Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
J Nanobiotechnology ; 22(1): 376, 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38926780

RESUMO

Tissue regeneration technology has been rapidly developed and widely applied in tissue engineering and repair. Compared with traditional approaches like surgical treatment, the rising gene therapy is able to have a durable effect on tissue regeneration, such as impaired bone regeneration, articular cartilage repair and cancer-resected tissue repair. Gene therapy can also facilitate the production of in situ therapeutic factors, thus minimizing the diffusion or loss of gene complexes and enabling spatiotemporally controlled release of gene products for tissue regeneration. Among different gene delivery vectors and supportive gene-activated matrices, advanced gene/drug nanocarriers attract exceptional attraction due to their tunable physiochemical properties, as well as excellent adaptive performance in gene therapy for tissue regeneration, such as bone, cartilage, blood vessel, nerve and cancer-resected tissue repair. This paper reviews the recent advances on nonviral-mediated gene delivery systems with an emphasis on the important role of advanced nanocarriers in gene therapy and tissue regeneration.


Assuntos
Técnicas de Transferência de Genes , Terapia Genética , Regeneração , Engenharia Tecidual , Alicerces Teciduais , Humanos , Animais , Terapia Genética/métodos , Engenharia Tecidual/métodos , Alicerces Teciduais/química , Nanopartículas/química , Portadores de Fármacos/química , Vetores Genéticos
2.
Adv Sci (Weinh) ; 10(26): e2302855, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37424037

RESUMO

2D cell culture occupies an important place in cancer progression and drug discovery research. However, it limitedly models the "true biology" of tumors in vivo. 3D tumor culture systems can better mimic tumor characteristics for anticancer drug discovery but still maintain great challenges. Herein, polydopamine (PDA)-modified decellularized lung scaffolds are designed and can serve as a functional biosystem to study tumor progression and anticancer drug screening, as well as mimic the tumor microenvironment. PDA-modified scaffolds with strong hydrophilicity and excellent cell compatibility can promote cell growth and proliferation. After 96 h treatment with 5-FU, cisplatin, and DOX, higher survival rates in PDA-modified scaffolds are observed compared to nonmodified scaffolds and 2D systems. The E-cadhesion formation, HIF-1α-mediated senescence decrease, and tumor stemness enhancement can drive drug resistance and antitumor drug screening of breast cancer cells. Moreover, there is a higher survival rate of CD45+ /CD3+ /CD4+ /CD8+ T cells in PDA-modified scaffolds for potential cancer immunotherapy drug screening. This PDA-modified tumor bioplatform will supply some promising information for studying tumor progression, overcoming tumor resistance, and screening tumor immunotherapy drugs.


Assuntos
Antineoplásicos , Neoplasias , Humanos , Alicerces Teciduais , Microambiente Tumoral , Linfócitos T CD8-Positivos , Pulmão , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Imunoterapia
3.
Eur J Med Chem ; 250: 115217, 2023 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-36842272

RESUMO

Indoleamine 2,3-dioxygenase-1 (IDO1) has been considered as an attractive target for oncology immunotherapy due to its immunosuppressive effects on the tumor microenvironment. The most advanced IDO1 inhibitor epacadostat in combination with anti-PD-1 antibody failed to show desirable objective response. Epacadostat is now reevaluated in phase III clinical trials, but its pharmacokinetic (PK) properties are unsatisfactory. To further unravel the antitumor efficacy of IDO1 inhibitors, we designed a series of epacadostat analogues by introducing various urea-containing side chains. In particular, the most active compound 3 showed superior inhibitory potency against recombinant hIDO1 and hIDO1 in HeLa cells induced by interferon γ (IFNγ) relative to epacadostat (3, biochemical hIDO1 IC50 = 67.4 nM, HeLa hIDO1 IC50 = 17.6 nM; epacadostat, biochemical hIDO1 IC50 = 75.9 nM, HeLa hIDO1 IC50 = 20.6 nM). Moreover, compound 3 exhibited improved physicochemical properties and rat PK profile with better oral exposure and bioavailability compared with epacadostat. Importantly, this compound exhibited comparable antitumor efficacy with epacadostat in LLC syngeneic xenograft models. Hence, compound 3 represents a promising lead compound for discovery of more effective IDO1 inhibitors.


Assuntos
Inibidores Enzimáticos , Indolamina-Pirrol 2,3,-Dioxigenase , Humanos , Ratos , Animais , Inibidores Enzimáticos/química , Células HeLa , Ureia/farmacologia , Oxidiazóis/química
4.
Acta Biochim Biophys Sin (Shanghai) ; 54(10): 1497-1506, 2022 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-36269133

RESUMO

The establishment of an in vivo mouse model mimicking human tumor-immune environments provides a promising platform for immunotherapy assessment, drug discovery and clinical decision guidance. To this end, we construct humanized NCG mice by transplanting human hCD34 + hematopoietic progenitors into non-obese diabetic (NOD) Cg- Prkdc scidIL2rg tm1Wjl /Sz (null; NCG) mice and monitoring the development of human hematopoietic and immune systems (Hu-NCG). The cell line-derived xenograft (CDX) Hu-NCG mouse models are set up to assess the outcome of immunotherapy mediated by the small molecule BMS202. As a PD-1/PD-L1 blocker, BMS202 shows satisfactory antitumour efficacy in the HCT116 and SW480 xenograft Hu-NCG mouse models. Mechanistically, BMS202 exerts antitumour efficacy by improving the tumor microenvironment and enhancing the infiltration of hCD8 + T cells and the release of hIFNγ in tumor tissue. Thus, tumor-bearing Hu-NCG mice are a suitable and important in vivo model for preclinical study, particularly in cancer immunotherapy.


Assuntos
Neoplasias Colorretais , Receptor de Morte Celular Programada 1 , Humanos , Animais , Camundongos , Antígeno B7-H1 , Xenoenxertos , Camundongos Endogâmicos NOD , Imunidade , Linhagem Celular Tumoral , Neoplasias Colorretais/tratamento farmacológico , Ensaios Antitumorais Modelo de Xenoenxerto , Imunoterapia , Modelos Animais de Doenças , Microambiente Tumoral
5.
J Med Chem ; 65(11): 7746-7769, 2022 06 09.
Artigo em Inglês | MEDLINE | ID: mdl-35640078

RESUMO

Targeting NAD+ metabolism has emerged as an effective anticancer strategy. Inspired by the synergistic antitumor effect between NAD(P)H:quinone oxidoreductase 1 (NQO1) substrates increasing the NAD consumption and nicotinamide phosphoribosyltransferase (NAMPT) inhibitors hampering the NAD synthesis, first-in-class small molecules simultaneously targeting NQO1 and NAMPT were identified through structure-based design. In particular, compound 10d is an excellent NQO1 substrate that is processed faster than TSA by NQO1 and exhibited a slightly decreased NAMPT inhibitory potency than that of FK866. It can selectively inhibit the proliferation of NQO1-overexpressing A549 cells and taxol-resistant A549/taxol cells and also induce cell apoptosis and inhibit cell migration in an NQO1- and NAMPT-dependent manner in A549/taxol cells. Significantly, compound 10d demonstrated excellent in vivo antitumor efficacy in the A549/taxol xenograft models with no significant toxicity. This proof-of-concept study affirms the feasibility of discovering small molecules that target NQO1 and NAMPT simultaneously, and it also provides a novel, effective, and selective anticancer strategy.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Linhagem Celular Tumoral , Humanos , Neoplasias Pulmonares/tratamento farmacológico , NAD/metabolismo , NAD(P)H Desidrogenase (Quinona)/metabolismo , NADH NADPH Oxirredutases , Nicotinamida Fosforribosiltransferase/metabolismo , Paclitaxel , Quinonas
6.
Lancet Digit Health ; 4(6): e415-e425, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35466079

RESUMO

BACKGROUND: Predicting outcomes of patients with COVID-19 at an early stage is crucial for optimised clinical care and resource management, especially during a pandemic. Although multiple machine learning models have been proposed to address this issue, because of their requirements for extensive data preprocessing and feature engineering, they have not been validated or implemented outside of their original study site. Therefore, we aimed to develop accurate and transferrable predictive models of outcomes on hospital admission for patients with COVID-19. METHODS: In this study, we developed recurrent neural network-based models (CovRNN) to predict the outcomes of patients with COVID-19 by use of available electronic health record data on admission to hospital, without the need for specific feature selection or missing data imputation. CovRNN was designed to predict three outcomes: in-hospital mortality, need for mechanical ventilation, and prolonged hospital stay (>7 days). For in-hospital mortality and mechanical ventilation, CovRNN produced time-to-event risk scores (survival prediction; evaluated by the concordance index) and all-time risk scores (binary prediction; area under the receiver operating characteristic curve [AUROC] was the main metric); we only trained a binary classification model for prolonged hospital stay. For binary classification tasks, we compared CovRNN against traditional machine learning algorithms: logistic regression and light gradient boost machine. Our models were trained and validated on the heterogeneous, deidentified data of 247 960 patients with COVID-19 from 87 US health-care systems derived from the Cerner Real-World COVID-19 Q3 Dataset up to September 2020. We held out the data of 4175 patients from two hospitals for external validation. The remaining 243 785 patients from the 85 health systems were grouped into training (n=170 626), validation (n=24 378), and multi-hospital test (n=48 781) sets. Model performance was evaluated in the multi-hospital test set. The transferability of CovRNN was externally validated by use of deidentified data from 36 140 patients derived from the US-based Optum deidentified COVID-19 electronic health record dataset (version 1015; from January, 2007, to Oct 15, 2020). Exact dates of data extraction were masked by the databases to ensure patient data safety. FINDINGS: CovRNN binary models achieved AUROCs of 93·0% (95% CI 92·6-93·4) for the prediction of in-hospital mortality, 92·9% (92·6-93·2) for the prediction of mechanical ventilation, and 86·5% (86·2-86·9) for the prediction of a prolonged hospital stay, outperforming light gradient boost machine and logistic regression algorithms. External validation confirmed AUROCs in similar ranges (91·3-97·0% for in-hospital mortality prediction, 91·5-96·0% for the prediction of mechanical ventilation, and 81·0-88·3% for the prediction of prolonged hospital stay). For survival prediction, CovRNN achieved a concordance index of 86·0% (95% CI 85·1-86·9) for in-hospital mortality and 92·6% (92·2-93·0) for mechanical ventilation. INTERPRETATION: Trained on a large, heterogeneous, real-world dataset, our CovRNN models showed high prediction accuracy and transferability through consistently good performances on multiple external datasets. Our results show the feasibility of a COVID-19 predictive model that delivers high accuracy without the need for complex feature engineering. FUNDING: Cancer Prevention and Research Institute of Texas.


Assuntos
COVID-19 , COVID-19/epidemiologia , COVID-19/terapia , Registros Eletrônicos de Saúde , Hospitais , Humanos , Redes Neurais de Computação , Estudos Retrospectivos
7.
J Med Chem ; 65(5): 3879-3893, 2022 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-35188766

RESUMO

Several monoclonal antibodies targeting the programmed cell death-1/programmed cell death-ligand 1 (PD-1/PD-L1) pathway have been used successfully in anticancer immunotherapy. Inherent limitations of antibody-based therapies remain, however, and alternative small-molecule inhibitors that can block the PD-1/PD-L1 axis are urgent needed. Herein, we report the discovery of compound 17 as a bifunctional inhibitor of PD-1/PD-L1 interactions. 17 inhibits PD-1/PD-L1 interactions and promotes dimerization, internalization, and degradation of PD-L1. 17 promotes cell-surface PD-L1 internalized into the cytosol and induces the degradation of PD-L1 in tumor cells through a lysosome-dependent pathway. Furthermore, 17 suppresses tumor growth in vivo by activating antitumor immunity. These results demonstrate that 17 targets the PD-1/PD-L1 axis and induces PD-L1 degradation.


Assuntos
Antígeno B7-H1 , Neoplasias , Antígeno B7-H1/metabolismo , Humanos , Imunoterapia , Neoplasias/metabolismo , Receptor de Morte Celular Programada 1/metabolismo
8.
Biomater Sci ; 9(15): 5302-5318, 2021 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-34184011

RESUMO

To achieve synergistic photodynamic-photothermic therapy, we fabricate the novel phycocyanin (PC)-functionalized black phosphorus quantum dots (BPQDs) referred as PC@BPQDs through a one-step stirring method. PC@BPQDs are characterized by the feature of possessing both near-infrared (NIR) induced photothermal and photodynamic activity. The PC layer not only effectively alleviates plasma protein adsorption onto BPQDs, but also functionally boosts the photothermal therapy efficiency by enhanced ROS release, resulting in increased apoptosis in vitro. Moreover, PC@BPQDs eradicate tumors with high efficacy and low toxicity in vivo. Thus, PC@BPQDs have a promising potential in future therapeutic implications.


Assuntos
Fotoquimioterapia , Pontos Quânticos , Dano ao DNA , Fósforo , Ficocianina , Espécies Reativas de Oxigênio
9.
J Med Chem ; 64(11): 7390-7403, 2021 06 10.
Artigo em Inglês | MEDLINE | ID: mdl-34056906

RESUMO

With the successful clinical application of anti-programmed cell death-1 (PD-1)/programmed cell death-ligand 1 (PD-L1) monoclonal antibodies (mAb), targeting the PD-1/PD-L1 interaction has become a promising method for the discovery of cancer therapy. Due to the inherent limitations of antibodies, it is necessary to search for small-molecule inhibitors against the PD-1/PD-L1 axis. We report the design, synthesis, and evaluation in vitro and in vivo of a series of novel biphenyl pyridines as the inhibitors of PD-1/PD-L1. 2-(((2-Methoxy-6-(2-methyl-[1,1'-biphenyl]-3-yl)pyridin-3-yl)methyl)amino)ethan-1-ol (24) was found to inhibit the PD-1/PD-L1 interaction with an IC50 value of 3.8 ± 0.3 nM and enhance the killing activity of tumor cells by immune cells. Compound 24 displays great pharmacokinetics (oral bioavailability of 22%) and significant in vivo antitumor activity in a CT26 mouse model. Flow cytometry and immunohistochemistry data indicated that compound 24 activates the immune activity in tumors. These results suggest that compound 24 is a promising small-molecule inhibitor against the PD-1/PD-L1 axis and merits further development.


Assuntos
Antígeno B7-H1/metabolismo , Receptor de Morte Celular Programada 1/metabolismo , Piridinas/química , Bibliotecas de Moléculas Pequenas/química , Animais , Antígeno B7-H1/antagonistas & inibidores , Sítios de Ligação , Compostos de Bifenilo/química , Sobrevivência Celular/efeitos dos fármacos , Desenho de Fármacos , Meia-Vida , Humanos , Leucócitos Mononucleares/citologia , Leucócitos Mononucleares/efeitos dos fármacos , Leucócitos Mononucleares/imunologia , Camundongos , Simulação de Acoplamento Molecular , Neoplasias/tratamento farmacológico , Receptor de Morte Celular Programada 1/antagonistas & inibidores , Mapas de Interação de Proteínas/efeitos dos fármacos , Piridinas/metabolismo , Piridinas/farmacologia , Piridinas/uso terapêutico , Ratos , Ratos Sprague-Dawley , Bibliotecas de Moléculas Pequenas/metabolismo , Bibliotecas de Moléculas Pequenas/farmacologia , Bibliotecas de Moléculas Pequenas/uso terapêutico , Relação Estrutura-Atividade , Ensaios Antitumorais Modelo de Xenoenxerto
10.
Life Sci ; 268: 118995, 2021 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-33421524

RESUMO

Metastasis is one of the leading causes of mortality in cancer patients. As the firstly identified metastasis suppressor, NM23-H1 has been endowed with expectation as a potent target in metastatic cancer therapy during the past decades. However, many challenges impede its clinical use. Accumulating evidence shows that NM23-H1 has a dichotomous role in tumor metastasis as a suppressor and promoter. It has potentially attributed to its versatile biochemical characteristics such as nucleoside diphosphate kinase (NDPK) activity, histidine kinase activity (HPK), exonuclease activity, and protein scaffold, which further augment the complexity and uncertainty of its physiological function. Simultaneously, tumor cells have evolved multiple ways to regulate the expression and function of NM23-H1 during tumorigenesis and metastasis. This review summarized and discussed the regulatory mechanisms of NM23-H1 in cancer including transcriptional activation, subcellular location, enzymatic activity, and protein degradation, which significantly modulate its anti-metastatic function.


Assuntos
Nucleosídeo NM23 Difosfato Quinases/genética , Nucleosídeo NM23 Difosfato Quinases/metabolismo , Metástase Neoplásica/genética , Epigênese Genética , Regulação Neoplásica da Expressão Gênica , Humanos , Neoplasias/genética , Neoplasias/metabolismo , Neoplasias/patologia
11.
RSC Adv ; 11(38): 23270-23279, 2021 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-35479790

RESUMO

We report optimization by rational design of JMPDP-027, a potent cyclic peptide that interferes with the PD-1/PD-L1 protein-protein interaction. JMPDP-027 shows a potent restoring ability towards T-cells with an EC50 of 5.9 nM that is comparable to that of the anti-PD-1 monoclonal antibody pembrolizumab. In addition, JMPDP-027 shows not only high resistance to enzymatic hydrolysis in human serum but also no observable toxicity and potent in vivo anticancer activity comparable to that of the mouse PD-L1 antibody in a colon carcinoma (CT26) model. Cyclic peptide antagonists of this sort may provide novel drug candidates for cancer immunotherapy.

12.
Eur J Med Chem ; 211: 113022, 2021 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-33239261

RESUMO

Multitarget drugs have emerged as a promising treatment modality in modern anticancer therapy. Taking advantage of the synergy of NAMPT and EGFR inhibition, we have developed the first compounds that serve as dual inhibitors of NAMPT and EGFR. On the basis of CHS828 and erlotinib, a series of hybrid molecules were successfully designed and synthesized by merging of the pharmacophores. Among the compounds that were synthesized, compound 28 showed good NAMPT and EGFR inhibition, and excellent in vitro anti-proliferative activity. Compound 28, which is a new chemotype devoid of a Michael receptor, strongly inhibited the proliferation of several cancer cell lines, including H1975 non-small cell lung cancer cells harboring the EGFRL858R/T790M mutation. More importantly, it imparted significant in vivo antitumor efficacy in a human NSCLC (H1975) xenograft nude mouse model. This study provides promising leads for the development of novel antitumor agents and valuable pharmacological probes for the assessment of dual inhibition in NAMPT and EGFR pathway with a single inhibitor.


Assuntos
Antineoplásicos/farmacologia , Citocinas/antagonistas & inibidores , Inibidores Enzimáticos/farmacologia , Receptores ErbB/antagonistas & inibidores , Nicotinamida Fosforribosiltransferase/antagonistas & inibidores , Animais , Antineoplásicos/síntese química , Antineoplásicos/química , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Citocinas/metabolismo , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/química , Receptores ErbB/metabolismo , Feminino , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Simulação de Acoplamento Molecular , Estrutura Molecular , Neoplasias Experimentais/tratamento farmacológico , Neoplasias Experimentais/metabolismo , Neoplasias Experimentais/patologia , Nicotinamida Fosforribosiltransferase/metabolismo , Relação Estrutura-Atividade , Células Tumorais Cultivadas
13.
Micromachines (Basel) ; 9(7)2018 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-30424277

RESUMO

Monitoring the working condition of hydraulic equipment is significance in industrial fields. The abnormal wear of the hydraulic system can be revealed by detecting the variety and size of micro metal debris in the hydraulic oil. We thus present the design and implementation of a micro detection system of hydraulic oil metal debris based on inductor capacitor (LC) resonant circuit in this paper. By changing the resonant frequency of the micro fluidic chip, we can detect the metal debris of hydraulic oil and analyze the sensitivity of the micro fluidic chip at different resonant frequencies. We then obtained the most suitable resonant frequency. The chip would generate a positive resistance pulse when the iron particles pass through the detection area and the sensitivity of the chip decreased with resonant frequency. The chip would generate a negative resistance pulse when the copper particles pass through the detection area and the sensitivity of the chip increased with resonant frequency. The experimental results show that the change of resonant frequency has a great effect on the copper particles and little on the iron particles. Thus, a relatively big resonant frequency can be selected for chip designing and testing. In practice, we can choose a relatively big resonant frequency in this micro fluidic chip designing. The resonant micro fluidic chip is capable of detecting 20⁻30 µm iron particles and 70⁻80 µm copper particles at 0.9 MHz resonant frequency.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA