Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 329
Filtrar
1.
Adv Drug Deliv Rev ; 214: 115458, 2024 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-39383997

RESUMO

Emerging studies have disclosed the pivotal role of cancer-associated microbiota in supporting cancer development, progression and dissemination, with the in-depth comprehending of tumor microenvironment. In particular, certain invasive bacteria that hide in various cells within the tumor tissues can render assistance to tumor growth and invasion through intricate mechanisms implicated in multiple branches of cancer biology. Thus, tumor-resident intracellular microbes are anticipated as next-generation targets for oncotherapy. This review is intended to delve into these internalized bacteria-driven cancer-promoting mechanisms and explore diversified antimicrobial therapeutic strategies to counteract the detrimental impact caused by these intruders, thereby improving therapeutic benefit of antineoplastic therapy.

2.
Nano Lett ; 24(38): 11976-11984, 2024 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-39270053

RESUMO

Elevated production of extracellular matrix (ECM) in tumor stroma is a critical obstacle for drug penetration. Here we demonstrate that ATP-citrate lyase (ACLY) is significantly upregulated in cancer-associated fibroblasts (CAFs) to produce tumor ECM. Using a self-assembling nanoparticle-design approach, a carrier-free nanoagent (CFNA) is fabricated by simply assembling NDI-091143, a specific ACLY inhibitor, and doxorubicin (DOX) or paclitaxel (PTX), the first-line chemotherapeutic drug, via multiple noncovalent interactions. After arriving at the CAFs-rich tumor site, NDI-091143-mediated ACLY inhibition in CAFs can block the de novo synthesis of fatty acid, thereby dampening the fatty acid-involved energy metabolic process. As the lack of enough energy, the energetic CAFs will be in a dispirited state that is unable to produce abundant ECM, thereby significantly improving drug perfusion in tumors and enhancing the efficacy of chemotherapy. Such a simple drug assembling strategy aimed at CAFs' ACLY-mediated metabolism pathway presents the feasibility of stromal matrix reduction to potentiate chemotherapy.


Assuntos
ATP Citrato (pro-S)-Liase , Fibroblastos Associados a Câncer , Doxorrubicina , Paclitaxel , Fibroblastos Associados a Câncer/efeitos dos fármacos , Fibroblastos Associados a Câncer/metabolismo , Fibroblastos Associados a Câncer/patologia , Doxorrubicina/farmacologia , Doxorrubicina/química , Humanos , Paclitaxel/farmacologia , Paclitaxel/uso terapêutico , Animais , Camundongos , ATP Citrato (pro-S)-Liase/metabolismo , ATP Citrato (pro-S)-Liase/antagonistas & inibidores , Linhagem Celular Tumoral , Antineoplásicos/farmacologia , Antineoplásicos/química , Matriz Extracelular/metabolismo , Matriz Extracelular/efeitos dos fármacos , Nanopartículas/química , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Neoplasias/patologia , Microambiente Tumoral/efeitos dos fármacos
3.
Nano Lett ; 24(33): 10362-10371, 2024 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-39133195

RESUMO

Adoptive cell therapies for solid tumors are usually limited by off-target antigens, incapable tissue infiltration, and cell function exhaustion. In contrast, bacterial cells possess the inherent competencies of preferential tumor targeting, deep tissue penetration, and high intratumoral bioactivity and represent promising alternatives to overcome these challenges. Here, a sialic-acid-responsive regulatory gene circuit is engineered into Escherichia coli MG1655 to express cytolysin of hemolysin E (HlyE). Furthermore, sialidases are bioorthogonally decorated onto the surface of azido-functionalized bioengineered bacteria for recognizing tumor sialoglycans and cleaving their sialosides into free sialic acids. As chemical inducers, sialic acids feedbackingly activate the bacterial gene circuit to produce HlyE and lyse tumor cells. This study mimics the tumor antigen-induced cytotoxin production and cell lysis that occurs in chimeric antigen receptor T (CAR-T) cells yet surmounts the intrinsic limitations of adoptive cell therapies. Moreover, sialidase-mediated tumor cell desialylation also reverses the immunosuppressive effect of glycoimmune checkpoints and further improves the therapeutic effect of solid tumors.


Assuntos
Escherichia coli , Neoplasias , Neuraminidase , Neuraminidase/genética , Neuraminidase/metabolismo , Humanos , Escherichia coli/genética , Animais , Neoplasias/terapia , Camundongos , Linhagem Celular Tumoral , Proteínas Hemolisinas/química , Receptores de Antígenos Quiméricos/imunologia , Imunoterapia Adotiva
4.
Nat Commun ; 15(1): 7096, 2024 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-39154092

RESUMO

The intratumor microbiome imbalance in pancreatic cancer promotes a tolerogenic immune response and triggers immunotherapy resistance. Here we show that Lactobacillus rhamnosus GG probiotics, outfitted with a gallium-polyphenol network (LGG@Ga-poly), bolster immunotherapy in pancreatic cancer by modulating microbiota-immune interactions. Upon oral administration, LGG@Ga-poly targets pancreatic tumors specifically, and selectively eradicates tumor-promoting Proteobacteria and microbiota-derived lipopolysaccharides through a gallium-facilitated disruption of bacterial iron respiration. This elimination of intratumor microbiota impedes the activation of tumoral Toll-like receptors, thus reducing immunosuppressive PD-L1 and interleukin-1ß expression by tumor cells, diminishing immunotolerant myeloid populations, and improving the infiltration of cytotoxic T lymphocytes in tumors. Moreover, LGG@Ga-poly hampers pancreatic tumor growth in both preventive and therapeutic contexts, and amplifies the antitumor efficacy of immune checkpoint blockade in preclinical cancer models in female mice. Overall, we offer evidence that thoughtfully designed biomaterials targeting intratumor microbiota can efficaciously augment immunotherapy for the challenging pancreatic cancer.


Assuntos
Gálio , Lacticaseibacillus rhamnosus , Microbiota , Neoplasias Pancreáticas , Polifenóis , Probióticos , Neoplasias Pancreáticas/imunologia , Neoplasias Pancreáticas/terapia , Neoplasias Pancreáticas/microbiologia , Animais , Probióticos/administração & dosagem , Camundongos , Feminino , Humanos , Lacticaseibacillus rhamnosus/imunologia , Polifenóis/farmacologia , Microbiota/imunologia , Microbiota/efeitos dos fármacos , Linhagem Celular Tumoral , Imunoterapia/métodos , Camundongos Endogâmicos C57BL , Antígeno B7-H1/metabolismo , Antígeno B7-H1/imunologia , Linfócitos T Citotóxicos/imunologia
5.
ACS Nano ; 18(34): 23497-23507, 2024 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-39146387

RESUMO

Colorectal cancer (CRC) is a major global health concern, and the development of effective treatment strategies is crucial. Enzyme prodrug therapy (EPT) shows promise in combating tumors but faces challenges in achieving sustained expression of therapeutic enzymes and optimal biological distribution. To address these issues, a fungi-triggered in situ chemotherapeutics generator (named as SC@CS@5-FC) was constructed via oral delivery of a prodrug (5-fluorocytosine, 5-FC) for the treatment of orthotopic colorectal tumor. When SC@CS@5-FC targets the tumor through tropism by Saccharomyces cerevisiae (SC), the chemotherapeutic generator could be degraded under abundant hyaluronidase (HAase) in the tumor microenvironment by an enzyme-responsive gate to release prodrug (5-FC). And nontoxic 5-FC was catalyzed to toxic chemotherapy drug 5-fluorouracil (5-FU) by cytosine deaminase (CD) of SC. Meanwhile, SC and zinc-coordinated chitosan nanoparticles could be used as immune adjuvants to activate antigen-presenting cells and further enhance the therapeutic effect. Our results demonstrated that SC@CS@5-FC could effectively inhibit tumor growth and prolong mouse survival in an orthotopic colorectal cancer model. This work utilizes living SC as a dynamotor and positioning system for the chemotherapeutic generator SC@CS@5-FC, providing a strategy for oral enzyme prodrug therapy for the treatment of orthotopic colorectal.


Assuntos
Neoplasias Colorretais , Flucitosina , Fluoruracila , Imunoterapia , Pró-Fármacos , Saccharomyces cerevisiae , Pró-Fármacos/química , Pró-Fármacos/farmacologia , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/patologia , Animais , Camundongos , Humanos , Flucitosina/farmacologia , Flucitosina/química , Administração Oral , Fluoruracila/farmacologia , Fluoruracila/química , Fluoruracila/administração & dosagem , Citosina Desaminase/metabolismo , Quitosana/química , Antineoplásicos/farmacologia , Antineoplásicos/química , Proliferação de Células/efeitos dos fármacos , Hialuronoglucosaminidase/metabolismo , Camundongos Endogâmicos BALB C , Nanopartículas/química , Ensaios de Seleção de Medicamentos Antitumorais
6.
Adv Mater ; 36(36): e2405673, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39022876

RESUMO

Immunogenic cell death (ICD) often results in the production and accumulation of adenosine (ADO), a byproduct that negatively impacts the therapeutic effect as well as facilitates tumor development and metastasis. Here, an innovative strategy is elaborately developed to effectively activate ICD while avoiding the generation of immunosuppressive adenosine. Specifically, ZIF-90, an ATP-responsive consumer, is synthesized as the core carrier to encapsulate AB680 (CD73 inhibitor) and then coated with an iron-polyphenol layer to prepare the ICD inducer (AZTF), which is further grafted onto prebiotic bacteria via the esterification reaction to obtain the engineered biohybrid (Bc@AZTF). Particularly, the designed Bc@AZTF can actively enrich in tumor sites and respond to the acidic tumor microenvironment to offload AZTF nanoparticles, which can consume intracellular ATP (iATP) content and simultaneously inhibit the ATP-adenosine axis to reduce the accumulation of adenosine, thereby alleviating adenosine-mediated immunosuppression and strikingly amplifying ICD effect. Importantly, the synergy of anti-PD-1 (αPD-1) with Bc@AZTF not only establishes a collaborative antitumor immune network to potentiate effective tumoricidal immunity but also activates long-lasting immune memory effects to manage tumor recurrence and rechallenge, presenting a new paradigm for ICD treatment combined with adenosine metabolism.


Assuntos
Trifosfato de Adenosina , Adenosina , Morte Celular Imunogênica , Imunoterapia , Adenosina/química , Trifosfato de Adenosina/metabolismo , Morte Celular Imunogênica/efeitos dos fármacos , Camundongos , Animais , Linhagem Celular Tumoral , Microambiente Tumoral/efeitos dos fármacos , Humanos , Neoplasias/terapia , Neoplasias/tratamento farmacológico , Neoplasias/imunologia , Neoplasias/patologia , Nanopartículas/química , Antineoplásicos/farmacologia , Antineoplásicos/química
7.
Adv Healthc Mater ; : e2401118, 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38979865

RESUMO

Bacteria, especially drug-resistant strains, can quickly cause wound infections, leading to delayed healing and fatal risk in clinics. With the growing need for alternative antibacterial approaches that rely less on antibiotics or eliminate their use altogether, a novel antibacterial hydrogel named Ovtgel is developed. Ovtgel is formulated by chemically crosslinking thiol-modified ovotransferrin (Ovt), a member of the transferrin family found in egg white, with olefin-modified agarose through thiol-ene click chemistry. Ovt is designed to sequester ferric ions essential for bacterial survival and protect wound tissues from damages caused by the reactive oxygen species (ROS) generated in Fenton reactions. Experimental data have shown that Ovtgel significantly enhances wound healing by inhibiting bacterial growth and shielding tissues from ROS-induced harms. Unlike traditional antibiotics, Ovtgel targets essential trace elements required for bacterial survival in the host environment, preventing the development of drug resistance in pathogenic bacteria. Ovtgel exhibits excellent biocompatibility due to the homology of Ovt to mammalian transferrin. This hydrogel has the potential to serve as an effective antibiotic-free solution for combating bacterial infections.

8.
ACS Nano ; 18(20): 13266-13276, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38709874

RESUMO

One key challenge in postoperative glioblastoma immunotherapy is to guarantee a potent and durable T-cell response, which is restricted by the immunosuppressive microenvironment within the lymph nodes (LNs). Here, we develop an in situ sprayed exosome-cross-linked gel that acts as an artificial LN structure to directly activate the tumor-infiltrating T cells for prevention of glioma recurrence. Briefly, this gel is generated by a bio-orthogonal reaction between azide-modified chimeric exosomes and alkyne-modified alginate polymers. Particularly, these chimeric exosomes are generated from dendritic cell (DC)-tumor hybrid cells, allowing for direct and robust T-cell activation. The gel structure with chimeric exosomes as cross-linking points avoids the quick clearance by the immune system and thus prolongs the durability of antitumor T-cell immunity. Importantly, this exosome-containing immunotherapeutic gel provides chances for ameliorating functions of antigen-presenting cells (APCs) through accommodating different intracellular-acting adjuvants, such as stimulator of interferon genes (STING) agonists. This further enhances the antitumor T-cell response, resulting in the almost complete elimination of residual lesions after surgery. Our findings provide a promising strategy for postsurgical glioma immunotherapy that warrants further exploration in the clinical arena.


Assuntos
Exossomos , Glioblastoma , Imunoterapia , Linfonodos , Exossomos/química , Glioblastoma/terapia , Glioblastoma/imunologia , Glioblastoma/patologia , Humanos , Linfonodos/imunologia , Linfonodos/patologia , Animais , Camundongos , Géis/química , Células Dendríticas/imunologia , Linfócitos T/imunologia , Linhagem Celular Tumoral , Neoplasias Encefálicas/imunologia , Neoplasias Encefálicas/terapia , Neoplasias Encefálicas/patologia , Camundongos Endogâmicos C57BL
9.
Adv Mater ; 36(25): e2402532, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38563503

RESUMO

Due to inherent differences in cellular composition and metabolic behavior with host cells, tumor-harbored bacteria can discriminatorily affect tumor immune landscape. However, the mechanisms by which intracellular bacteria affect antigen presentation process between tumor cells and antigen-presenting cells (APCs) are largely unknown. The invasion behavior of attenuated Salmonella VNP20009 (VNP) into tumor cells is investigated and an attempt is made to modulate this behavior by modifying positively charged polymers on the surface of VNP. It is found that non-toxic chitosan oligosaccharide (COS) modified VNP (VNP@COS) bolsters the formation of gap junction between tumor cells and APCs by enhancing the ability of VNP to infect tumor cells. On this basis, a bacterial biohybrid is designed to promote in situ antigen cross-presentation through intracellular bacteria induced gap junction. This bacterial biohybrid also enhances the expression of major histocompatibility complex class I molecules on the surface of tumor cells through the incorporation of Mdivi-1 coupled with VNP@COS. This strategic integration serves to heighten the immunogenic exposure of tumor antigens; while, preserving the cytotoxic potency of T cells. A strategy is proposed to precisely controlling the function and local effects of microorganisms within tumors.


Assuntos
Apresentação de Antígeno , Quitosana , Junções Comunicantes , Salmonella , Humanos , Quitosana/química , Linhagem Celular Tumoral , Junções Comunicantes/metabolismo , Salmonella/imunologia , Animais , Apresentação Cruzada , Camundongos , Oligossacarídeos/química , Neoplasias/imunologia , Neoplasias/patologia , Células Apresentadoras de Antígenos/imunologia , Antígenos de Histocompatibilidade Classe I/metabolismo , Antígenos de Histocompatibilidade Classe I/imunologia
10.
Nano Lett ; 24(15): 4691-4701, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38588212

RESUMO

Tumor cells exhibit heightened glucose (Glu) consumption and increased lactic acid (LA) production, resulting in the formation of an immunosuppressive tumor microenvironment (TME) that facilitates malignant proliferation and metastasis. In this study, we meticulously engineer an antitumor nanoplatform, denoted as ZLGCR, by incorporating glucose oxidase, LA oxidase, and CpG oligodeoxynucleotide into zeolitic imidazolate framework-8 that is camouflaged with a red blood cell membrane. Significantly, ZLGCR-mediated consumption of Glu and LA not only amplifies the effectiveness of metabolic therapy but also reverses the immunosuppressive TME, thereby enhancing the therapeutic outcomes of CpG-mediated antitumor immunotherapy. It is particularly important that the synergistic effect of metabolic therapy and immunotherapy is further augmented when combined with immune checkpoint blockade therapy. Consequently, this engineered antitumor nanoplatform will achieve a cooperative tumor-suppressive outcome through the modulation of metabolism and immune responses within the TME.


Assuntos
Neoplasias , Microambiente Tumoral , Humanos , Imunoterapia , Radioimunoterapia , Glucose , Glucose Oxidase , Imunossupressores , Ácido Láctico , Neoplasias/terapia , Linhagem Celular Tumoral
11.
Nano Lett ; 24(12): 3801-3810, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38477714

RESUMO

The effectiveness of various cancer therapies for solid tumors is substantially limited by the highly hypoxic tumor microenvironment (TME). Here, a microalgae-integrated living hydrogel (ACG gel) is developed to concurrently enhance hypoxia-constrained tumor starvation therapy and immunotherapy. The ACG gel is formed in situ following intratumoral injection of a biohybrid fluid composed of alginate, Chlorella sorokiniana, and glucose oxidase, facilitated by the crossing-linking between divalent ions within tumors and alginate. The microalgae Chlorella sorokiniana embedded in ACG gel generate abundant oxygen through photosynthesis, enhancing glucose oxidase-catalyzed glucose consumption and shifting the TME from immunosuppressive to immunopermissive status, thus reducing the tumor cell energy supply and boosting antitumor immunity. In murine 4T1 tumor models, the ACG gel significantly suppresses tumor growth and effectively prevents postoperative tumor recurrence. This study, leveraging microalgae as natural oxygenerators, provides a versatile and universal strategy for the development of oxygen-dependent tumor therapies.


Assuntos
Chlorella , Microalgas , Neoplasias , Animais , Camundongos , Hidrogéis , Glucose Oxidase , Fotossíntese , Hipóxia , Oxigênio , Imunoterapia , Alginatos , Microambiente Tumoral
12.
Angew Chem Int Ed Engl ; 63(13): e202318539, 2024 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-38303647

RESUMO

Cancer has been the most deadly disease, and 13 million cancer casualties are estimated to occur each year by 2030. Gold nanoparticles (AuNPs)-based photothermal therapy (PTT) has attracted great interest due to its high spatiotemporal controllability and noninvasiveness. Due to the trade-off between particle size and photothermal efficiency of AuNPs, rational design is needed to realize aggregation of AuNPs into larger particles with desirable NIR adsorption in tumor site. Exploiting the bioorthogonal "Click and Release" (BCR) reaction between iminosydnone and cycloalkyne, aggregation of AuNPs can be achieved and attractively accompanied by the release of chemotherapeutic drug purposed to photothermal synergizing. We synthesize iminosydnone-lonidamine (ImLND) as a prodrug and choose dibenzocyclooctyne (DBCO) as the trigger of BCR reaction. A PEGylated AuNPs-based two-component nanoplatform consisting of prodrug-loaded AuNPs-ImLND and tumor-targeting peptide RGD-conjugated AuNPs-DBCO-RGD is designed. In the therapeutic regimen, AuNPs-DBCO-RGD are intravenously injected first for tumor-specific enrichment and retention. Once the arrival of AuNPs-ImLND injected later at tumor site, highly photothermally active nanoaggregates of AuNPs are formed via the BCR reaction between ImLND and DBCO. The simultaneous release of lonidamine further enhanced the therapeutic performance by sensitizing cancer cells to PTT.


Assuntos
Indazóis , Nanopartículas Metálicas , Nanopartículas , Neoplasias , Pró-Fármacos , Humanos , Ouro , Terapia Fototérmica , Nanopartículas Metálicas/uso terapêutico , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Pró-Fármacos/uso terapêutico , Oligopeptídeos/uso terapêutico , Linhagem Celular Tumoral
13.
Exp Ther Med ; 27(2): 85, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38274340

RESUMO

The present study described the case of a 22-year-old woman who had symptoms of left chest pain for >6 months, with further aggravation over 2 days. Computed tomography (CT) images of the mediastinal and pulmonary windows showed low-density shadows in the left ventricle. Echocardiography indicated a slightly stronger echo cluster in the left ventricle, with a range of ~29x30x35 mm, which was closely related to the lower wall and part of the posterior wall of the left ventricle. Contrast-enhanced ultrasound showed that the left ventricular mass was enhanced in a circular and dot-line shape, with a solid mass occupying the left ventricle and a rich blood supply. CT angiography revealed a nodule of size 27x27x24 mm in the left ventricle. During the operation, it was observed that the cardiac lipoma invaded the chordae tendinae and papillary muscle, and a valve replacement was performed. Postoperative examination revealed a piece of gray and anaplastic tissue, measuring 30x22x17 mm. The pathology of the specimen showed that the morphology of the left ventricular mass met the criteria of an intramuscular lipoma. The present study reported a cardiac lipoma involving the left anterior chordae tendinae and papillary muscle, with the patient showing only nonspecific symptoms. Early surgery should be applied to improve the prognosis of cardiac lipoma.

14.
Adv Sci (Weinh) ; 11(6): e2306336, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38072677

RESUMO

A critical challenge of existing cancer vaccines is to orchestrate the demands of antigen-enriched furnishment and optimal antigen-presentation functionality within antigen-presenting cells (APCs). Here, a complementary immunotherapeutic strategy is developed using dendritic cell (DC)-tumor hybrid cell-derived chimeric exosomes loaded with stimulator of interferon genes (STING) agonists (DT-Exo-STING) for maximized tumor-specific T-cell immunity. These chimeric carriers are furnished with broad-spectrum antigen complexes to elicit a robust T-cell-mediated inflammatory program through direct self-presentation and indirect DC-to-T immunostimulatory pathway. This chimeric exosome-assisted delivery strategy possesses the merits versus off-the-shelf cyclic dinucleotide (CDN) delivery techniques in both the brilliant tissue-homing capacity, even across the intractable blood-brain barrier (BBB), and the desired cytosolic entry for enhanced STING-activating signaling. The improved antigen-presentation performance with this nanovaccine-driven STING activation further enhances tumor-specific T-cell immunoresponse. Thus, DT-Exo-STING reverses immunosuppressive glioblastoma microenvironments to pro-inflammatory, tumoricidal states, leading to an almost obliteration of intracranial primary lesions. Significantly, an upscaling option that harnesses autologous tumor tissues for personalized DT-Exo-STING vaccines increases sensitivity to immune checkpoint blockade (ICB) therapy and exerts systemic immune memory against post-operative glioma recrudesce. These findings represent an emerging method for glioblastoma immunotherapy, warranting further exploratory development in the clinical realm.


Assuntos
Exossomos , Glioblastoma , Humanos , Glioblastoma/terapia , Linfócitos T , Apresentação de Antígeno , Imunoterapia/métodos , Microambiente Tumoral
15.
Adv Mater ; 36(6): e2309094, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38014890

RESUMO

Inhibition of glutamine metabolism in tumor cells can cause metabolic compensation-mediated glycolysis enhancement and PD-L1 upregulation-induced immune evasion, significantly limiting the therapeutic efficacy of glutamine inhibitors. Here, inspired by the specific binding of receptor and ligand, a PD-L1-targeting metabolism and immune regulator (PMIR) are constructed by decorating the glutaminase inhibitor (BPTES)-loading zeolitic imidazolate framework (ZIF) with PD-L1-targeting peptides for regulating the metabolism within the tumor microenvironment (TME) to improve immunotherapy. At tumor sites, PMIR inhibits glutamine metabolism of tumor cells for elevating glutamine levels within the TME to improve the function of immune cells. Ingeniously, the accompanying PD-L1 upregulation on tumor cells causes self-amplifying accumulation of PMIR through PD-L1 targeting, while also blocking PD-L1, which has the effects of converting enemies into friends. Meanwhile, PMIR exactly offsets the compensatory glycolysis, while disrupting the redox homeostasis in tumor cells via the cooperation of components of the ZIF and BPTES. These together cause immunogenic cell death of tumor cells and relieve PD-L1-mediated immune evasion, further reshaping the immunosuppressive TME and evoking robust immune responses to effectively suppress bilateral tumor progression and metastasis. This work proposes a rational strategy to surmount the obstacles in glutamine inhibition for boosting existing clinical treatments.


Assuntos
Antígeno B7-H1 , Glutamina , Humanos , Antígeno B7-H1/metabolismo , Linhagem Celular Tumoral , Glutamina/antagonistas & inibidores , Glutamina/metabolismo , Imunossupressores , Imunoterapia , Reprogramação Metabólica , Microambiente Tumoral
16.
Acta Biomater ; 174: 386-399, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38016511

RESUMO

Immune cells distinguish cancer cells mainly relying on their membrane-membrane communication. The major challenge of cancer vaccines exists in difficult identification of cancer neoantigens and poor understanding over immune recognition mechanisms against cancer cells, particularly the combination among multiple antigens and the cooperation between antigens and immune-associated proteins. We exploit cancer cell membranes as the whole cancer antigen repertoire and reinforce its immunogenicity by cellular engineering to modulate the cytomembrane's immune-associated functions. This study reports a vaccine platform based on radiation-engineered cancer cells, of which the membrane HSP70 protein as the immune chaperon/traitor is endogenously upregulated. The resulting positive influences are shown to cover immunogenic steps occurring in antigen-presenting cells, including the uptake and the cross-presentation of the cancer antigens, thus amplifying cancer-specific immunogenicity. Membrane vaccines offer chances to introduce desired metal ions through membrane-metal complexation. Using Mn2+ ion as the costimulatory interferon genes agonist, immune activity is enhanced to further boost adaptive cancer immunogenicity. Results have evidenced that this artificially engineered membrane vaccine with favorable bio-safety could considerably reduce tumorigenicity and inhibit tumor growth. This study provides a universally applicable and facilely available cancer vaccine platform by artificial engineering of cancer cells to inherit and amplify the natural merits of cancer cell membranes. STATEMENT OF SIGNIFICANCE: The major challenge of cancer vaccines exists in difficult identification of cancer neoantigens and poor understanding over immune recognition mechanisms against cancer cells, particularly the combination among multiple antigens and the cooperation between antigens and immune-associated proteins. Cancer cell membrane presents superior advantages as the whole cancer antigen repertoire, including the reported and the unidentified antigens, but its immunogenicity is far from satisfactory. Cellular engineering approaches offer chances to endogenously modulate the immune-associated functions of cell membranes. Such a reinforced vaccine based on the engineered cancer cell membranes matches better the natural immune recognition pathway than the conventional vaccines.


Assuntos
Vacinas Anticâncer , Neoplasias , Humanos , Neoplasias/prevenção & controle , Células Apresentadoras de Antígenos , Antígenos de Neoplasias , Membrana Celular
17.
Adv Mater ; 36(6): e2305384, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37672674

RESUMO

Adoptive cell therapy has emerged as a promising approach for cancer treatment. However, the transfer of macrophages exhibits limited efficacy against solid tumors due to the dynamic cellular phenotypic shift from antitumor to protumor states within the immunosuppressive tumor microenvironment. In this study, a strategy of attaching bacteria to macrophages (Mø@bac) is reported that endows adoptively infused macrophages with durable stimulation by leveraging the intrinsic immunogenicity of bacteria. These attached bacteria, referred to as backpacks, are encapsulated with adhesive nanocoatings and can sustainably control the cellular phenotypes in vivo. Moreover, Mø@bac can repolarize endogenous tumor-associated macrophages, leading to a more robust immune response and thus reducing the tumor progression in a murine 4T1 cancer model without any side effects. This study utilizing bacteria as cellular backpacks opens a new avenue for the development of cell therapies.


Assuntos
Neoplasias , Camundongos , Animais , Neoplasias/patologia , Macrófagos , Transferência Adotiva , Bactérias , Microambiente Tumoral , Imunoterapia
18.
Nano Lett ; 24(1): 130-139, 2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-38150297

RESUMO

Photothermal immunotherapy has become a promising strategy for tumor treatment. However, the intrinsic drawbacks like light instability, poor immunoadjuvant effect, and poor accumulation of conventional inorganic or organic photothermal agents limit their further applications. Based on the superior carrying capacity and active tumor targeting property of living bacteria, an immunoadjuvant-intensified and engineered tumor-targeting bacterium was constructed to achieve effective photothermal immunotherapy. Specifically, immunoadjuvant imiquimod (R837)-loaded thermosensitive liposomes (R837@TSL) were covalently decorated onto Rhodobacter sphaeroides (R.S) to obtain nanoimmunoadjuvant-armed bacteria (R.S-R837@TSL). The intrinsic photothermal property of R.S combined R837@TSL to achieve in situ near-infrared (NIR) laser-controlled release of R837. Meanwhile, tumor immunogenic cell death (ICD) caused by photothermal effect of R.S-R837@TSL, synergizes with released immunoadjuvants to promote maturation of dendritic cells (DCs), which enhance cytotoxic T lymphocytes (CTLs) infiltration for further tumor eradication. The photosynthetic bacteria armed with immunoadjuvant-loaded liposomes provide a strategy for immunoadjuvant-enhanced cancer photothermal immunotherapy.


Assuntos
Nanopartículas , Neoplasias , Rhodobacter sphaeroides , Humanos , Adjuvantes Imunológicos , Lipossomos , Imiquimode , Neoplasias/patologia , Imunoterapia , Linhagem Celular Tumoral , Fototerapia
19.
ACS Nano ; 17(24): 24947-24960, 2023 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-38055727

RESUMO

Cancer vaccines have been considered to be an alternative therapeutic strategy for tumor therapy in the past decade. However, the popularity and efficacy of cancer vaccines were hampered by tumor antigen heterogeneity and the impaired function of cross-presentation in the tumor-infiltrating dendritic cells (TIDCs). To overcome these challenges, we engineered an in situ nanovaccine (named as TPOP) based on lipid metabolism-regulating and innate immune-stimulated nanoparticles. TPOP could capture tumor antigens and induce specific recognition by TIDCs to be taken up. Meanwhile, TPOP could manipulate TIDC lipid metabolism and inhibit de novo synthesis of fatty acids, thus improving the ability of TIDCs to cross-present by reducing their lipid accumulation. Significantly, intratumoral injection of TPOP combined with pretreatment with doxorubicin showed a considerable therapeutic effect in the subcutaneous mouse colorectal cancer model and melanoma model. Moreover, in combination with immune checkpoint inhibitors, such TPOP could markedly inhibit the growth of distant tumors by systemic antitumor immune responses. This work provides a safe and promising strategy for improving the function of immune cells by manipulating their metabolism and activating the immune system effectively for in situ cancer vaccines.


Assuntos
Vacinas Anticâncer , Melanoma , Nanopartículas , Neoplasias , Camundongos , Animais , Nanovacinas , Células Dendríticas , Metabolismo dos Lipídeos , Imunoterapia , Neoplasias/tratamento farmacológico , Melanoma/tratamento farmacológico , Antígenos de Neoplasias/metabolismo , Modelos Animais de Doenças
20.
Nano Lett ; 23(21): 9963-9971, 2023 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-37729438

RESUMO

Given the key roles of cancer associated fibroblasts (CAFs) in shaping tumor stroma, this study shows a CAF-associated ITGB1-inactivating peptide-enriched membrane nanodelivery system (designated as PMNPs-D) to simultaneously target CAFs and tumor cells for boosted chemotherapy through promoted drug perfusion. In the structure of PMNPs-D, the PLGA-based inner core is loaded with the chemotherapeutic drug doxorubicin, and the outer surface is cloaked by hybrid biomembranes with the insertion of integrin ß1 (ITGB1) inhibiting peptide (i.e., FNIII14). After prolonged blood circulation and actively targeting in tumor sites, PMNPs-D can respond to CAF-overexpressed fibroblast activation protein-α (FAP-α) to trigger the release of FNIII14, which will bind to ITGB1 and inhibit CAFs' biological function in producing the stromal matrix, thereby loosening the condensed stromal structure and enhancing the permeability of nanotherapeutics in tumors. As a result, this tailor-designed nanosystem shows substantial tumor inhibition and metastasis retardation in aggressive adenoid cystic carcinoma (ACC) tumor-harboring mice.


Assuntos
Fibroblastos Associados a Câncer , Neoplasias , Animais , Camundongos , Fibroblastos Associados a Câncer/patologia , Neoplasias/patologia , Doxorrubicina/farmacologia , Doxorrubicina/uso terapêutico , Membranas , Peptídeos/metabolismo , Microambiente Tumoral , Linhagem Celular Tumoral , Fibroblastos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA