Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 81
Filtrar
1.
ACS Nano ; 2024 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-38752610

RESUMO

The ability to manipulate the self-assembly of proteins is essential to understanding the mechanisms of life and beneficial to fabricating advanced nanomaterials. Here, we report the transformation of the MS2 phage capsid from nanocages to nanotubes and then to nanotube hydrogels through simple point mutations guided by interfacial interaction redesign. We demonstrate that site 70, which lies in the flexible FG loop of the capsid protein (CP), is a "magic" site that can largely dictate the final morphology of assemblies. By varying the amino acid at site 70, with the aid of a cysteine-to-alanine mutation at site 46, we achieved the assembly of double-helical or single-helical nanotubes in addition to nanocages. Furthermore, an additional cysteine substitution on the surface of nanotubes mediated their cross-linking to form hydrogels with reducing agent responsiveness. The hierarchical self-assembly system allowed for the investigation of morphology-related immunogenicity of MS2 CPs, which revealed dramatic differences among nanocages, nanotubes, and nanotube hydrogels in terms of immune response types, antibody levels and T cell functions. This study provides insights into the assembly manipulation of protein nanomaterials and the customized design of nanovaccines and drug delivery systems.

2.
BMC Bioinformatics ; 24(1): 450, 2023 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-38017410

RESUMO

BACKGROUND: Acute myeloid leukaemia (AML) is characterised by the malignant accumulation of myeloid progenitors with a high recurrence rate after chemotherapy. Blasts (leukaemia cells) exhibit a complete myeloid differentiation hierarchy hiding a wide range of temporal information from initial to mature clones, including genesis, phenotypic transformation, and cell fate decisions, which might contribute to relapse in AML patients. METHODS: Based on the landscape of AML surface antigens generated by mass cytometry (CyTOF), we combined manifold analysis and principal curve-based trajectory inference algorithm to align myelocytes on a single-linear evolution axis by considering their phenotype continuum that correlated with differentiation order. Backtracking the trajectory from mature clusters located automatically at the terminal, we recurred the molecular dynamics during AML progression and confirmed the evolution stage of single cells. We also designed a 'dispersive antigens in neighbouring clusters exhibition (DANCE)' feature selection method to simplify and unify trajectories, which enabled the exploration and comparison of relapse-related traits among 43 paediatric AML bone marrow specimens. RESULTS: The feasibility of the proposed trajectory analysis method was verified with public datasets. After aligning single cells on the pseudotime axis, primitive clones were recognized precisely from AML blasts, and the expression of the inner molecules before and after drug stimulation was accurately plotted on the trajectory. Applying DANCE to 43 clinical samples with different responses for chemotherapy, we selected 12 antigens as a general panel for myeloblast differentiation performance, and obtain trajectories to those patients. For the trajectories with unified molecular dynamics, CD11c overexpression in the primitive stage indicated a good chemotherapy outcome. Moreover, a later initial peak of stemness heterogeneity tended to be associated with a higher risk of relapse compared with complete remission. CONCLUSIONS: In this study, pseudotime was generated as a new single-cell feature. Minute differences in temporal traits among samples could be exhibited on a trajectory, thus providing a new strategy for predicting AML relapse and monitoring drug responses over time scale.


Assuntos
Antígenos de Superfície , Leucemia Mieloide Aguda , Criança , Humanos , Recidiva Local de Neoplasia , Leucemia Mieloide Aguda/genética , Fenótipo , Recidiva
3.
Adv Healthc Mater ; 12(26): e2300502, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37067183

RESUMO

Protein nanocages (PNCs) hold great promise for developing multifunctional nanomedicines. Long blood circulation is a key requirement of PNCs for most in vivo application scenarios. In addition to the classical PEGylation strategy, short peptides with a specific sequence screened via phage display are also very effective in prolonging the blood half-life (t1/2 ) of PNCs. However, there is a lack of knowledge on how individual amino acids affect the circulation of PNCs. Here the effects of the 20 proteinogenic amino acids in the form of an X3 or X5 tag (X represents an amino acid) are explored on the pharmacokinetics of PNCs, which lead to the formation of a heatmap illustrating the extent of t1/2 prolongation by each proteinogenic amino acid. Significantly, oligo-lysine and oligo-arginine can effectively prolong the t1/2 of strongly negatively charged PNCs through charge neutralization, while oligo-cysteine can also do so, but via a different mechanism, mediating the covalent binding of PNCs with plasma albumin as a stealth material. These findings are extendible and offer guidance for surface-engineering biosynthetic PNCs and other nanoparticles.


Assuntos
Aminoácidos , Nanopartículas , Peptídeos/química , Nanopartículas/química , Proteínas Recombinantes
4.
PLoS Pathog ; 19(1): e1011077, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36652443

RESUMO

Ebola virus (EBOV) causes severe hemorrhagic fever in humans with high mortality. In Ebola virus disease (EVD) survivors, EBOV persistence in the eyes may break through the inner blood-retinal barrier (iBRB), leading to ocular complications and EVD recurrence. However, the mechanism by which EBOV affects the iBRB remains unclear. Here, we used the in vitro iBRB model to simulate EBOV in retinal tissue and found that Ebola virus-like particles (EBO-VLPs) could disrupt the iBRB. Cytokine screening revealed that EBO-VLPs stimulate pericytes to secrete vascular endothelial growth factor (VEGF) to cause iBRB breakdown. VEGF downregulates claudin-1 to disrupt the iBRB. Ebola glycoprotein is crucial for VEGF stimulation and iBRB breakdown. Furthermore, EBO-VLPs caused iBRB breakdown by stimulating VEGF in rats. This study provides a mechanistic insight into that EBOV disrupts the iBRB, which will assist in developing new strategies to treat EBOV persistence in EVD survivors.


Assuntos
Ebolavirus , Doença pelo Vírus Ebola , Ratos , Humanos , Animais , Ebolavirus/fisiologia , Barreira Hematorretiniana , Fator A de Crescimento do Endotélio Vascular , Pericitos
5.
Anal Chem ; 95(5): 2838-2847, 2023 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-36701391

RESUMO

Glutathione (GSH), the constituent of the redox buffer system, is a scavenger of reactive oxygen species (ROS), and its ratio to oxidized glutathione (GSSG) is a key indicator of oxidative stress in the cell. Acute myeloid leukemia (AML) is a highly aggressive hematopoietic malignancy characterized by aberrant levels of reduced and oxidized GSH due to oxidative stress. Therefore, the real-time, dynamic, and highly sensitive detection of GSH/GSSG in AML cells is of great interest for the clinical diagnosis and treatment of leukemia. The application of genetically encoded sensors to monitor GSH/GSSG levels in AML cells is not explored, and the underlying mechanism of how the drugs affect GSH/GSSG dynamics remains unclear. In this study, we developed subcellular compartment-specific sensors to monitor GSH/GSSG combined with high-resolution fluorescence microscopy that provides insights into basal GSH/GSSG levels in the cytosol, mitochondria, nucleus, and endoplasmic reticulum of AML cells, in a decreasing order, revealing substantial heterogeneity of GSH/GSSG level dynamics in different subcellular compartments. Further, we investigated the response of GSH/GSSG ratio in AML cells caused by Prussian blue and Fe3O4 nanoparticles, separately and in combination with cytarabine, pointing to steep gradients. Moreover, cytarabine and doxorubicin downregulated the GSH/GSSG levels in different subcellular compartments. Similarly, live-cell imaging showed a compartment-specific decrease in response to various drugs, such as CB-839, parthenolide (PTL), and piperlongumine (PLM). The enzymatic activity assay revealed the mechanism underlying fluctuations in GSH/GSSG levels in different subcellular compartments mediated by these drugs in the GSH metabolic pathway, suggesting some potential therapeutic targets in AML cells.


Assuntos
Técnicas Biossensoriais , Leucemia Mieloide Aguda , Humanos , Dissulfeto de Glutationa/metabolismo , Glutationa/metabolismo , Estresse Oxidativo , Oxirredução , Leucemia Mieloide Aguda/tratamento farmacológico
6.
Asian Pac J Cancer Prev ; 24(1): 185-194, 2023 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-36708567

RESUMO

BACKGROUND: Quantitative profiling of specific cell surface markers is a new approach in characterization of tumor heterogeneity and single cell biology. The current tools have dearth in detection and quantification of receptor proteins on single cells. METHODS: we focused on our newly developed protocol to determine the distribution pattern and density of cell surface markers on single acute myeloid leukemia cells. Cell surface proteins were labeled with quantum dots (Qdots) followed by super resolution Structured Illumination Microscopy (SIM) imaging to imprisonment the optical signals emitted by Qdots which were further analyzed by software imaris to do three dimensional (3D) structure reconstruction and digital simulation. Furthermore, MTT assays and flow cytometry was performed to establish association between expression of cell surface markers and drug response. RESULTS: In the present study, we found that the Molm13 and cytarabine-enriched Molm13 cells exhibit different densities of CD123, an alpha-subunit of interleukin-3 receptor, i.e. 0.92 and 1.73 per µm2 of cell surface respectively. Sub-populations of Molm13 cells expressing higher densities of CD123 on cells membranes showed resistance against cytarabine. Further study revealed that romidepsin sensitized and augmented the cytotoxicity of cytarabine in Molm13 and cytarabine-enriched Molm13 cells. Romidepsin increased the percentage of cell death-induced by cytarabine from 21.6 % to 28.6 % and 37.1 % to 57.2 % in Molm13 and cytarabine-enriched Molm13 cells respectively. CONCLUSION: Altogether, the study suggests that Molm13 cells have sub-populations with differential expression of CD123+ phenotype. Romidepsin sensitizes and augments the effect of cytarabine in Molm13 and cytarabine-enriched Molm13 cells.


Assuntos
Leucemia Mieloide Aguda , Receptores de Interleucina-3 , Humanos , Subunidade alfa de Receptor de Interleucina-3 , Leucemia Mieloide Aguda/patologia , Citarabina/farmacologia , Citometria de Fluxo , Linhagem Celular Tumoral
7.
Adv Healthc Mater ; 11(16): e2201038, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35670380

RESUMO

Bimodal synergistic therapy produces superadditive effect for enhanced therapeutic efficacy. However, how to efficiently and simultaneously deliver several kinds of therapeutic agents is still challenging. A cancer cell membrane-derived nanocarrier (mCas9-sGNRs) is proposed for synergistic photothermal/gene therapy (PTT/GT) by efficient delivery of clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR-associated protein 9 (Cas9) and gold nanorods (GNRs). In this approach, Cas9 proteins can be efficiently loaded inside the cell membranes (mCas9) by electrostatic interactions. Similarly, single-guide RNAs, which target survivin, can be loaded onto GNRs (sGNRs) through electrostatic interactions and encapsulated by mCas9. As a result, the nanodelivery systems present advantages in biocompatibility, homologous targeting capacity and loading efficiency of cargoes. In addition, significant antitumor effects is achieved by gene editing of survivin which induces anticancer activity and reduces heat tolerance of cancer cells caused by GNRs mediated PTT due to the downregulation of HSP70. These results indicate the nanotherapeutic platform leads to enhanced PTT/GT efficacy. Therefore, this work not only provides a general strategy to construct a versatile nanoplatform for loading and target delivery of several therapeutic cargos but will also be valuable for PTT/GT and other bimodal synergistic therapy.


Assuntos
Nanotubos , Neoplasias , Biomimética , Sistemas CRISPR-Cas/genética , Membrana Celular , Terapia Genética/métodos , Ouro/farmacologia , Humanos , Neoplasias/terapia , Survivina/genética
9.
Sci China Life Sci ; 65(3): 540-549, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34536207

RESUMO

Apoptosis is a form of programmed cell death that is essential for maintaining internal environmental stability. Disordered apoptosis can cause a variety of diseases; therefore, sensing apoptosis can provide help in study of mechanism of the relevant diseases and drug development. It is known that caspase-3 is a key enzyme involved in apoptosis and the expression of its activity is an indication of apoptosis. Here, we present a genetically encoded switch-on mNeonGreen2-based molecular biosensor. mNeonGreen2 is the brightest monomeric green fluorescent protein. The substrate of caspase-3, DEVD amino acid residues, is inserted in it, while cyclized by insertion of Nostoc punctiforme DnaE intein to abolish the fluorescence (inactive state). Caspase-3-catalyzed cleavage of DEVD linearizes mNeonGreen2 and rebuilds the natural barrel structure to restore the fluorescence (activated state). The characterization exhibited that the Caspase-3 biosensor has shortened response time, higher sensitivity, and prolonged functional shelf life in detection of caspase-3 amongst the existing counterparts. We also used the Caspase-3 biosensor to evaluate the effect of several drugs on the induction of apoptosis of HeLa and MCF-7 tumor cells and inhibition of Zika virus invasion.


Assuntos
Apoptose , Técnicas Biossensoriais/métodos , Caspase 3/análise , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Cicloeximida/farmacologia , Células HEK293 , Células HeLa , Humanos , Fator de Necrose Tumoral alfa/farmacologia , Zika virus/fisiologia
10.
Biochem Biophys Res Commun ; 579: 69-75, 2021 11 19.
Artigo em Inglês | MEDLINE | ID: mdl-34592572

RESUMO

N-glycosylation plays an important role in the pathogenesis of viral infections. However, the role of SARS-CoV-2 RBD N-glycosylation in viral entry remains elusive. In this study, we expressed and purified N331 and N343 N-glycosite mutants of SARS-CoV-2 RBD. We found that de-glycosylation at N331 and N343 drastically reduces the RBD binding to ACE2. More importantly, based on qualitative and quantitative virology research methods, we show that the mutation of RBD N-glycosites interfered with SARS-CoV-2 internalization rather than attachment potentially by decreasing RBD binding to the receptors. Also, the double N-glycosites mutant (N331 + N343) showed significantly increased sensitivity against the designated RBD neutralizing antibodies. Taken together, these results suggest that N-glycosylation of SARS-CoV-2 RBD is not only critical for viral internalization into respiratory epithelial cells but also shields the virus from neutralization. It may provide new insights into the biological process of early-stage SARS-CoV-2 infection with potential therapeutic implications.


Assuntos
Polissacarídeos/metabolismo , Alvéolos Pulmonares/citologia , SARS-CoV-2/patogenicidade , Glicoproteína da Espícula de Coronavírus/metabolismo , Internalização do Vírus , Enzima de Conversão de Angiotensina 2/genética , Enzima de Conversão de Angiotensina 2/metabolismo , Anticorpos Neutralizantes , Sítios de Ligação , COVID-19/metabolismo , COVID-19/virologia , Linhagem Celular , Células Epiteliais , Glicosilação , Interações Hospedeiro-Patógeno/fisiologia , Humanos , Mutação , Polissacarídeos/química , Alvéolos Pulmonares/virologia , SARS-CoV-2/metabolismo , Glicoproteína da Espícula de Coronavírus/química , Glicoproteína da Espícula de Coronavírus/genética , Ligação Viral
12.
Nanoscale ; 13(26): 11334-11342, 2021 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-34165123

RESUMO

Tumor targeting with nanoparticles is a promising strategy for cancer diagnosis and treatment, especially for drug delivery to solid tumors. Previous studies mainly focused on nanoparticle design to improve their targeting efficiency, but few have investigated the impact of tumor progression stages on the targeting efficiency. Here, we used PEGylated viral nanoparticles (VNPs) of bacteriophage P22 to explore the relationship between targeting efficiency and tumor progression stages using a colorectal cancer model. We found an 8.1-fold increase in the accumulation of P22 VNPs systematically injected 7 days after tumor inoculation compared with those injected 21 days after tumor inoculation. Most tumor-targeted P22 VNPs were concentrated in tumor-associated macrophages in the tumor blood vessels, the density of which decreased with the progression of tumors. These results reveal that the tumor targeting efficiency of P22 VNPs decreased with tumor progression. These findings provide valuable information for not only the understanding of controversial observations regarding targeted cancer therapy in experimental and clinical studies but also the design of nanoparticle-based tumor targeting probes or therapeutics.


Assuntos
Nanopartículas , Neoplasias , Carcinogênese , Linhagem Celular Tumoral , Sistemas de Liberação de Medicamentos , Humanos , Neoplasias/tratamento farmacológico
13.
ACS Appl Mater Interfaces ; 13(21): 24477-24486, 2021 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-33961399

RESUMO

The pseudovirus strategy makes studies of highly pathogenic viruses feasible without the restriction of high-level biosafety facility, thus greatly contributing to virology and is used in the research studies of SARS-CoV-2. Here, we generated a dual-color pseudo-SARS-CoV-2 virus using a human immunodeficiency virus-1 pseudovirus production system and the SARS-CoV-2 spike (S) glycoprotein, of which the membrane was labeled with a lipophilic dye (DiO) and the genomic RNA-related viral protein R (Vpr) of the viral core was fused with mCherry. With this dual-color labeling strategy, not only the movement of the whole virus but also the fate of the labeled components can be traced. The pseudovirions were applied to track the viral entry at a single-particle level in four types of the human respiratory cells: nasal epithelial cells (HNEpC), pulmonary alveolar epithelial cells (HPAEpiC), bronchial epithelial cells (BEP-2D), and oral epithelial cells (HOEC). Pseudo-SARS-CoV-2 entered into the host cell and released the viral core into the cytoplasm, which clearly indicates that the host entry mainly occurred through endocytosis. The infection efficiency was found to be correlated with the expression of the known receptor of SARS-CoV-2, angiotensin-converting 2 (ACE2) on the host cell surface. We believe that the dual-color fluorescently labeled pseudovirus system created in this study can be applied as a useful tool for many purposes in SARS-CoV-2/COVID-19.


Assuntos
Corantes Fluorescentes/química , Alvéolos Pulmonares/virologia , SARS-CoV-2/fisiologia , Internalização do Vírus , Enzima de Conversão de Angiotensina 2/metabolismo , Endocitose , Células Epiteliais/virologia , Fluorescência , Células HEK293 , HIV-1/genética , Humanos , Mucosa Nasal/virologia , SARS-CoV-2/genética , SARS-CoV-2/metabolismo , Glicoproteína da Espícula de Coronavírus/metabolismo
14.
Sci Rep ; 11(1): 5975, 2021 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-33727641

RESUMO

Since the emergence of SARS-CoV-2, numerous studies have been attempting to determine biomarkers, which could rapidly and efficiently predict COVID-19 severity, however there is lack of consensus on a specific one. This retrospective cohort study is a comprehensive analysis of the initial symptoms, comorbidities and laboratory evaluation of patients, diagnosed with COVID-19 in Huoshenshan Hospital, Wuhan, from 4th February to 12th March, 2020. Based on the data collected from 63 severely ill patients from the onset of symptoms till the full recovery or demise, we found not only age (average 70) but also blood indicators as significant risk factors associated with multiple organ failure. The blood indices of all patients showed hepatic, renal, cardiac and hematopoietic dysfunction with imbalanced coagulatory biomarkers. We noticed that the levels of LDH (85%, P < .001), HBDH (76%, P < .001) and CRP (65%, P < .001) were significantly elevated in deceased patients, indicating hepatic impairment. Similarly, increased CK (15%, P = .002), Cre (37%, P = 0.102) and CysC (74%, P = 0.384) indicated renal damage. Cardiac injury was obvious from the significantly elevated level of Myoglobin (52%, P < .01), Troponin-I (65%, P = 0.273) and BNP (50%, P = .787). SARS-CoV-2 disturbs the hemolymphatic system as WBC# (73%, P = .002) and NEUT# (78%, P < .001) were significantly elevated in deceased patients. Likewise, the level of D-dimer (80%, P < .171), PT (87%, P = .031) and TT (57%, P = .053) was elevated, indicating coagulatory imbalances. We identified myoglobin and CRP as specific risk factors related to mortality and highly correlated to organ failure in COVID-19 disease.


Assuntos
Proteína C-Reativa/análise , COVID-19/patologia , Mioglobina/análise , Idoso , Idoso de 80 Anos ou mais , Biomarcadores/sangue , COVID-19/complicações , COVID-19/mortalidade , COVID-19/virologia , Comorbidade , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Insuficiência de Múltiplos Órgãos/etiologia , Estudos Retrospectivos , Fatores de Risco , SARS-CoV-2/isolamento & purificação , Índice de Gravidade de Doença , Análise de Sobrevida , Tórax/diagnóstico por imagem , Tomografia Computadorizada por Raios X , Troponina I/sangue
15.
ACS Appl Mater Interfaces ; 13(7): 7890-7896, 2021 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-33513005

RESUMO

Nanodrug delivery systems are very promising for highly efficient anticancer drug delivery. However, the present nanosystems are commonly located in the cytoplasm and mediate uncontrolled release of drugs into cytosol, while a large number of anticancer drugs function more efficiently inside the nucleus. Here, we constructed a CRISPR-dCas9-guided and telomerase-responsive nanosystem for nuclear targeting and smart release of anticancer drugs. CRISPR-dCas9 technology has been employed to achieve conjugation of mesoporous silica nanoparticles (MSNs) with a high payload of the active anticancer drug, doxorubicin (DOX). A specifically designed wrapping DNA was used as a telomerase-responsive biogate to encapsulate DOX within MSNs. The wrapping DNA is extended in the presence of telomerase, which is highly activated in tumor cells, but not in normal cells. The extended DNA sequence forms a rigid hairpin-like structure and diffuses away from the MSN surface. CRISPR-dCas9 specifically targets telomere-repetitive sequences at the tips of chromosomes, facilitating the precise delivery of the nanosystem to the nucleus, and effective drug release triggered by telomerase that was enriched around telomeric repeats. This study provides a strategy and nanosystem for nuclear-targeted delivery and tumor-specific release of anticancer drugs that will maximize the efficiency of cancer cell destruction.


Assuntos
Antibióticos Antineoplásicos/farmacologia , Proteína 9 Associada à CRISPR/química , Doxorrubicina/farmacologia , Sistemas de Liberação de Medicamentos , Nanopartículas/química , Telomerase/química , Antibióticos Antineoplásicos/química , Proteína 9 Associada à CRISPR/metabolismo , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Doxorrubicina/química , Portadores de Fármacos/química , Portadores de Fármacos/metabolismo , Ensaios de Seleção de Medicamentos Antitumorais , Células HeLa , Humanos , Estrutura Molecular , Nanopartículas/metabolismo , Imagem Óptica , Tamanho da Partícula , Porosidade , Propriedades de Superfície , Telomerase/metabolismo
17.
Sci China Life Sci ; 64(1): 66-76, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32430850

RESUMO

It is recognized that HIV-1 capsid cores are disassembled in the cytoplasm, releasing their genomes into the nucleus through nuclear pores, but there is also evidence showing the capsid (CA) exists in the nucleus. Whether HIV-1 enters the nucleus and how it enters the nucleus through the undersized nuclear pore remains mysterious. Based on multicolor labeling and real-time imaging of the viral and cellular components, our observations via light and electron microscopy suggest that HIV-1 selectively gathered at the microtubule organization center (MTOC), leading the nearby nuclear envelope (NE) to undergo deformation, invagination and restoration to form a nuclear vesicle in which the viral particles were wrapped; then, the inner membrane of the nuclear vesicle ruptured to release HIV-1 into the nucleus. This unexpected discovery expands our understanding of the complexity of HIV-1 nuclear entry, which may provide new insights to HIV-1 virology.


Assuntos
Proteínas do Capsídeo/metabolismo , Núcleo Celular/metabolismo , Endocitose , HIV-1/metabolismo , Poro Nuclear/metabolismo , Vírion/metabolismo , Transporte Ativo do Núcleo Celular , Linhagem Celular Tumoral , Núcleo Celular/ultraestrutura , Núcleo Celular/virologia , Células HEK293 , Infecções por HIV/virologia , HIV-1/genética , HIV-1/fisiologia , Humanos , Microscopia Confocal , Microscopia Eletrônica de Transmissão , Centro Organizador dos Microtúbulos/metabolismo , Centro Organizador dos Microtúbulos/virologia , Membrana Nuclear/metabolismo , Membrana Nuclear/ultraestrutura , Membrana Nuclear/virologia , Poro Nuclear/ultraestrutura , Poro Nuclear/virologia , Imagem com Lapso de Tempo/métodos , Vírion/ultraestrutura
18.
Small ; 16(45): e2004484, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-33063476

RESUMO

Self-assembled virus-like particles (VLPs) hold great potential as natural nanomaterials for applications in many fields. For such purposes, monodisperse size distribution is a desirable property. However, the VLPs of simian virus 40 (SV40), a representative VLP platform, are characterized by polymorphism. In an attempt to eliminate the polymorphism, 15 mutants of the VLP subunit (VP1) are constructed through the substitution of double cysteines at the VP1 pentamer interfaces, generating a group of VLPs with altered size distributions. One of the mutants, SS2 (L102C/P300C), specifically forms homogenous T = 1-like tiny VLPs of 24 ± 3 nm in diameter. Moreover, the stability of the SS2 VLPs is markedly enhanced compared with that of wild-type VLPs. The homogeneous self-assembly and stability enhancement of SS2 VLPs can be attributed to the new disulfide bonds contributed by Cys102 and Cys300, which are identified by mass spectrometry and explored by molecular dynamics simulations. Endocytosis inhibition assays indicate that SS2 VLPs, like the polymorphic wild-type VLPs, preserve the multipathway feature of cellular uptake. SS2 VLPs may serve as an evolved version of SV40 VLPs in future studies and applications. The findings of this work would be useful for the design and fabrication of VLP-based materials and devices.


Assuntos
Cisteína , Vírus 40 dos Símios , Proteínas do Capsídeo , Vírus 40 dos Símios/genética
19.
Anal Chem ; 92(15): 10569-10577, 2020 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-32600030

RESUMO

Acute myeloid leukemia (AML) is a heterogeneous disease, and there are critical interests in detecting multiple biomarkers as a single biomarker detection cannot reflect the exact phase of the disease. Exosomes derived from different types of AML cells contain respective combinations of cluster of differentiation (CD) markers that may be used to guide the molecular typing of AML in the clinic. Here, aiming to build more precise molecular typing of AML, we demonstrate multiplex immuno-PCR (mI-PCR) assay for simultaneous detection of multiple surface CDs on exosomes of AML via capillary electrophoresis with laser-induced fluorescence (CE-LIF). This method comprises of four steps: (1) chemical attachment of reporter DNA sequence to the specific detection antibodies, (2) binding of the detection antibodies to their targets on the exosomes, (3) DNA amplification of the reporter DNA, and (4) capillary electrophoresis analysis of the PCR products. With the method, we first realized simultaneous detection of five target CD molecules (CD9, CD34, c-Kit/CD117, CD123, and FLT-3/CD135) on leukemia cell-derived exosomes with high detection sensitivity. The limit of detection (LOD) and limit of quantification (LOQ) are 2.41 ± 0.04 particles/µL and 8.02 ± 0.16 particles/µL, respectively, for leukemia cell-derived exosomes. This mI-PCR is found sensitive enough to detect picogram (10-12) levels of protein concentrations with high recovery (95%) in spiked serum sample experiments. We thus anticipate that the proposed method is promising in sensitive detection of multitargets to assist in the precise molecular typing of many complex diseases.


Assuntos
Diferenciação Celular/fisiologia , Leucemia , Reação em Cadeia da Polimerase Multiplex/métodos , Biomarcadores/metabolismo , Linhagem Celular Tumoral , Eletroforese Capilar/métodos , Fluorescência , Humanos , Lasers
20.
Mol Ther ; 28(6): 1533-1546, 2020 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-32304669

RESUMO

Malignant gliomas, the most lethal type of primary brain tumor, continue to be a major therapeutic challenge. Here, we found that enterovirus A71 (EV-A71) can be developed as a novel oncolytic agent against malignant gliomas. EV-A71 preferentially infected and killed malignant glioma cells relative to normal glial cells. The virus receptor human scavenger receptor class B, member 2 (SCARB2), and phorbol-12-myristate-13-acetate-induced protein 1 (PMAIP1)-mediated cell death were involved in EV-A71-induced oncolysis. In mice with implanted subcutaneous gliomas, intraneoplastic inoculation of EV-A71 caused significant tumor growth inhibition. Furthermore, in mice bearing intracranial orthotopic gliomas, intraneoplastic inoculation of EV-A71 substantially prolonged survival. By insertion of brain-specific microRNA-124 (miR124) response elements into the viral genome, we improved the tumor specificity of EV-A71 oncolytic therapy by reducing its neurotoxicity while maintaining its replication potential and oncolytic capacity in gliomas. Our study reveals that EV-A71 is a potent oncolytic agent against malignant gliomas and may have a role in treating this tumor in the clinical setting.


Assuntos
Enterovirus Humano A/genética , Terapia Genética , Vetores Genéticos/genética , Glioma/genética , Glioma/terapia , Terapia Viral Oncolítica , Vírus Oncolíticos/genética , Animais , Apoptose , Linhagem Celular Tumoral , Células Cultivadas , Efeito Citopatogênico Viral , Modelos Animais de Doenças , Expressão Gênica , Genes Reporter , Terapia Genética/métodos , Vetores Genéticos/administração & dosagem , Humanos , Proteínas de Membrana Lisossomal/genética , Camundongos , Terapia Viral Oncolítica/métodos , Receptores Depuradores/genética , Transgenes , Resultado do Tratamento , Replicação Viral , Ensaios Antitumorais Modelo de Xenoenxerto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA