically unrelated inhibitors of Sirt1, blocked ERS-induced activation of LKB1/AMPK/Nrf2 signaling. The protection of ERS against APAP-triggered toxicity in AML-12 cells was subsequently abolished. As expression of LKB1 was knocked down, ERS still upregulated Sirt1 but failed to activate AMPK/Nrf2 cascade or suppress cytotoxicity provoked by APAP. Results of in vivo experiments showed that ERS attenuated APAP-caused hepatocyte apoptosis and ferroptosis and improved liver injury and inflammation. Consistently, ERS boosted Sirt1 expression, increased phosphorylations of LKB1 and AMPK, and promoted Nrf2 nuclear translocation in the livers of APAP-intoxicated mice. Hepatic transcriptions of HO-1 and GCLC, which are downstream antioxidant genes of Nrf2, were also significantly increased in response to ERS. Our results collectively indicated that ERS effectively attenuates APAP-induced liver injury by activating LKB1/AMPK/Nrf2 cascade. Upregulated expression of Sirt1 plays a crucial role in ERS-mediated activation of LKB1.


Assuntos
Doença Hepática Crônica Induzida por Substâncias e Drogas , Doença Hepática Induzida por Substâncias e Drogas , Leucemia Mieloide Aguda , Rosa , Animais , Camundongos , Acetaminofen/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Proteínas Quinases Ativadas por AMP/metabolismo , Rosa/metabolismo , Transdução de Sinais , Doença Hepática Crônica Induzida por Substâncias e Drogas/metabolismo , Sirtuína 1/metabolismo , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Fígado , Hepatócitos , Estresse Oxidativo , Leucemia Mieloide Aguda/metabolismo
19.
Animals (Basel) ; 13(22)2023 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-38003055

RESUMO

Fermented distillers' grains (FDG) are commonly used to enhance the health and metabolic processes of livestock and poultry by regulating the composition and activity of the intestinal microbiota. Nevertheless, there is a scarcity of research on the effects of the FDG diet on the gastrointestinal microbiota and its metabolites in cattle. This study examines the impact of FDG dietary supplements on the gastrointestinal flora and metabolic profile of Guanling cattle. Eighteen cattle were randomly assigned to three treatment groups with six replicates per group. The treatments included a basal diet (BD), a 15% concentrate replaced by FDG (15% FDG) in the basal diet, and a 30% concentrate replaced by FDG (30% FDG) in the basal diet. Each group was fed for a duration of 60 days. At the conclusion of the experimental period, three cattle were randomly chosen from each group for slaughter and the microbial community structure and metabolic mapping of their abomasal and cecal contents were analyzed, utilizing 16S rDNA sequencing and LC-MS technology, respectively. At the phylum level, there was a significant increase in Bacteroidetes in both the abomasum and cecum for the 30%FDG group (p < 0.05). Additionally, there was a significant reduction in potential pathogenic bacteria such as Spirochetes and Proteobacteria for both the 15%FDG and 30%FDG groups (p < 0.05). At the genus level, there was a significant increase (p < 0.05) in Ruminococcaceae_UCG-010, Prevotellaceae_UCG-001, and Ruminococcaceae_UCG-005 fiber degradation bacteria. Non-target metabolomics analysis indicated that the FDG diet significantly impacted primary bile acid biosynthesis, bile secretion, choline metabolism in cancer, and other metabolic pathways (p < 0.05). There is a noteworthy correlation between the diverse bacterial genera and metabolites found in the abomasal and cecal contents of Guanling cattle, as demonstrated by correlation analysis. In conclusion, our findings suggest that partially substituting FDG for conventional feed leads to beneficial effects on both the structure of the gastrointestinal microbial community and the metabolism of its contents in Guanling cattle. These findings offer a scientific point of reference for the further use of FDG as a cattle feed resource.

20.
Oncol Rep ; 50(6)2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37921057

RESUMO

Glioblastoma (GBM) is the most common primary intracranial tumor in the brain with high growth rate and high mortality rate. Cucurbitacin E (CUE), a tetracyclic triterpene compound derived from species of the genus Cucurbita, has been demonstrated to display significant antitumor effects on various malignancies. In the present study, the effects of CUE on GBM and its underlying molecular mechanisms were explored. The data revealed that CUE inhibited the proliferation of the GBM cell lines U87­MG and U251­MG in a dose­ and time­dependent manner. Mechanistically, CUE reduced the phosphorylation of focal adhesion kinase (FAK), protein kinase B (AKT), and glycogen synthase kinase­3ß (GSK3ß) at both basal and epidermal growth factor (EGF)­induced levels. Moreover, CUE inhibited the proliferation of U87­MG and U251­MG cells by blocking EGF­induced phosphorylation of the FAK, AKT and GSK3ß. Subsequently, CUE reduced the expression of cyclinD1 and cyclinB1. Collectively, these results indicated that CUE inhibited the proliferation of U87­MG and U251­MG cells by suppressing the FAK/AKT/GSK3ß signaling pathway, which also suggested that CUE has potential application in treating GBM.


Assuntos
Glioblastoma , Triterpenos , Humanos , Glioblastoma/patologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteína-Tirosina Quinases de Adesão Focal , Proliferação de Células , Fator de Crescimento Epidérmico/farmacologia , Glicogênio Sintase Quinase 3 beta , Linhagem Celular Tumoral , Triterpenos/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA