Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
1.
ACS Catal ; 14(7): 4554-4567, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-39099600

RESUMO

Murine adenosine deaminase (mADA) is a prototypic system for studying the thermal activation of active site chemistry within the TIM barrel family of enzyme reactions. Previous temperature-dependent hydrogen deuterium exchange studies under various conditions have identified interconnected thermal networks for heat transfer from opposing protein-solvent interfaces to active site residues in mADA. One of these interfaces contains a solvent exposed helix-loop-helix moiety that presents the hydrophobic face of its long α-helix to the backside of bound substrate. Herein we pursue the time and temperature dependence of solvation dynamics at the surface of mADA, for comparison to established kinetic parameters that represent active site chemistry. We first created a modified protein devoid of native tryptophans with close to native kinetic behavior. Single site-specific tryptophan mutants were back inserted into each of the four positions where native tryptophans reside. Measurements of nanosecond fluorescence relaxation lifetimes and Stokes shift decays, that reflect time dependent environmental reoroganization around the photo-excited state of Trp*, display minimal temperature dependences. These regions serve as controls for the behavior of a new single tryptophan inserted into a solvent exposed region near the helix-loop-helix moiety located behind the bound substrate, Lys54Trp. This installed Trp displays a significantly elevated value for Ea ( k Stokes shift ) ; further, when Phe61 within the long helix positioned behind bound substrate is replaced by a series of aliphatic hydrophobic side chains, the trends in Ea ( k Stokes shift ) mirror the earlier reported impact of the same series of function-altering hydrophobic side chains on the activation energy of catalysis, Ea ( k cat ) .The reported experimental findings implicate a solvent initiated and rapid (>ns) protein restructuring that contributes to the enthalpic activation barrier to catalysis in mADA.

2.
Front Vet Sci ; 11: 1367843, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38659454

RESUMO

The aim of this experiment is to explore the effects of salvia sclarea extract on the growth performance, apparent nutrient digestibility, antioxidant capacity, and immune function of lambs. Sixty female lambs (Chinese Merino sheep) aged 2 months and weighing 20 ± 2 kg were selected and randomly divided into five groups of twelve lambs in each. While the control group (CK) received only basal feed, the experimental group was supplemented with different concentrations of salvia sclarea extract in the basal feed at 0.04 mL/kg (group CL1), 0.08 mL/kg (group CL2), 0.12 mL/kg (group CL3), and 0.16 mL/kg (group CL4). The feeding period was 85 days, including 15 days of pre-feeding and 70 days of regular feeding. Body weight and feed intake were recorded during the test period, and blood was collected at the end of the test for the determination of immune and antioxidant indices. The results showed that the average daily gain and average daily feed intake of lambs were significantly increased in CL3 group compared to CK group (p < 0.05). Also, the apparent nutrient digestibility of crude protein and neutral detergent fiber was significantly increased (p < 0.05). The Dry matter, acid detergent fiber and Ether extract were not significantly different (p > 0.05). The serum levels of superoxide dismutase, catalase, glutathione peroxidase, and antioxidant capacity were significantly higher in the CL2, CL3, and CL4 groups compared to CK group, while malondialdehyde levels were significantly lower (p < 0.05). The serum levels of immune globulin A, immune globulin G, immune globulin M, interferon-γ, and interleukin-10 were significantly higher and the levels of tumor necrosis factor-α and interleukin-1ß were significantly lower in the CL2, CL3, and CL4 groups (p < 0.05). In conclusion, the addition of salvia sclarea extract to the ration promotes growth performance and nutrient digestion in lambs. Improvement of immune response by increasing immunoglobulin and cytokine concentrations. And it enhances the antioxidant status by increasing the antioxidant enzyme activity in lambs. Introduction: This study aimed to explore the effects of Salvia sclarea extract on the growth performance, apparent nutrient digestibility, antioxidant capacity, and immune function of the lambs. Methods: Sixty female lambs (Chinese Merino sheep) aged 2 months and weighing 20 ± 2 kg were selected and randomly divided into five groups of 12 lambs each. The control group (CK) received only basal feed, whereas the experimental group was supplemented with different concentrations of salvia sclarea extract in the basal feed at 0.04, 0.08, 0.12, and 0.16 mL/kg (CL1, CL2, CL3, and CL4, respectively). The feeding period was 85 days, including 15 days of pre-feeding and 70 days of regular feeding. Body weight and feed intake were recorded during the test period, and blood was collected at the end of the test to determine immune and antioxidant indices. Results: The results showed that the average daily weight gain and feed intake of the lambs were significantly higher in the CL3 group than in the CK group (p < 0.05). In addition, the apparent nutrient digestibility of crude protein and neutral detergent fiber increased significantly (p < 0.05). The dry matter, acid detergent fiber, and ether extract were not significantly different (p > 0.05). Serum levels of superoxide dismutase, catalase, and glutathione peroxidase and antioxidant capacity were significantly higher in the CL2, CL3, and CL4 groups than in the CK group, whereas malondialdehyde levels were significantly lower (p < 0.05). The serum levels of immune globulin immune globulin A, immune globulin G, immune globulin M, interferon-γ, and interleukin-10 were significantly higher and the levels of tumor necrosis factor-α and interleukin-1ß were significantly lower in the CL2, CL3, and CL4 groups (p < 0.05). Discussion: In conclusion, the addition of the S. sclarea extract to the diet promoted growth performance and nutrient digestion in lambs. Immune response was improved by increasing Ig and cytokine concentrations. It enhances antioxidant status by increasing antioxidant enzyme activity in lambs.

3.
Sci Data ; 11(1): 57, 2024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38195633

RESUMO

Biochar application is widely studied to mitigate the threats of soil degradation to food security and climate change. However, there are big variations in the effects of biochar application on crops, soils, and the atmosphere during crop production. This study provides a global dataset of biochar application effects on crop yield, soil properties, and greenhouse emissions. The dataset is extracted and integrated from 367 peer-reviewed studies with 891 independent field, laboratory, and incubation experiments across 37 countries. This dataset includes 21 variables before and after biochar application (including soil properties, crop yield, greenhouse gas emissions, etc.) of 2438 items, focusing on two main biochar application types: biochar application alone and combined with fertilizers. Background information on climate conditions, initial soil properties, management practices, and characteristics of biochar sources and production is also contained in the dataset. This dataset facilitates a comprehensive understanding of the impact of biochar application, supports the utilization of agricultural wastes for biochar production, and assists researchers in refining experimental protocols for further studies.

4.
Biol Direct ; 19(1): 2, 2024 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-38163902

RESUMO

BACKGROUND: Human Deltex 2 (DTX2) is a ubiquitin E3 ligase that functions as an oncogene and has been shown to participate in many human cancers. However, the role of DTX2 in glioma progression has remained obscure. In this study, we explore the mechanism underlying the function of DTX2 in glioma progression. METHODS: The associations between DTX2 expression and clinical characteristics of glioma were determined by bioinformatic analysis of data from The Cancer Genome Atlas and Human Protein Atlas. The expression of DTX2 in glioma tissues was detected using immunohistochemistry and western blotting. Lentivirus-mediated gene knockdown and overexpression were used to determine the effects of DTX2 and helicase-like transcription element (HLTF) on glioma cell proliferation and migration with CCK-8, cell colony formation, transwell, and wound healing assays; flow cytometry in vitro; and animal models in vivo. The interaction of the DTX2 and HLTF proteins was verified by immunoprecipitation assay and confocal microscopy. RESULTS: DTX2 was highly expressed in glioma samples, and this was correlated with worse overall survival. Silencing of DTX2 suppressed glioma cell viability, colony formation, and migration and induced cell apoptosis. In vitro ubiquitination assays confirmed that DTX2 could downregulate HLTF protein levels by increasing ubiquitination of the HLTF protein. We also observed that HLTF inhibited proliferation and migration of glioma cells. Subcutaneous xenografts with DTX2-overexpressing U87 cells showed significantly increased tumor volumes and weights. CONCLUSIONS: We have identified DTX2/HLTF as a new axis in the development of glioma that could serve as a prognostic or therapeutic marker.


Assuntos
Glioma , Animais , Humanos , Linhagem Celular Tumoral , Glioma/genética , Glioma/metabolismo , Proliferação de Células/genética , Movimento Celular/genética , Regulação Neoplásica da Expressão Gênica , Apoptose , Proteínas de Ligação a DNA/genética , Fatores de Transcrição/genética
5.
PLoS One ; 19(1): e0295346, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38181024

RESUMO

The cell division cycle associated (CDCA) genes regulate the cell cycle; however, their relationship with prognosis in glioma has been poorly reported in the literature. The Cancer Genome Atlas (TCGA) was utilized to probe the CDCA family in relation to the adverse clinical features of glioma. Glioma single-cell atlas reveals specific expression of CDCA3, 4, 5, 8 in malignant cells and CDCA7 in neural progenitor cells (NPC)-like malignant cells. Glioma data from TCGA, the China Glioma Genome Atlas Project (CGGA) and the gene expression omnibus (GEO) database all demonstrated that CDCA2, 3, 4, 5, 7 and 8 are prognostic markers for glioma. Further analysis identified CDCA2, 5 and 8 as independent prognostic factors for glioma. Lasso regression-based risk models for CDCA families demonstrated that high-risk patients were characterized by high tumor mutational burden (TMB), low levels of microsatellite instability (MSI), and low tumor immune dysfunction and rejection (TIDE) scores. These pointed to immunotherapy for glioma as a potentially viable treatment option Further CDCA clustering suggested that the high CDCA subtype exhibited a high macrophage phenotype and was associated with a higher antigen presentation capacity and high levels of immune escape. In addition, hsa-mir-15b-5p was predicted to be common regulator of CDCA3 and CDCA4, which was validated in U87 and U251 cells. Importantly, we found that CDCAs may indicate response to drug treatment, especially rapamycin, in glioma. In summary, our results suggest that CDCAs have potential applications in clinical diagnosis and as drug sensitivity markers in glioma.


Assuntos
Glioma , Humanos , Prognóstico , Glioma/tratamento farmacológico , Glioma/genética , Imunoterapia , Biologia Computacional , Biomarcadores , Proteínas de Ciclo Celular/genética , Proteínas Nucleares
6.
Mol Ecol ; 32(18): 4999-5012, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37525516

RESUMO

Genomic structural variations (SVs) are widespread in plant and animal genomes and play important roles in phenotypic novelty and species adaptation. Frequent whole genome duplications followed by (re)diploidizations have resulted in high diversity of genome architecture among extant species. In this study, we identified abundant genomic SVs in the Panax genus that are hypothesized to have occurred through during the repeated polyploidizations/(re)diploidizations. Our genome-wide comparisons demonstrated that although these polyploidization-derived SVs have evolved at distinct evolutionary stages, a large number of SV-intersecting genes showed enrichment in functionally important pathways related to secondary metabolites, photosynthesis and basic cellular activities. In line with these observations, our metabolic analyses of these Panax species revealed high diversity of primary and secondary metabolites both at the tissue and interspecific levels. In particular, genomic SVs identified at ginsenoside biosynthesis genes, including copy number variation and large fragment deletion, appear to have played important roles in the evolution and diversification of ginsenosides. A further herbivore deterrence experiment demonstrated that, as major triterpenoidal saponins found exclusively in Panax, ginsenosides provide protection against insect herbivores. Our study provides new insights on how polyploidization-derived SVs have contributed to phenotypic novelty and plant adaptation.


Assuntos
Ginsenosídeos , Panax , Saponinas , Ginsenosídeos/análise , Ginsenosídeos/química , Ginsenosídeos/metabolismo , Panax/genética , Panax/química , Panax/metabolismo , Variações do Número de Cópias de DNA , Saponinas/química , Saponinas/genética , Saponinas/metabolismo , Adaptação Fisiológica
7.
Medicine (Baltimore) ; 102(23): e33935, 2023 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-37335645

RESUMO

Gliomas have a high incidence rate in central nervous tumors. Although many breakthroughs have been made in the pathogenesis and treatment of glioma, the recurrence and metastasis rates of patients have not been improved based on the uniqueness of glioma. Glioma destroys the surrounding basement membrane (BM), leading to local infiltration, resulting in the corresponding clinical and neurological symptoms. Therefore, exploring the biological roles played by BM associated genes in glioma is particularly necessary for a comprehensive understanding of the biological processes of glioma and its treatment. Differential expression and univariate COX regression analyses were used to identify the basement membrane genes (BMGs) to be included in the model. LASSO regression was used to construct the BMG model. The Kaplan-Meier (KM) survival analysis model was used to assess the prognosis discrimination between training sets, validation sets, and clinical subgroups. Receiver-operating characteristic (ROC) analysis was used to test the prognostic efficacy of the model. Use calibration curves to verify the accuracy of nomograms. Gene ontology (GO), Kyoto encyclopedia of genes and genomes (KEGG), and gene set enrichment analysis (GSEA) were used to analyze the function and pathway enrichment among the model groups. ESTIMATE and other 7 algorithms including CIBERSORT were used to evaluate the immune microenvironment. "pRRophetic" was used to evaluate drug sensitivity. This study demonstrated that high-risk genes (LAMB4, MMP1, MMP7) promote glioma progression and negatively correlate with patient prognosis. In the tumor microenvironment (TME), high-risk genes have increased scores of macrophages, neutrophils, immune checkpoints, chemokines, and chemokine receptors. This study suggests that BMGs, especially high-risk-related genes, are potential sites for glioma therapy, a new prospect for comprehensively understanding the molecular mechanism of glioma.


Assuntos
Glioma , Humanos , Prognóstico , Glioma/genética , Nomogramas , Algoritmos , Membrana Basal , Microambiente Tumoral/genética
8.
Front Genet ; 14: 1067172, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37007952

RESUMO

Introduction: Prostate cancer (PCa) is the second most common malignancy in men. Despite multidisciplinary treatments, patients with PCa continue to experience poor prognoses and high rates of tumor recurrence. Recent studies have shown that tumor-infiltrating immune cells (TIICs) are associated with PCa tumorigenesis. Methods: The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) datasets were used to derive multi-omics data for prostate adenocarcinoma (PRAD) samples. The CIBERSORT algorithm was used to calculate the landscape of TIICs. Weighted gene co-expression network analysis (WGCNA) was performed to determine the candidate module most significantly associated with TIICs. LASSO Cox regression was applied to screen a minimal set of genes and construct a TIIC-related prognostic gene signature for PCa. Then, 78 PCa samples with CIBERSORT output p-values of less than 0.05 were selected for analysis. WGCNA identified 13 modules, and the MEblue module with the most significant enrichment result was selected. A total of 1143 candidate genes were cross-examined between the MEblue module and active dendritic cell-related genes. Results: According to LASSO Cox regression analysis, a risk model was constructed with six genes (STX4, UBE2S, EMC6, EMD, NUCB1 and GCAT), which exhibited strong correlations with clinicopathological variables, tumor microenvironment context, antitumor therapies, and tumor mutation burden (TMB) in TCGA-PRAD. Further validation showed that the UBE2S had the highest expression level among the six genes in five different PCa cell lines. Discussion: In conclusion, our risk-score model contributes to better predicting PCa patient prognosis and understanding the underlying mechanisms of immune responses and antitumor therapies in PCa.

9.
Toxins (Basel) ; 14(12)2022 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-36548713

RESUMO

Gossypol is a polyphenolic toxic secondary metabolite derived from cotton. Free gossypol in cotton meal is remarkably harmful to animals. Furthermore, microbial degradation of gossypol produces metabolites that reduce feed quality. We adopted an enzymatic method to degrade free gossypol safely and effectively. We cloned the gene cce001a encoding carboxylesterase (CarE) into pPICZαA and transformed it into Pichia pastoris GS115. The target protein was successfully obtained, and CarE CCE001a could effectively degrade free gossypol with a degradation rate of 89%. When esterase was added, the exposed toxic groups of gossypol reacted with different amino acids and amines to form bound gossypol, generating substances with (M + H) m/z ratios of 560.15, 600.25, and 713.46. The molecular formula was C27H28O13, C34H36N2O6, and C47H59N3O3. The observed instability of the hydroxyl groups caused the substitution and shedding of the group, forming a substance with m/z of 488.26 and molecular formula C31H36O5. These properties render the CarE CCE001a a valid candidate for the detoxification of cotton meal. Furthermore, the findings help elucidate the degradation process of gossypol in vitro.


Assuntos
Carboxilesterase , Gossipol , Mariposas , Animais , Carboxilesterase/genética , Carboxilesterase/metabolismo , Gossipol/metabolismo , Mariposas/enzimologia , Pichia/enzimologia , Pichia/genética , Biotransformação , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
10.
Anim Sci J ; 93(1): e13781, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36437240

RESUMO

This study investigated the effects of bioactive peptides derived from solid-state fermentation of cottonseed meal on the growth performance, apparent dietary digestibility, serum biochemical parameters, protein metabolism, antioxidant activity, and immunity in yellow-feathered broilers. A total of two hundred forty 21-days-old male broilers were randomly divided into four groups with six replicates per group. The control group received a basal diet and three experimental groups were fed diets with 1%, 2%, and 3% cottonseed meal bioactive peptides (CSBP) replacing equivalent protein of cottonseed meal in basic diet. Dietary supplementation of 2% and 3% CSBP increased the average daily weight gain, crude protein digestibility, total serum protein, and immunoglobulin (Ig) G contents in serum (P < 0.05). The 3% CSBP increased albumin, total antioxidant capacity, spleen weight/bodyweight, interleukin-6, and IgM, while reducing the feed to gain ratio, total cholesterol, urea nitrogen, total superoxide dismutase, glutathione peroxidase, and malondialdehyde contents in serum (P < 0.05). The 2% CSBP diet increased PepT1 expression in duodenum, jejunum, and ileum (P < 0.05). The 1%, 2%, and 3% CSBP diets increased S6kinase-polypeptide-1 and inositol-3-hydroxylase expression in chest and leg muscles (P < 0.05). The CSBP addition in diets can improve growth performance, nutrient digestibility, protein metabolism, antioxidant, and immune capabilities of yellow-feathered broilers.


Assuntos
Fenômenos Fisiológicos da Nutrição Animal , Galinhas , Masculino , Animais , Fermentação , Galinhas/metabolismo , Ração Animal/análise , Óleo de Sementes de Algodão , Antioxidantes/metabolismo , Aumento de Peso , Peptídeos/metabolismo
11.
Front Genet ; 13: 956632, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36186425

RESUMO

Guanylate binding protein 2 (GBP2) is a member of the guanine binding protein family, and its relationship with prognostic outcomes and tumor immune microenvironments in glioma remains elusive. We found GBP2 were increased in glioma tissues at both mRNA and protein levels. Kaplan-Meier curves revealed that high GBP2 expression was linked with worse survival of glioma patients, and multivariate Cox regression analysis indicated that high GBP2 expression was an independent prognostic factor for glioma. Combined analysis in immune database revealed that the expression of GBP2 was significantly related to the level of immune infiltration and immunomodulators. Single-cell analysis illustrated the high expression of GBP2 in malignant glioma cells showed the high antigen presentation capability, which were confirmed by real-time polymerase chain reaction (qRT-PCR) data. Additionally, the hsa-mir-26b-5p and hsa-mir-335-5p were predicted as GBP2 regulators and were validated in U87 and U251 cells. Our results first decipher immune-related characteristics and noncoding regulators of GBP2 in glioma, which may provide insights into associated immunotherapies and prognostic predictor.

12.
J Vis Exp ; (187)2022 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-36190252

RESUMO

Pelvic organ prolapse (POP) is widespread among the female population and significantly impairs the patient's quality of life. It is important to restore apical support for treating POP. Sacrocolpopexy and pectopexy are indicated for apical prolapse. Using a synthetic mesh in these techniques increases success by enhancing apical support. However, the implantation of synthetic mesh is associated with mesh-related complications. In addition, the exorbitant cost of synthetic mesh and lack of universal access limit the popularity of these procedures. The current study develops a unique technique known as laparoscopic non-mesh cerclage pectopexy (LNMCP), in which permanent cervical cerclage sutures are embedded in the round ligament until the iliopectineal ligament. The iliopectineal ligament was sutured, resulting in a firm cervical suspension. The procedure was successfully performed in 16 cases in the hospital. The surgical duration was 67.8 min ± 15.5 min, and the blood loss was 73.1 mL ± 51.1 mL. No procedural complications were seen. LNMCP is associated with an objective success rate of 100% and a subjective success rate of 93.8%. LNMCP for patients with apical prolapse obviates the need for a mesh, thereby avoiding complications associated with mesh erosion and reducing medical costs. In addition, it is easy to perform even in resource-poor areas without access to synthetic mesh.


Assuntos
Laparoscopia , Prolapso de Órgão Pélvico , Feminino , Procedimentos Cirúrgicos em Ginecologia/métodos , Humanos , Laparoscopia/métodos , Prolapso de Órgão Pélvico/cirurgia , Qualidade de Vida , Telas Cirúrgicas , Resultado do Tratamento
13.
J Biol Chem ; 298(9): 102350, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35933011

RESUMO

The analysis of hydrogen deuterium exchange by mass spectrometry as a function of temperature and mutation has emerged as a generic and efficient tool for the spatial resolution of protein networks that are proposed to function in the thermal activation of catalysis. In this work, we extend temperature-dependent hydrogen deuterium exchange from apo-enzyme structures to protein-ligand complexes. Using adenosine deaminase as a prototype, we compared the impacts of a substrate analog (1-deaza-adenosine) and a very tight-binding inhibitor/transition state analog (pentostatin) at single and multiple temperatures. At a single temperature, we observed different hydrogen deuterium exchange-mass spectrometry properties for the two ligands, as expected from their 106-fold differences in strength of binding. By contrast, analogous patterns for temperature-dependent hydrogen deuterium exchange mass spectrometry emerge in the presence of both 1-deaza-adenosine and pentostatin, indicating similar impacts of either ligand on the enthalpic barriers for local protein unfolding. We extended temperature-dependent hydrogen deuterium exchange to a function-altering mutant of adenosine deaminase in the presence of pentostatin and revealed a protein thermal network that is highly similar to that previously reported for the apo-enzyme (Gao et al., 2020, JACS 142, 19936-19949). Finally, we discuss the differential impacts of pentostatin binding on overall protein flexibility versus site-specific thermal transfer pathways in the context of models for substrate-induced changes to a distributed protein conformational landscape that act in synergy with embedded protein thermal networks to achieve efficient catalysis.


Assuntos
Adenosina Desaminase , Deutério , Adenosina/química , Adenosina Desaminase/química , Deutério/química , Medição da Troca de Deutério , Ligantes , Pentostatina/química , Conformação Proteica , Proteínas , Temperatura
14.
Cell Death Discov ; 8(1): 208, 2022 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-35436989

RESUMO

Identifying the mechanism of glioma progression is critical for diagnosis and treatment. Although studies have shown that guanylate-binding protein 2(GBP2) has critical roles in various cancers, its function in glioma is unclear. In this work, we demonstrate that GBP2 has high expression levels in glioma tissues. In glioma cells, depletion of GBP2 impairs proliferation and migration, whereas overexpression of GBP2 enhances proliferation and migration. Regarding the mechanism, we clarify that epidermal growth factor receptor (EGFR) signaling is regulated by GBP2, and also demonstrate that GBP2 interacts directly with kinesin family member 22(KIF22) and regulates glioma progression through KIF22/EGFR signaling in vitro and in vivo. Therefore, our study provides new insight into glioma progression and paves the way for advances in glioma treatment.

15.
Front Surg ; 9: 1043340, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36760668

RESUMO

Dural arteriovenous fistulas of the hypoglossal canal (HCDAVFs) involving the anterior condylar confluence (ACC) and anterior condylar vein (ACV) are infrequent. Although transvenous embolization through the internal jugular vein (IJV) is the preferred treatment option for type I and II fistulas, it can be difficult if the IJV is unavailable. Here we report a rare case of HCDAVF in which the most common transvenous embolization access via IJV was not available. The patient underwent transarterial and transvenous onyx embolization. Transarterial embolization (TAE) aimed at controlling the arterial inflow and subsequently TVE was performed via the external jugular vein (EJV), the facial vein, the ophthalmic vein, the cavernous sinus, ACC, and ultimately to the fistula pouch. Complete obliteration of the HCDAVF was achieved without complications. We suggest that transvenous embolization (TVE) via the EJV and the facial vein can be effective in cases where trans-IJV is not possible.

16.
Int Urogynecol J ; 33(1): 3-13, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34081163

RESUMO

INTRODUCTION AND HYPOTHESIS: Sacrocolpopexy and sacrospinous ligament fixation (SSLF) have been used for the restoration of apical support. Studies comparing sacrocolpopexy and SSLF have reported conflicting results. We aim to assess the current evidence regarding efficiency and the complications of sacrocolpopexy compared with SSLF. METHODS: We searched PubMed, Embase, and Cochrane Library and performed a systematic review meta-analysis to assess the two surgical approaches. RESULTS: 5Five randomized controlled trials, 8 retrospective studies, and 2 prospective studies including 4,120 cases were identified. Compared with abdominal sacrocolpopexy (ASC), SSLF was associated with a lower success rate (88.32% and 91.45%; OR 0.52; 95% CI 0.29-0.95; p = 0.03), higher recurrence (11.58% and 8.32%; OR 1.97; 95% CI 1.04-3.46; p = 0.04), and dyspareunia rate (14.36% and 4.67%; OR 3.10; 95% CI 1.28-7.50; p = 0.01). Patients in this group may benefit from shorter operative time (weighted mean difference -25.08 min; 95% CI -42.29 to -7.88; p = 0.004), lower hemorrhage rate (0.85% and 2.58%; OR 0.45; 95% CI 0.25-0.85; p = 0.009), wound infection rate (3.30% and 5.76%; OR 0.55; 95% CI 0.39-0.77; p = 0.0005), and fewer gastrointestinal complications (1.33% and 6.19%; OR 0.33; 95% CI 0.15-0.76; p = 0.009). CONCLUSION: Both sacrocolpopexy and SSLF offer an efficient alternative to the restoration of apical support. When anatomical durability and sexual function is a priority, ASC may be the preferred option. When considering factors of mesh erosion, operative time, gastrointestinal complications, hemorrhage, and wound infections, SSLF may be the better option.


Assuntos
Prolapso de Órgão Pélvico , Feminino , Procedimentos Cirúrgicos em Ginecologia/efeitos adversos , Procedimentos Cirúrgicos em Ginecologia/métodos , Humanos , Ligamentos/cirurgia , Prolapso de Órgão Pélvico/cirurgia , Estudos Prospectivos , Estudos Retrospectivos , Resultado do Tratamento
18.
IEEE/ACM Trans Comput Biol Bioinform ; 18(4): 1416-1425, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-31603795

RESUMO

Accurate and sensitive identification of peptides from MS/MS spectra is a very challenging problem in computational shotgun proteomics. To tackle this problem, spectral library search has been one of the competitive solutions. However, most existing library search tools were developed on the basis of one peptide per spectrum, which prevents them from working properly on chimeric spectra where two or more peptides are co-fragmented. In this work, we present a new library search tool called ChimST, which is particularly capable of reliably identifying multiple peptides from a chimeric spectrum. It starts with associating each query MS/MS spectrum with MS precursor features. For each precursor feature, there is a list of peptide candidates extracted from an input spectral library. Then, it takes one peptide candidate from each associated feature and scores how well they could collectively interpret the query spectrum. The highest-scoring set of peptide candidates are finally reported as the identification of the query spectrum. Our experimental tests show that ChimST could significantly outperform the three state-of-the-art library search tools, SpectraST, reSpect, and MSPLIT, in terms of the numbers of both peptide-spectrum matches and unique peptides, especially when the acquisition isolation window is broad.


Assuntos
Mineração de Dados/métodos , Peptídeos , Proteômica/métodos , Espectrometria de Massas em Tandem , Bases de Dados Factuais , Peptídeos/química , Peptídeos/classificação
19.
J Am Chem Soc ; 142(47): 19936-19949, 2020 11 25.
Artigo em Inglês | MEDLINE | ID: mdl-33181018

RESUMO

Proteins are intrinsically flexible macromolecules that undergo internal motions with time scales spanning femtoseconds to milliseconds. These fluctuations are implicated in the optimization of reaction barriers for enzyme catalyzed reactions. Time, temperature, and mutation dependent hydrogen-deuterium exchange coupled to mass spectrometry (HDX-MS) has been previously employed to identify spatially resolved, catalysis-linked dynamical regions of enzymes. We now extend this technique to pursue the correlation of protein flexibility and chemical reactivity within the diverse and widespread TIM barrel proteins, targeting murine adenosine deaminase (mADA) that catalyzes the irreversible deamination of adenosine to inosine and ammonia. Following a structure-function analysis of rate and activation energy for a series of mutations at a second sphere phenylalanine positioned in proximity to the bound substrate, the catalytically impaired Phe61Ala with an elevated activation energy (Ea = 7.5 kcal/mol) and the wild type (WT) mADA (Ea = 5.0 kcal/mol) were selected for HDX-MS experiments. The rate constants and activation energies of HDX for peptide segments are quantified and used to assess mutation-dependent changes in local and distal motions. Analyses reveal that approximately 50% of the protein sequence of Phe61Ala displays significant changes in the temperature dependence of HDX behaviors, with the dominant change being an increase in protein flexibility. Utilizing Phe61Ile, which displays the same activation energy for kcat as WT, as a control, we were able to further refine the HDX analysis, highlighting the regions of mADA that are altered in a functionally relevant manner. A map is constructed that illustrates the regions of protein that are proposed to be essential for the thermal optimization of active site configurations that dominate reaction barrier crossings in the native enzyme.


Assuntos
Adenosina Desaminase/metabolismo , Espectrometria de Massa com Troca Hidrogênio-Deutério , Adenosina/metabolismo , Adenosina Desaminase/química , Adenosina Desaminase/genética , Animais , Sítios de Ligação , Biocatálise , Desaminação , Cinética , Camundongos , Mutagênese Sítio-Dirigida , Estrutura Terciária de Proteína , Especificidade por Substrato , Temperatura
20.
Int J Phytoremediation ; 22(7): 713-724, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31885282

RESUMO

The ornamental plants of Althaea rosea Cavan. were exposed to cadmium (Cd) at concentrations of 0, 5, 10, 50 and 100 mg·kg-1 to evaluate the potential of accumulation capacity and tolerance ability. The results showed that A. rosea was a Cd tolerance plant, and Cd accumulation was 4.57 mg·kg-1 in shoot and 9.43 mg·kg-1 in root at 100 mg·kg-1 Cd concentration. The high tolerance ability could be explained by the distribution characteristics and the defense mechanism. The accumulated Cd was allocated in root, older leaves, and subcellular level of the cell wall and supernatant soluble fraction to protect the physiological leaves from damage. The defense systems included the enzyme systems of superoxide dismutase (SOD), peroxidase (POD), catalase (CAT) and ascorbate peroxidase (APX) that could effectively eliminate the excessive ROS, and the non-enzymes system of total soluble proteins and non-protein thiols (NP-SH) that played an important role in detoxification. Thus, A. rosea could be used as a potential species for phytoremediation in Cd contaminated areas and beautify the environment.


Assuntos
Althaea , Cádmio , Antioxidantes , Biodegradação Ambiental , Catalase , Folhas de Planta , Raízes de Plantas , Superóxido Dismutase
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA