Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Bioeng Transl Med ; 8(6): e10570, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38023700

RESUMO

Doxorubicin (DOX)-induced cardiotoxicity limits its broad use as a chemotherapy agent. The development of effective and non-invasive strategies to prevent DOX-associated adverse cardiac events is urgently needed. We aimed to examine whether and how low-intensity pulsed ultrasound (LIPUS) plays a protective role in DOX-induced cardiotoxicity. Male C57BL/6J mice were used to establish models of both acute and chronic DOX-induced cardiomyopathy. Non-invasive LIPUS therapy was conducted for four consecutive days after DOX administration. Cardiac contractile function was evaluated by echocardiography. Myocardial apoptosis, oxidative stress, and fibrosis were analyzed using terminal deoxynucleotidyl transferase-mediated dUTP nick end labelling (TUNEL) staining, dihydroethidium (DHE) staining, and picrosirius red staining assays. RNA-seq analysis was performed to unbiasedly explore the possible downstream regulatory mechanisms. Neutrophil recruitment and infiltration in the heart were analyzed by flow cytometry. The S100a8/a9 inhibitor ABR-238901 was utilized to identify the effect of S100a8/a9 signaling. We found that LIPUS therapy elicited a great benefit on DOX-induced heart contractile dysfunction in both acute and chronic DOX models. Chronic DOX administration increased serum creatine kinase and lactate dehydrogenase levels, as well as myocardial apoptosis, all of which were significantly mitigated by LIPUS. In addition, LIPUS treatment prevented chronic DOX-induced cardiac oxidative stress and fibrosis. RNA-seq analysis revealed that LIPUS treatment partially reversed alterations of gene expression induced by DOX. Gene ontology (GO) analysis of the downregulated genes between DOX-LIPUS and DOX-Sham groups indicated that inhibition of neutrophil chemotaxis might be involved in the protective effects of LIPUS therapy. Flow cytometry analysis illustrated the inhibitory effects of LIPUS on DOX-induced neutrophil recruitment and infiltration in the heart. Moreover, S100 calcium binding protein A8/A9 (S100a8/a9) was identified as a potential key target of LIPUS therapy. S100a8/a9 inhibition by ABR-238901 showed a similar heart protective effect against DOX-induced cardiomyopathy to LIPUS treatment. LIPUS therapy prevents DOX-induced cardiotoxicity through inhibition of S100a8/a9-mediated neutrophil recruitment to the heart, suggesting its potential application in cancer patients undergoing chemotherapy with DOX.

2.
J Am Heart Assoc ; 9(15): e015862, 2020 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-32720575

RESUMO

Background NCOR1 (nuclear receptor corepressor 1) is an essential coregulator of gene transcription. It has been shown that NCOR1 in macrophages plays important roles in metabolic regulation. However, the function of macrophage NCOR1 in response to myocardial infarction (MI) or vascular wire injury has not been elucidated. Methods and Results Here, using macrophage Ncor1 knockout mouse in combination with a mouse model of MI, we demonstrated that macrophage NCOR1 deficiency significantly reduced infarct size and improved cardiac function after MI. In addition, macrophage NCOR1 deficiency markedly inhibited neointimal hyperplasia and vascular remodeling in a mouse model of arterial wire injury. Inflammation and macrophage proliferation were substantially attenuated in hearts and arteries of macrophage Ncor1 knockout mice after MI and arterial wire injury, respectively. Cultured primary macrophages from macrophage Ncor1 knockout mice manifested lower expression of inflammatory genes upon stimulation by interleukin-1ß, interleukin-6, or lipopolysaccharide, together with much less activation of inflammatory signaling cascades including signal transducer and activator of transcription 1 and nuclear factor-κB. Furthermore, macrophage Ncor1 knockout macrophages were much less proliferative in culture, with inhibited cell cycle progression compared with control cells. Conclusions Collectively, our data have demonstrated that NCOR1 is a critical regulator of macrophage inflammation and proliferation and that deficiency of NCOR1 in macrophages attenuates MI and neointimal hyperplasia. Therefore, macrophage NCOR1 may serve as a potential therapeutic target for MI and restenosis.


Assuntos
Macrófagos/metabolismo , Infarto do Miocárdio/metabolismo , Neointima/patologia , Correpressor 1 de Receptor Nuclear/fisiologia , Animais , Western Blotting , Modelos Animais de Doenças , Citometria de Fluxo , Imunofluorescência , Hiperplasia , Macrófagos/patologia , Masculino , Camundongos , Camundongos Knockout , Neointima/metabolismo , Correpressor 1 de Receptor Nuclear/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa
3.
J Pathol ; 248(4): 438-451, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-30900255

RESUMO

The mineralocorticoid receptor (MR) plays important roles in cardiovascular pathogenesis. The function of MR in angiogenesis is still controversial. This study aimed to explore the role of endothelial MR in angiogenesis and to delineate the underlying mechanism. Endothelial-hematopoietic MR knockout (EMRKO) mice were generated and subjected to hindlimb ischemia and injection of melanoma cells. Laser Doppler measurements showed that EMRKO mice had improved blood flow recovery and increased vessel density in ischemic limbs. In addition, EMRKO accelerated growth and increased the vessel density of tumors. Matrigel implantation, aortic ring assays, and tube formation assays demonstrated that MRKO endothelial cells (ECs) manifested increased angiogenic potential. MRKO ECs also displayed increased migration ability and proliferation. MRKO and MR knockdown both upregulated gene expression, protein level, and phosphorylation of signal transducer and activator of transcription 3 (STAT3). Stattic, a selective STAT3 inhibitor, attenuated the effects of MRKO on tube formation, migration, and proliferation of ECs. At the molecular level, MR interacted with CCAAT enhancer-binding protein beta (C/EBPß) to suppress the transcription of STAT3. Furthermore, interactions between MR and STAT3 blocked the phosphorylation of STAT3. Finally, stattic abolished the pro-angiogenic phenotype of EMRKO mice. Taken together, endothelial MR is a negative regulator of angiogenesis, likely in a ligand-independent manner. Mechanistically, MR downregulates STAT3 that mediates the impacts of MR deficiency on the angiogenic activity of ECs and angiogenesis. Targeting endothelial MR may be a potential pro-angiogenic strategy for ischemic diseases. © 2019 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.


Assuntos
Células Endoteliais/metabolismo , Neovascularização Patológica/metabolismo , Receptores de Mineralocorticoides/metabolismo , Fator de Transcrição STAT3/metabolismo , Animais , Biomarcadores/metabolismo , Movimento Celular , Proliferação de Células , Regulação para Baixo , Células Endoteliais/patologia , Feminino , Masculino , Camundongos , Camundongos Knockout , Neovascularização Patológica/patologia , Neovascularização Patológica/fisiopatologia
4.
J Biol Chem ; 293(3): 1030-1039, 2018 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-29203528

RESUMO

Type I IFN production and signaling in macrophages play critical roles in innate immune responses. High salt (i.e. high concentrations of NaCl) has been proposed to be an important environmental factor that influences immune responses in multiple ways. However, it remains unknown whether high salt regulates type I IFN production and signaling in macrophages. Here, we demonstrated that high salt promoted IFNß production and its signaling in both human and mouse macrophages, and consequentially primed macrophages for strengthened immune sensing and signaling when challenged with viruses or viral nucleic acid analogues. Using both pharmacological inhibitors and RNA interference we showed that these effects of high salt on IFNß signaling were mediated by the p38 MAPK/ATF2/AP1 signaling pathway. Consistently, high salt increased resistance to vesicle stomatitis virus (VSV) infection in vitro. In vivo data indicated that a high-salt diet protected mice from lethal VSV infection. Taken together, these results identify high salt as a crucial regulator of type I IFN production and signaling, shedding important new light on the regulation of innate immune responses.


Assuntos
Interferon Tipo I/metabolismo , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Cloreto de Sódio/farmacologia , Animais , Antivirais/farmacologia , Western Blotting , Farmacorresistência Viral , Humanos , Imunidade Inata , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Transdução de Sinais/efeitos dos fármacos , Proteínas Quinases p38 Ativadas por Mitógeno/genética , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
5.
Arterioscler Thromb Vasc Biol ; 36(5): 874-85, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-26966277

RESUMO

OBJECTIVE: Restenosis after percutaneous coronary intervention remains to be a serious medical problem. Although mineralocorticoid receptor (MR) has been implicated as a potential target for treating restenosis, the cellular and molecular mechanisms are largely unknown. This study aims to explore the functions of macrophage MR in neointimal hyperplasia and to delineate the molecular mechanisms. APPROACH AND RESULTS: Myeloid MR knockout (MMRKO) mice and controls were subjected to femoral artery injury. MMRKO reduced intima area and intima/media ratio, Ki67- and BrdU-positive vascular smooth muscle cells, expression of proinflammatory molecules, and macrophage accumulation in injured arteries. MMRKO macrophages migrated less in culture. MMRKO decreased Ki67- and BrdU-positive macrophages in injured arteries. MMRKO macrophages were less Ki67-positive in culture. Conditioned media from MMRKO macrophages induced less migration, Ki67 positivity, and proinflammatory gene expression of vascular smooth muscle cells. After lipopolysaccharide treatment, MMRKO macrophages had decreased p-cFos and p-cJun compared with control macrophages, suggesting suppressed activation of activator protein-1 (AP1). Nuclear factor-κB (NF-κB) pathway was also inhibited by MMRKO, manifested by decreased p-IκB kinase-ß and p-IκBα, increased IκBα expression, decreased nuclear translocation of p65 and p50, as welll as decreased phosphorylation and expression of p65. Finally, overexpression of serum-and-glucocorticoid-inducible-kinase-1 (SGK1) attenuated the effects of MR deficiency in macrophages. CONCLUSIONS: Selective deletion of MR in myeloid cells limits macrophage accumulation and vascular inflammation and, therefore, inhibits neointimal hyperplasia and vascular remodeling. Mechanistically, MR deficiency suppresses migration and proliferation of macrophages and leads to less vascular smooth muscle cell activation. At the molecular level, MR deficiency suppresses macrophage inflammatory response via SGK1-AP1/NF-κB pathways.


Assuntos
Proteínas Imediatamente Precoces/metabolismo , Inflamação/enzimologia , Macrófagos/enzimologia , Músculo Liso Vascular/enzimologia , Miócitos de Músculo Liso/enzimologia , NF-kappa B/metabolismo , Neointima , Proteínas Serina-Treonina Quinases/metabolismo , Receptores de Mineralocorticoides/deficiência , Fator de Transcrição AP-1/metabolismo , Lesões do Sistema Vascular/enzimologia , Animais , Movimento Celular , Proliferação de Células , Técnicas de Cocultura , Modelos Animais de Doenças , Artéria Femoral/enzimologia , Artéria Femoral/lesões , Artéria Femoral/metabolismo , Predisposição Genética para Doença , Hiperplasia , Proteínas Imediatamente Precoces/genética , Inflamação/genética , Inflamação/patologia , Inflamação/prevenção & controle , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Músculo Liso Vascular/lesões , Músculo Liso Vascular/patologia , Miócitos de Músculo Liso/patologia , Comunicação Parácrina , Fenótipo , Proteínas Serina-Treonina Quinases/genética , Células RAW 264.7 , Interferência de RNA , Receptores de Mineralocorticoides/genética , Transdução de Sinais , Fatores de Tempo , Transfecção , Remodelação Vascular , Lesões do Sistema Vascular/genética , Lesões do Sistema Vascular/patologia , Lesões do Sistema Vascular/prevenção & controle
6.
Cell Res ; 25(8): 893-910, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26206316

RESUMO

High salt is positively associated with the risk of many diseases. However, little is known about the mechanisms. Here we showed that high salt increased proinflammatory molecules, while decreased anti-inflammatory and proendocytic molecules in both human and mouse macrophages. High salt also potentiated lipopolysaccharide-induced macrophage activation and suppressed interleukin 4-induced macrophage activation. High salt induced the proinflammatory aspects by activating p38/cFos and/or Erk1/2/cFos pathways, while inhibited the anti-inflammatory and proendocytic aspects by Erk1/2/signal transducer and activator of transcription 6 pathway. Consistent with the in vitro results, high-salt diet increased proinflammatory gene expression of mouse alveolar macrophages. In mouse models of acute lung injury, high-salt diet aggravated lipopolysaccharide-induced pulmonary macrophage activation and inflammation in lungs. These results identify a novel macrophage activation state, M(Na), and high salt as a potential environmental risk factor for lung inflammation through the induction of M(Na).


Assuntos
Ativação de Macrófagos , Macrófagos/efeitos dos fármacos , Cloreto de Sódio/efeitos adversos , Lesão Pulmonar Aguda/metabolismo , Lesão Pulmonar Aguda/fisiopatologia , Animais , Anti-Inflamatórios/farmacologia , Humanos , Inflamação , Lipopolissacarídeos/farmacologia , Sistema de Sinalização das MAP Quinases , Ativação de Macrófagos/efeitos dos fármacos , Ativação de Macrófagos/fisiologia , Macrófagos/fisiologia , Camundongos
7.
PLoS One ; 9(10): e110950, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25354087

RESUMO

Mineralocorticoid receptor (MR) blockade has been shown to suppress cardiac hypertrophy and remodeling in animal models of pressure overload (POL). This study aims to determine whether MR deficiency in myeloid cells modulates aortic constriction-induced cardiovascular injuries. Myeloid MR knockout (MMRKO) mice and littermate control mice were subjected to abdominal aortic constriction (AAC) or sham operation. We found that AAC-induced cardiac hypertrophy and fibrosis were significantly attenuated in MMRKO mice. Expression of genes important in generating reactive oxygen species was decreased in MMRKO mice, while that of manganese superoxide dismutase increased. Furthermore, expression of genes important in cardiac metabolism was increased in MMRKO hearts. Macrophage infiltration in the heart was inhibited and expression of inflammatory genes was decreased in MMRKO mice. In addition, aortic fibrosis and inflammation were attenuated in MMRKO mice. Taken together, our data indicated that MR deficiency in myeloid cells effectively attenuated aortic constriction-induced cardiac hypertrophy and fibrosis, as well as aortic fibrosis and inflammation.


Assuntos
Aorta Abdominal/metabolismo , Hipertrofia Ventricular Esquerda/patologia , Receptores de Mineralocorticoides/genética , Animais , Aorta Abdominal/patologia , Constrição Patológica/metabolismo , Constrição Patológica/patologia , Regulação da Expressão Gênica , Hipertrofia Ventricular Esquerda/etiologia , Hipertrofia Ventricular Esquerda/genética , Hipertrofia Ventricular Esquerda/metabolismo , Macrófagos/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Espécies Reativas de Oxigênio/metabolismo , Receptores de Mineralocorticoides/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA