Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Wideochir Inne Tech Maloinwazyjne ; 19(2): 178-186, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38973793

RESUMO

Introduction: In patients with pulmonary nodules (PNs), computed tomography (CT)-guided localization is commonly performed prior to the resection of these nodules through video-assisted thoracic surgery (VATS). Aim: To evaluate the relative clinical efficacy of coil and anchored needle (AN) insertion as approaches to preoperative CT-guided PN localization. Material and methods: This single-center, prospective, open-label, randomized controlled trial (registration number: NCT05183945) enrolled consecutive patients from January 2022 to July 2022, assigning these patients at random to undergo either coil or AN localization prior to VATS. Efficacy and safety outcomes in these two groups were then compared. Results: This study enrolled in total 100 patients with 120 PNs who were assigned at random to the coil (patients = 50; PNs = 60) and AN (patients = 50; PNs = 60) localization groups. The respective technical success rates for coil and AN localization were 98.3% (59/60) and 100% (60/60), with no significant difference between the groups (p = 1.000). The coil group had a significantly longer median duration of localization relative to the AN group (16.0 min vs. 8.0 min, p < 0.001). Similar rates of localization-related pneumothorax (8.3% vs. 5.0%, p = 0.715) and pulmonary hemorrhage (5.0% vs. 13.3%, p = 0.110) were observed in both groups. In addition, the VATS resection procedures achieved 100% technical success rates in both of these localization groups. Conclusions: Both coil- and AN-based localization approaches can be successfully employed to localize PNs prior to VATS resection, with the AN localization procedure requiring less time to complete on average as compared to the coil-based approach.

2.
Heliyon ; 10(12): e32621, 2024 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-38975179

RESUMO

Background: The exosome is a critical component of the intercellular communication., playing a vital role in regulating cell function. These small vesicles contain proteins, mRNAs, miRNAs, and lncRNAs, surrounded by lipid bilayer substances. Most cells in the human body can produce exosomes, released into various body fluids such as urine, blood, and cerebrospinal fluid. Bladder cancer is the most common tumor in the urinary system, with high recurrence and metastasis rates. Early diagnosis and treatment are crucial for improving patient outcomes. Methods: This study employed the PubMed search engine to retrieve publicly accessible data pertaining to urinary exosomes. Results: We summarize the origins and intricate biological characteristics of urinary exosomes, the introduction of research methodologies used in basic experiments to isolate and analyze these exosomes, the discussion of their applications and progress in the diagnosis and treatment of bladder cancer, and the exploration of the current limitations associated with using urinary exosomes as molecular biomarkers for diagnosing bladder cancer. Conclusion: Exosomes isolated from urine may be used as molecular biomarkers for early detection of bladder cancer.

3.
Int J Biol Macromol ; 277(Pt 1): 134090, 2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-39053832

RESUMO

Enzymatic browning and microbial contamination of food threaten food sensory and safety. With the development of green and healthy concepts, there is a greater need for efficient, low-carbon antioxidant and antimicrobial strategies. In this study, we designed a nano-enzyme with antioxidant activities and biocompatibility. By mimicking the active center of the natural SOD enzyme, copper (Cu) and ovalbumin (OVA) were self-assembled to form Cu-nano-polymerised sheet (Cu-NPS), in which OVA as a scaffold carries cofactors to create the active sites, making the nanoenzymes compatible with the antioxidant activity and antimicrobial properties of Cu, and at the same time possessing good stability and biocompatibility. These properties enable Cu-NPS to have a broader application range, for removing reactive oxygen species (ROS) and broad-spectrum sterilization. Subsequently, Cu-NPS was doped into carrageenan (Carr) to form a nanocomposite film, effectively inhibiting enzymatic browning and microbial contamination. In this work, protein-based mimetic enzymes as artificial nanoenzymes have advantages over natural enzymes, and the Cu-NPS with simple synthesis, high stability, and diverse properties, provides new ideas for the design of functional materials.

4.
Foods ; 13(14)2024 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-39063346

RESUMO

A protein mixture was prepared using a blend of soybean protein isolate, soybean protein concentrate, and wheat protein through high-moisture extrusion. This study investigated the effects of soybean oil/coconut oil additions (2%, 5%, and 8%) on the physiochemical properties of a soy protein-wheat protein mixture subjected to high-moisture extrusion. The protein extrudates underwent assessment for textural properties, fiber degree, sensory evaluation, microstructure, protein solubility, and protein secondary structure. The findings indicated that plant oils significantly reduced the hardness, springiness, and chewiness of the extrudates, and 5% plant oil significantly increased the fiber degree of the extrudates. In addition, the highest fiber degree and sensory evaluation score were achieved with 5% coconut oil. Observation of the macro- and microstructure indicated that the presence of unsaturated fatty acids in soybean oil did not benefit the improvement of the fibrous structure of protein extrudates during high-moisture extrusion processing. SDS-PAGE and FTIR results revealed that coconut oil, rich in saturated fatty acids, caused the clustering of medium- and low-molecular-weight subunits in texturized protein. Additionally, coconut oil elevated the ratio of 11S protein subunits containing sulfur-based amino acids and facilitated a shift from ß-turn to ß-sheet. The inclusion of plant oils increased the development of hydrogen and disulfide bonds, resulting in a denser, fibrous structure. DSC demonstrated that plant oils reduced the thermal stability of the texturized proteins but enhanced the order of protein structure.

5.
Angew Chem Int Ed Engl ; : e202410581, 2024 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-39039588

RESUMO

Catalytic enantioselective preparation of alkene atropisomers with multiple stereogenic elements and discovery of their applications have become significant but challenging issues in the scientific community due to the unique structures of this class of atropisomers. We herein report the first catalytic atroposelective preparation of cyclopentenyl[b]indoles, a new kind of alkene atropisomers, with stereogenic point and axial chirality via an unusual rearrangement reaction of 3-indolylmethanols under asymmetric organocatalysis. Notably, this novel type of alkene atropisomers have promising applications in developing chiral ligands or organocatalysts, discovering antitumor drug candidates and fluorescence imaging materials. Moreover, the theoretical calculations have elucidated the possible reaction mechanism and the non-covalent interactions to control the enantioselectivity. This approach offers a new synthetic strategy for alkene atropisomers with multiple stereogenic elements, and represents the first catalytic enantioselective rearrangement reaction of 3-indolylmethanols, which will advance the chemistry of atropisomers and chiral indole chemistry.

6.
Mikrochim Acta ; 191(8): 465, 2024 07 16.
Artigo em Inglês | MEDLINE | ID: mdl-39012354

RESUMO

A novel Fe-MoOx nanozyme, engineered with enhanced peroxidase (POD)-like activity through strategic doping and the creation of oxygen vacancies, is introduced to catalyze the oxidation of TMB with high efficiency. Furthermore, Fe-MoOx is responsive to single electron transfer (SET) and hydrogen atom transfer (HAT) mechanisms related to antioxidants and can serve as a desirable nanozyme for total antioxidant capacity (TAC) determination. The TAC colorimetric platform can reach a low LOD of 0.512 µM in solution and 24.316 µM in the smartphone-mediated RGB hydrogel (AA as the standard). As proof of concept, the practical application in real samples was explored. The work paves a promising avenue to design diverse nanozymes for visual on-site inspection of food quality.


Assuntos
Antioxidantes , Colorimetria , Oxirredução , Antioxidantes/química , Antioxidantes/análise , Antioxidantes/metabolismo , Colorimetria/métodos , Catálise , Molibdênio/química , Limite de Detecção , Ferro/química , Benzidinas/química , Smartphone , Hidrogéis/química , Transporte de Elétrons , Técnicas Biossensoriais/métodos , Óxidos/química
7.
Oncoimmunology ; 13(1): 2376264, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38988824

RESUMO

Functional roles of SIGLEC15 in hepatocellular carcinoma (HCC) were not clear, which was recently found to be an immune inhibitor with similar structure of inhibitory B7 family members. SIGLEC15 expression in HCC was explored in public databases and further examined by PCR analysis. SIGLEC15 and PD-L1 expression patterns were examined in HCC samples through immunohistochemistry. SIGLEC15 expression was knocked-down or over-expressed in HCC cell lines, and CCK8 tests were used to examine cell proliferative ability in vitro. Influences of SIGLEC15 expression on tumor growth were examined in immune deficient and immunocompetent mice respectively. Co-culture system of HCC cell lines and Jurkat cells, flow cytometry analysis of tumor infiltrated immune cells and further sequencing analyses were performed to investigate how SIGLEC15 could affect T cells in vitro and in vivo. We found SIGLEC15 was increased in HCC tumor tissues and was negatively correlated with PD-L1 in HCC samples. In vitro and in vivo models demonstrated inhibition of SIGLEC15 did not directly influence tumor proliferation. However, SIGLEC15 could promoted HCC immune evasion in immune competent mouse models. Knock-out of Siglec15 could inhibit tumor growth and reinvigorate CD8+ T cell cytotoxicity. Anti-SIGLEC15 treatment could effectively inhibit tumor growth in mouse models with or without mononuclear phagocyte deletion. Bulk and single-cell RNA sequencing data of treated mouse tumors demonstrated SIGLEC15 could interfere CD8+ T cell viability and induce cell apoptosis. In all, SIGLEC15 was negatively correlated with PD-L1 in HCC and mainly promote HCC immune evasion through inhibition of CD8+ T cell viability and cytotoxicity.


Assuntos
Apoptose , Antígeno B7-H1 , Linfócitos T CD8-Positivos , Carcinoma Hepatocelular , Imunoglobulinas , Neoplasias Hepáticas , Proteínas de Membrana , Animais , Feminino , Humanos , Masculino , Camundongos , Antígeno B7-H1/genética , Antígeno B7-H1/metabolismo , Antígeno B7-H1/imunologia , Carcinoma Hepatocelular/imunologia , Carcinoma Hepatocelular/patologia , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/metabolismo , Linhagem Celular Tumoral , Proliferação de Células , Evasão da Resposta Imune , Neoplasias Hepáticas/imunologia , Neoplasias Hepáticas/patologia , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Evasão Tumoral/genética
8.
Angew Chem Int Ed Engl ; : e202403541, 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38885002

RESUMO

The exploration of cell-based drug delivery systems for cancer therapy has gained growing attention. Approaches to engineering therapeutic cells with multidrug loading in an effective, safe, and precise manner while preserving their inherent biological properties remain of great interest. Here, we report a strategy to simultaneously load multiple drugs in platelets in a one-step fusion process. We demonstrate doxorubicin (DOX)-encapsulated liposomes conjugated with interleukin-15 (IL-15) could fuse with platelets to achieve both cytoplasmic drug loading and surface cytokine modification with a loading efficiency of over 70 % within minutes. Due to their inherent targeting ability to metastatic cancers and postoperative bleeding sites, the engineered platelets demonstrated a synergistic therapeutic effect to suppress lung metastasis and postoperative recurrence in mouse B16F10 melanoma tumor models.

9.
J Control Release ; 371: 516-529, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38849095

RESUMO

Gene delivery has revolutionized conventional medical approaches to vaccination, cancer, and autoimmune diseases. However, current gene delivery methods are limited to either intravenous administration or direct local injections, failing to achieve well biosafety, tissue targeting, drug retention, and transfection efficiency for desired therapeutic outcomes. Transdermal drug delivery based on various delivery strategies can offer improved therapeutic potential and superior patient experiences. Recently, there has been increased foundational and clinical research focusing on the role of the transdermal route in gene delivery and exploring its impact on the efficiency of gene delivery. This review introduces the recent advances in transdermal gene delivery approaches facilitated by drug formulations and medical devices, as well as discusses their prospects.


Assuntos
Administração Cutânea , Técnicas de Transferência de Genes , Humanos , Animais , Terapia Genética/métodos , Pele/metabolismo , Sistemas de Liberação de Medicamentos
10.
Cell Metab ; 36(8): 1745-1763.e6, 2024 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-38851189

RESUMO

Impaired self-renewal of Kupffer cells (KCs) leads to inflammation in metabolic dysfunction-associated steatohepatitis (MASH). Here, we identify neutrophil cytosolic factor 1 (NCF1) as a critical regulator of iron homeostasis in KCs. NCF1 is upregulated in liver macrophages and dendritic cells in humans with metabolic dysfunction-associated steatotic liver disease and in MASH mice. Macrophage NCF1, but not dendritic cell NCF1, triggers KC iron overload, ferroptosis, and monocyte-derived macrophage infiltration, thus aggravating MASH progression. Mechanistically, elevated oxidized phospholipids induced by macrophage NCF1 promote Toll-like receptor (TLR4)-dependent hepatocyte hepcidin production, leading to increased KC iron deposition and subsequent KC ferroptosis. Importantly, the human low-functional polymorphic variant NCF190H alleviates KC ferroptosis and MASH in mice. In conclusion, macrophage NCF1 impairs iron homeostasis in KCs by oxidizing phospholipids, triggering hepatocyte hepcidin release and KC ferroptosis in MASH, highlighting NCF1 as a therapeutic target for improving KC fate and limiting MASH progression.


Assuntos
Ferroptose , Células de Kupffer , Camundongos Endogâmicos C57BL , Espécies Reativas de Oxigênio , Ferroptose/genética , Células de Kupffer/metabolismo , Animais , Humanos , Camundongos , Espécies Reativas de Oxigênio/metabolismo , Masculino , Ferro/metabolismo , NADPH Oxidases/metabolismo , Macrófagos/metabolismo , Hepcidinas/metabolismo , Hepcidinas/genética
11.
Artigo em Inglês | MEDLINE | ID: mdl-38700537

RESUMO

BACKGROUND: Understanding the pathophysiology of sudden sensorineural hearing loss (SSNHL) and identifying its clinical symptoms and associated risk factors are crucial for doctors in order to create effective prevention and therapeutic methods for this prevalent otolaryngologic emergency. METHODS: This study focuses on investigating the correlation between the C-reactive protein/albumin ratio (CAR) and SSNHL complicated by hypertension. In this study, 120 patients diagnosed with SSNHL were divided into groups with and without hypertension, and propensity score matching was used to compare and analyze the severity, type, prognosis, and CAR levels in SSNHL. RESULTS: The results showed that the SSNHL group with hypertension had significantly higher CAR levels, age, hearing curve abnormalities, and more severe hearing loss compared to the control group with isolated SSNHL. These differences were statistically significant (p < 0.001). Among different subtypes of SSNHL, CAR levels increased progressively with the advancement of the condition, and these differences were also statistically significant (p < 0.001). CONCLUSION: In summary, in patients with SSNHL, those with hypertension had higher CAR levels than those without a history of hypertension, and they experienced more severe hearing loss. Moreover, there was a clear correlation between CAR levels and the extent of SSNHL, indicating that greater CAR levels in patients with SSNHL are connected to more severe hearing loss in various hearing patterns and perhaps indicative of a poorer prognosis.

12.
Front Genet ; 15: 1380746, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38798700

RESUMO

The increasing incidence and mortality of prostate cancer worldwide significantly impact the life span of male patients, emphasizing the urgency of understanding its pathogenic mechanism and associated molecular changes that regulate tumor progression for effective prevention and treatment. RNA modification, an important post-transcriptional regulatory process, profoundly influences tumor cell growth and metabolism, shaping cell fate. Over 170 RNA modification methods are known, with prominent research focusing on N6-methyladenosine, N7-methylguanosine, N1-methyladenosine, 5-methylcytidine, pseudouridine, and N4-acetylcytidine modifications. These alterations intricately regulate coding and non-coding RNA post-transcriptionally, affecting the stability of RNA and protein expression levels. This article delves into the latest advancements and challenges associated with various RNA modifications in prostate cancer tumor cells, tumor microenvironment, and core signaling molecule androgen receptors. It aims to provide new research targets and avenues for molecular diagnosis, treatment strategies, and improvement of the prognosis in prostate cancer.

13.
Redox Biol ; 73: 103217, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38820984

RESUMO

Wound infection of hyperglycemic patient often has extended healing period and increased probability due to the high glucose level. However, achieving precise and safe therapy of the hyperglycemic wound with specific wound microenvironment (WME) remains a major challenge. Herein, a WME-activated smart L-Arg/GOx@TA-Fe (LGTF) nanozymatic system composed of generally recognized as safe (GRAS) compound is engineered. The nanozymatic system combining metal-polyphenol nanozyme (tannic acid-Fe3+, TA-Fe) and natural enzyme (glucose oxidase, GOx) can consume the high-concentration glucose, generating reactive oxygen species (ROS) and nitric oxide (NO) in situ to synergistically disinfect hyperglycemia wound. In addition, glucose consumption and gluconic acid generation can lower glucose level to promote wound healing and reduce the pH of WME to enhance the catalytic activities of the LGTF nanozymatic system. Thereby, low-dose LGTF can perform remarkable synergistic disinfection and healing effect towards hyperglycemic wound. The superior biosafety, high catalytic antibacterial and beneficial WME regulating capacity demonstrate this benign GRAS nanozymatic system is a promising therapeutic agent for hyperglycemic wound.


Assuntos
Glucose Oxidase , Hiperglicemia , Óxido Nítrico , Espécies Reativas de Oxigênio , Cicatrização , Cicatrização/efeitos dos fármacos , Hiperglicemia/tratamento farmacológico , Hiperglicemia/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Óxido Nítrico/metabolismo , Animais , Glucose Oxidase/metabolismo , Humanos , Camundongos , Glucose/metabolismo , Ratos , Antibacterianos/farmacologia , Antibacterianos/química
14.
J Hazard Mater ; 473: 134595, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38761769

RESUMO

A biocatalytic system comprising fungal laccase and mediators can generate phenol radicals and efficiently eliminate various triarylmethane dyes. This study systematically explores the kinetic impact of dissolved organic matter (DOM), represented by humic substance (HS consisting of 90% fulvic acid, from lignite), on the decolorization of seven typical triarylmethane dyes by Trametes versicolor laccase and twenty natural mediators. Among these, 4-hydroxybenzyl alcohol (4-HA) and methyl violet (MV) undergo in-depth investigation regarding degradation products, pathways, and reaction mechanisms. In instances where HS hampers laccase-alone decolorization, such as malachite green, Coomassie brilliant blue, bromophenol blue, and acid magenta, this inhibition may persist despite mediator introduction. Conversely, in cases where HS facilitates decolorization, such as crystalline violet and ethyl violet, most laccase-mediator systems (LMSs) can still benefit. For MV decolorization by laccase and 4-HA, HS's kinetic effect is controlled by concentration and reaction time. A 5 mg/L HS increased the decolorization rate from 50% to 67% within the first hour, whereas 10 mg/L HS only achieved 45%. After 16 h of reaction, HS's impact on decolorization rate diminishes. Furthermore, the addition of HS enhances precipitation production, probably due to its involvement in polymerization with MV and mediator. Computational simulations and spectral monitoring reveal that low HS concentrations accelerate laccase-mediated demethylation by disrupting the chromophores bound to MV, thus promoting the decolorization of MV. Conversely, inhibition by high HS concentrations stems from the competitive binding of the enzyme pocket to the mediator, and the reduction of phenol free radicals in the system. Molecular docking and kinetic simulations revealed that laccase forms complexes with both the mediator and MV. Interestingly, the decolorization of MV occurred through a non-radical mechanism in the presence of HS. This work provided a reference for screening of high catalytic performance mediators to remove triarylmethane dyes in the actual water environment.


Assuntos
Corantes , Lacase , Lacase/metabolismo , Lacase/química , Corantes/química , Substâncias Húmicas , Cinética , Poluentes Químicos da Água/química , Benzopiranos/química , Simulação de Acoplamento Molecular , Polyporaceae/enzimologia
15.
Environ Toxicol ; 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38572681

RESUMO

Esophageal squamous cell carcinoma (ESCC) is a prevalent malignant tumor of the digestive system that poses a significant threat to human life and health. It is crucial to thoroughly investigate the mechanisms of esophageal carcinogenesis and identify potential key molecular events in its carcinogenesis. Single-cell transcriptome sequencing is an emerging technology that has gained prominence in recent years for studying molecular mechanisms, which may help to further explore the underlying mechanisms of the ESCC tumor microenvironment in depth. The single-cell dataset was obtained from GSE160269 in the Gene Expression Omnibus database, including 60 tumor samples and four paracancer samples. The single-cell data underwent dimensional reduction clustering analysis to identify clusters and annotate expression profiles. Subcluster analysis was conducted for each cellular taxon. Copy number variation analysis of tumor cell subpopulations was performed to primarily identify malignant cells within them. A proposed chronological analysis was performed to obtain the process of cell differentiation. In addition, cell communication, transcription factor analysis, and tumor pathway analysis were also performed. Relevant risk models and key genes were established by univariate COX regression and LASSO analysis. The key genes obtained from the screen were subjected to appropriate silencing and cellular assays, including CCK-8, 5-ethynyl-2'-deoxyuridine, colony formation, and western blot. Single-cell analysis revealed that normal samples contained a large number of fibroblasts, T cells, and B cells, with fewer other cell types, whereas tumor samples exhibited a relatively balanced distribution of cell types. Subclassification analysis of immune cells, fibroblasts, endothelial cells, and epithelial cells revealed their specific spatial characteristics. The prognostic risk model, we constructed successfully, achieved accurate prognostic stratification for ESCC patients. The screened key gene, UPF3A, was found to be significantly associated with the development of ESCC by cellular assays. This process might be linked to the phosphorylation of ERK and P38. Single-cell transcriptome analysis successfully revealed the distribution of cell types and major expressed factors in ESCC patients, which could facilitate future in-depth studies on the therapeutic mechanisms of ESCC.

16.
iScience ; 27(4): 109624, 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38632984

RESUMO

Circular RNAs (circRNAs) play crucial biological functions in various tumors, including bladder cancer (BCa). However, the roles and underlying molecular mechanisms of circRNAs in the malignant proliferation of BCa are yet unknown. CircKDM1A was observed to be downregulated in BCa tissues and cells. Knockdown of circKDM1A promoted the proliferation of BCa cells and bladder xenograft growth, while the overexpression of circKDM1A exerts the opposite effect. The dual-luciferase reporter assay revealed that circKDM1A was directly bound to miR-889-3p, acting as its molecular sponge to downregulate CPEB3. In turn, the CPEB3 was bound to the CPE signal in p53 mRNA 3'UTR to stabilize its expression. Thus, circKDM1A-mediated CPEB3 downregulation inhibits the stability of p53 mRNA and promotes BCa malignant progression. In conclusion, circKDM1A functions as a tumor suppressor in the malignant proliferation of BCa via the miR-889-3p/CPEB3/p53 axis. CircKDM1A may be a potential prognostic biomarker and therapeutic target of BCa.

17.
Front Oncol ; 14: 1384293, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38686190

RESUMO

Background: A common treatment strategy for individuals with multifocal hepatocellular carcinoma (HCC) who are not candidates for surgical resection is transarterial chemoembolization (TACE). Combining TACE with 125I seed insertion (ISI) may offer a means of enhancing therapeutic efficacy. The purpose of this study was to compare the therapeutic efficacy of TACE administered with and without ISI for the treatment of multifocal HCC. Methods: The data from the two centers were analyzed retrospectively. The present study involved 85 consecutive patients with multifocal HCC who underwent TACE between January 2018 and December 2021. Of these patients, 43 were in the combined group, receiving TACE with ISI, and 42 were in the TACE-only group, receiving TACE without ISI. Comparisons of treatment outcomes were made between these groups. Results: No significant differences in baseline data were observed between these groups of patients. Higher rates of complete (60.5% vs. 33.3%, P = 0.016) and total (93.0% vs. 61.9%, P = 0.001) responses were evident in the combined group compared to the TACE-only group. Median progression-free survival (PFS, 13 vs. 10 months, P = 0.014) and overall survival (OS, 22 vs. 17 months, P = 0.035) were also significantly longer in the combined group than in the TACE-only group. Using a Cox regression analysis, risk variables associated with shorter PFS and OS included Child-Pugh B status (P = 0.027 and 0.004) and only TACE treatment (P = 0.011 and 0.022). Conclusion: In summary, these findings suggest that, as compared to TACE alone, combining TACE and ISI can enhance HCC patients' treatment outcomes and survival.

18.
Food Funct ; 15(9): 4852-4861, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38573228

RESUMO

This study elucidates the mechanism of obesity-related adverse pregnancy outcomes and further investigates the effect of resveratrol on reproductive performance in a short- or long-term HFD-induced obese mouse model. Results show that maternal weight had a significant positive correlation with litter mortality in mice. A long-term HFD increased body weight and litter mortality with decreased expression of uterine cytochrome oxidase 4 (COX4), which was recovered by resveratrol in mice. Moreover, HFD decreased the expression of peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α), nuclear respiratory factors-1 (Nrf-1), and phosphorylated adenosine 5'-monophosphate (AMP)-activated protein kinase (p-AMPK) and increased the expression of phosphorylated extracellular regulated protein kinases (p-ERK) in the uterus. Resveratrol, a polyphenol that can directly bind to the ERK protein, suppressed the phosphorylation of ERK, increased the expression of p-AMPK, PGC-1α and Nrf-1, and decreased litter mortality in mice.


Assuntos
Dieta Hiperlipídica , Mitocôndrias , Resultado da Gravidez , Resveratrol , Útero , Animais , Resveratrol/farmacologia , Feminino , Gravidez , Camundongos , Dieta Hiperlipídica/efeitos adversos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Útero/metabolismo , Útero/efeitos dos fármacos , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/genética , Camundongos Endogâmicos C57BL , Obesidade/metabolismo , Proteínas Quinases Ativadas por AMP/metabolismo
19.
J Phys Chem Lett ; 15(18): 4815-4822, 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38668696

RESUMO

Metal-organic frameworks (MOFs) are potential candidates for gas-selective adsorbents for the separation of an ethylene/ethane mixture. To accelerate material discovery, high-throughput computational screening is a viable solution. However, classical force fields, which were widely employed in recent studies of MOF adsorbents, have been criticized for their failure to cover complicated interactions such as those involving π electrons. Herein, we demonstrate that machine learning force fields (MLFFs) trained on quantum-chemical reference data can overcome this difficulty. We have constructed a MLFF to accurately predict the adsorption energies of ethylene and ethane on the organic linkers of MOFs and discovered that the π electrons from both the ethylene molecule and the aromatic rings in the linkers could substantially influence the selectivity for gas adsorption. Four kinds of MOF linkers are identified as having promise for the separation of ethylene and ethane, and our results could also offer a new perspective on the design of MOF building blocks for diverse applications.

20.
Sci Adv ; 10(13): eadk8264, 2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38552011

RESUMO

Although CRISPR-mediated genome editing holds promise for cancer therapy, inadequate tumor targeting and potential off-target side effects hamper its outcomes. In this study, we present a strategy using cryo-shocked lung tumor cells as a CRISPR-Cas9 delivery system for cyclin-dependent kinase 4 (CDK4) gene editing, which initiates synthetic lethal in KRAS-mutant non-small cell lung cancer (NSCLC). By rapidly liquid nitrogen shocking, we effectively eliminate the pathogenicity of tumor cells while preserving their structure and surface receptor activity. This delivery system enables the loaded CRISPR-Cas9 to efficiently target to lung through the capture in pulmonary capillaries and interactions with endothelial cells. In a NSCLC-bearing mouse model, the drug accumulation is increased nearly fourfold in lung, and intratumoral CDK4 expression is substantially down-regulated compared to CRISPR-Cas9 lipofectamine nanoparticles administration. Furthermore, CRISPR-Cas9 editing-mediated CDK4 ablation triggers synthetic lethal in KRAS-mutant NSCLC and prolongs the survival of mice.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Camundongos , Animais , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/terapia , Sistemas CRISPR-Cas/genética , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/terapia , Técnicas de Transferência de Genes , Mutações Sintéticas Letais , Células Endoteliais , Proteínas Proto-Oncogênicas p21(ras)/genética , Linhagem Celular Tumoral , Edição de Genes , Pulmão
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA